Pythagorean family: Difference between revisions

Bold lemma; +dis-confusion reminder
This is ambiguous too
Tag: Redirect target changed
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The '''Pythagorean family''' tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12et, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
#REDIRECT [[Pythagorean]]
 
= Pythagorean =
: ''Not to be confused with [[Pythagorean tuning]].''
 
Comma list: 531441/524288
 
[[POTE generator]]: ~5/4 = 384.884 or ~81/80 = 15.116
 
Mapping: [{{val| 12 19 0 }}, {{val| 0 0 1 }}
 
{{Val list|legend=1| 12, 72, 84, 156, 240, 396b }}
 
= Compton =
In terms of the normal list, compton adds 413343/409600 = {{monzo| -14 10 -2 1 }} to the Pythagorean comma; however it can also be characterized by saying it adds [[225/224]]. Compton, however, does not need to be used as a 7-limit temperament; in the 5-limit it becomes the rank two 5-limit temperament tempering out the Pythagorean comma. In terms of equal temperaments, it is the 12&72 temperament, and [[72edo]], [[84edo]] or [[240edo]] make for good tunings. Possible generators are 21/20, 10/9, the secor, 6/5, 5/4, 7/5 and most importantly, 81/80.
 
In either the 5 or 7-limit, [[240edo]] is an excellent tuning, with 81/80 coming in at 15 cents exactly. The major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.
 
In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds [[441/440]]. For this [[72edo]] can be recommended as a tuning.
 
Comma list: 225/224, 250047/250000
 
[[POTE generator]]: ~5/4 = 383.775 or ~81/80 = 16.225
 
Mapping: [{{val| 12 19 0 -22 }}, {{val| 0 0 1 2 }}]
 
{{Val list|legend=1| 12, 60, 72, 228, 300c, 372bc, 444bc }}
 
== 11-limit ==
Comma list: 225/224, 441/440, 4375/4356
 
[[POTE generator]]: ~5/4 = 383.266 or ~81/80 = 16.734
 
Mapping: [{{val|12 19 0 -22 -42 }}, {{val| 0 0 1 2 3 }}]
 
{{Val list|legend=1| 12, 60e, 72 }}
 
=== 13-limit ===
Comma list: 225/224, 441/440, 351/350, 364/363
 
POTE generator: ~5/4 = 383.963 or ~81/80 = 16.037
 
Mapping: [{{val| 12 19 0 -22 -42 -67 }}, {{val| 0 0 1 2 3 4 }}]
 
{{Val list|legend=1| 72, 228f, 300cf }}
 
Badness: 0.0219
 
=== Comptone ===
Comma list: 225/224, 441/440, 325/324, 1001/1000
 
POTE generator: ~5/4 = 382.612 or ~81/80 = 17.388
 
Mapping: [{{val| 12 19 0 -22 -42 100 }}, {{val| 0 0 1 2 3 -2 }}]
 
{{Val list|legend=1| 12, 60e, 72, 204cdef, 276cdef }}
 
Badness: 0.0251
 
= Catler =
In terms of the normal comma list, catler is characterized by the addition of the [[schisma]], 32805/32768, to the Pythagorean comma, though it can also be characterized as adding [[81/80]], [[128/125]] or [[648/625]]. In any event, the 5-limit is exactly the same as the 5-limit of [[12edo]]. Catler can also be characterized as the 12&24 temperament. [[36edo]] or [[48edo]] are possible tunings. Possible generators are 36/35, 21/20, 15/14, 8/7, 7/6, 6/5, 9/7, 7/5, and most importantly, 64/63. 
 
Comma list: 81/80, 128/125
 
[[POTE generator]]: ~64/63 = 26.790
 
Mapping: [{{val| 12 19 28 0 }}, {{val| 0 0 0 1 }}]
 
{{Val list|legend=1| 12, 36, 48, 132, 180 }}
 
== 11-limit ==
Comma list: 81/80, 99/98, 128/125
 
POTE generator: ~64/63 = 22.723
 
Mapping: [{{val| 12 19 28 0 -26 }}, {{val| 0 0 0 1 2 }}]
 
{{Val list|legend=1| 12, 48c, 108cd }}
 
Badness: 0.0582
 
== Catlat ==
Comma list: 81/80, 128/125, 540/539
 
POTE generator: ~64/63 = 27.864
 
Mapping: [{{val| 12 19 28 0 109 }}, {{val| 0 0 0 1 -2 }}]
 
{{Val list|legend=1| 36, 48c, 84c }}
 
Badness: 0.0819
 
== Catcall ==
Comma list: 56/55, 81/80, 128/125
 
POTE generator: ~36/35 = 32.776
 
Mapping: [{{val| 12 19 28 0 8 }}, {{val| 0 0 0 1 1 }}]
 
{{Val list|legend=1| 12, 24, 36, 72ce }}
 
Badness: 0.0345
 
=== 13-limit ===
Comma list: 56/55, 66/65, 81/80, 105/104
 
POTE generator: ~36/35 = 37.232
 
Mapping: [{{val| 12 19 28 0 8 11 }}, {{val| 0 0 0 1 1 1 }}]
 
{{Val list|legend=1| 12f, 24, 36f, 60cf }}
 
Badness: 0.0284
 
=== Duodecic ===
Comma list: 56/55, 81/80, 91/90, 128/125
 
POTE generator: ~36/35 = 37.688
 
Mapping: [{{val| 12 19 28 0 8 78 }}, {{val| 0 0 0 1 1 -1 }}]
 
{{Val list|legend=1| 12, 24, 36, 60c }}
 
Badness: 0.0383
 
==== 17-limit ====
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125
 
POTE generator: ~36/35 = 38.097
 
Mapping: [{{val| 12 19 28 0 8 78 49 }}, {{val| 0 0 0 1 1 -1 0 }}]
 
{{Val list|legend=1| 12, 24, 36, 60c }}
 
Badness: 0.0275
 
==== 19-limit ====
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95
 
POTE generator: ~36/35 = 38.080
 
Mapping: [{{val| 12 19 28 0 8 78 49 51 }}, {{val| 0 0 0 1 1 -1 0 0 }}]
 
{{Val list|legend=1| 12, 24, 36, 60c }}
 
Badness: 0.0209
 
= Duodecim =
Comma list: 36/35, 50/49, 64/63
 
POTE generator: ~45/44 = 34.977
 
Mapping: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]
 
{{Val list|legend=1| 12, 24d }}
 
= Omicronbeta =
Comma list: 225/224, 243/242, 441/440, 4375/4356
 
POTE generator: ~13/8 = 837.814
 
Mapping: [{{val| 72 114 167 202 249 266 }}, {{val| 0 0 0 0 0 1 }}]
 
{{Val list|legend=1| 72, 144, 216c, 288cdf, 504bcdef }}
 
Badness: 0.0300
 
= Hours =
Comma list: 19683/19600, 33075/32768
 
POTE generator: ~225/224 = 2.100
 
Mapping: [{{val| 24 38 0 123 83 }}, {{val| 0 0 1 -1 0 }}]
 
{{Multival|legend=1| 0 24 -24 38 -38 -123 }}
 
{{Val list|legend=1| 24, 48, 72, 312bd, 384bcd, 456bcd, 528bcd, 600bcd }}
 
Badness: 0.1161
 
== 11-limit ==
Comma list: 243/242, 385/384, 9801/9800
 
POTE generator: ~225/224 = 2.161
 
Mapping: [{{val| 24 38 0 123 83 }}, {{val| 0 0 1 -1 0 }}]
 
{{Val list|legend=1| 24, 48, 72, 312bd, 384bcd, 456bcde, 528bcde }}
 
Badness: 0.0362
 
== 13-limit ==
Comma list: 243/242, 351/350, 364/363, 385/384
 
POTE generator: ~225/224 = 3.955
 
Mapping: [{{val| 24 38 0 123 83 33 }}, {{val| 0 0 1 -1 0 1 }}]
 
{{Val list|legend=1| 24, 48f, 72, 168df, 240df }}
 
Badness: 0.0269
 
[[Category:Theory]]
[[Category:Temperament family]]
[[Category:Pythagorean]]
[[Category:Rank 2]]