Mercator family: Difference between revisions

Aura (talk | contribs)
No edit summary
 
(74 intermediate revisions by 11 users not shown)
Line 1: Line 1:
__FORCETOC__
{{Technical data page}}
<div class="toccolours" style="float: right">
<center>'''[[Fractional-octave temperaments]]'''</center>
----
<small>← [[{{Ordinal|{{#expr:53-1}}}}-octave temperaments]]</small> 53rd-octave temperaments <small>[[{{Ordinal|{{#expr:53+1}}}}-octave temperaments]] →</small>
</div>


The '''Mercator family''' tempers out [[Mercator's comma]], {{monzo|-84 53}}, and hence the fifths form a closed 53-note circle of fifths, identical to [[53edo]].  While the tuning of the fifth will be that of 53edo, 0.069 cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
[[Category:53edo]]
[[Category:Fractional-octave temperaments]]
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]


[[POTE_tuning|POTE generator]]: ~5/4 = 386.264
The '''Mercator family''' tempers out [[Mercator's comma]], {{monzo| -84 53 }}, and hence the fifths form a closed 53-note circle of fifths, identical to [[53edo]]. While the tuning of the fifth will be that of 53edo, 0.069 cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.


Mapping: [{{val| 53 84 123 }}, {{val| 0 0 1 }}]
Discussed elsewhere are:


Wedgie: {{wedgie| 0 53 84 }}
* ''[[Aemilic]]'' (+250047/250000) → [[159th-octave temperaments#Aemilic|159th-octave temperaments]]


{{Val list|legend=1| 53, 477, 530, 583, 636, 689, 742, 795, 848, 901, 1749, 2650 }}
== Mercator ==
[[Subgroup]]: 2.3.5


Badness: 0.2843
[[Comma list]]: {{monzo| -84 53 }}


=Cartography temperament=
[[Mapping]]: [{{val| 53 84 123 }}, {{val| 0 0 1 }}]
In terms of the normal comma list, Cartography is characterized by the addition of the schisma, 32805/32768, to Mercator's comma, which completely reduces all commas in the [[Schismic-Mercator equivalence continuum]] to the [[unison]], and thus, the 5-limit is exactly the same as the 5-limit of 53edo. Cartography can also be characterized as the 53&amp;159 temperament. [[212edo]] is possible tuning. 


Commas:  
Mapping generators: ~531441/524288, ~5/1


POTE generator:  
[[Optimal tuning]] ([[POTE]]): ~5/4 = 386.264


Mapping:
{{Optimal ET sequence|legend=1| 53, 477, 530, 583, 636, 689, 742, 795, 848, 901, 1749, 2650 }}


Wedgie:
[[Badness]]: 0.284323


EDOs:
== Schismerc ==
As per the name, Schismerc is characterized by the addition of the schisma, [[32805/32768]], to Mercator's comma, which completely reduces all commas in the [[schismic–Mercator equivalence continuum]] to the [[unison]], and thus, the 5-limit part is exactly the same as the 5-limit of 53edo, with the addition of harmonic 7 represented by an independent generator. Among the known 11-limit extensions are cartography, pentacontatritonic and boiler.


Badness:
Subgroup: 2.3.5.7


==7-limit==
[[Comma list]]: 15625/15552, 32805/32768
Commas:  


POTE generator:  
[[Mapping]]: [{{val| 53 84 123 0 }}, {{val| 0 0 0 1 }}]


Mapping:  
Mapping generators: ~81/80, ~7/1


Wedgie:
[[Optimal tuning]] ([[POTE]]): ~225/224 = 5.3666


EDOs:
{{Optimal ET sequence|legend=1| 53, 159, 212, 689c, 901cc }}


Badness:
[[Badness]]: 0.087022


==11-limit==
=== Cartography ===
Commas:
Cartography is a strong extension to Schismerc that nails down both the 7-limit and the 11-limit by adding the [[symbiotic comma]] to Schismerc's list of tempered commas.  The name for this temperament comes from how good the mappings are, and also from the idea of "Mercator" being a dual reference to both Nicolas Mercator and Gerardus Mercator.


POTE generator:  
Subgroup: 2.3.5.7.11


Mapping:  
Comma list: 385/384, 6250/6237, 19712/19683


Wedgie:
Mapping: [{{val| 53 84 123 0 332 }}, {{val| 0 0 0 1 -1 }}]


EDOs:
Mapping generators: ~81/80, ~7/1


Badness:
Optimal tuning (POTE): ~225/224 = 6.1204


==13-limit==
{{Optimal ET sequence|legend=1| 53, 106d, 159, 212, 371d, 583cde }}
Commas:


POTE generator:  
Badness: 0.054452


Mapping:
==== 13-limit ====
13-limit Cartography adds the [[island comma]] to the list of tempered commas – a development which fits well with the ideas of mapmaking and geography.  The harmonic 13 in this extension is part of the period and independent of the generator for harmonics 7 and 11.


Wedgie:
Subgroup: 2.3.5.7.11.13


EDOs:
Comma list: 325/324, 385/384, 625/624, 19712/19683


Badness:
Mapping: [{{val| 53 84 123 0 332 196 }}, {{val| 0 0 0 1 -1 0 }}
 
Mapping generators: ~81/80, ~7/1
 
Optimal tuning (POTE): ~225/224 = 6.1430
 
{{Optimal ET sequence|legend=1| 53, 106d, 159, 212, 371df, 583cdeff }}
 
Badness: 0.029980
 
=== Pentacontatritonic ===
First proposed by [[User:Xenllium|Xenllium]], this temperament nails down both the 7-limit and the 11-limit by tempering out the [[swetisma]].  Like Cartography, Pentacontatritonic is a strong extension to Schismerc.
 
Subgroup: 2.3.5.7.11
 
Comma list: 540/539, 15625/15552, 32805/32768
 
Mapping: [{{val| 53 84 123 0 481 }}, {{val| 0 0 0 1 -2 }}]
 
Mapping generators: ~81/80, ~7/1
 
Optimal tuning (POTE): ~385/384 = 4.1494
 
{{Optimal ET sequence|legend=1| 53, 159e, 212e, 265, 318, 583c }}
 
Badness: 0.115066
 
==== 13-limit ====
13-limit Pentacontatritonic adds the schismina to the list of commas being tempered out – in this extension the harmonic 13 is connected to the generator.
 
Subgroup: 2.3.5.7.11.13
 
Comma list: 540/539, 729/728, 4096/4095, 13750/13689
 
Mapping: [{{val| 53 84 123 0 481 345 }}, {{val| 0 0 0 1 -2 1 }}
 
Mapping generators: ~81/80, ~7/1
 
Optimal tuning (POTE): ~385/384 = 3.9850
 
{{Optimal ET sequence|legend=1| 53, 159ef, 212ef, 265, 318, 583cf }}
 
Badness: 0.061158
 
=== Boiler ===
Boiler nails down both the 7-limit and the 11-limit by adding the [[kalisma]] to Schismerc's list of tempered commas, though unlike with the other extensions of Schismerc, this temperament is not only a weak extension, but lacks a clear 13-limit extension of its own. The name for this temperament is a reference to how 212 degrees Fahrenheit is the boiling point of water, as well as to a number of mechanical devices that boil water for various purposes.
 
Subgroup: 2.3.5.7.11
 
Comma list: 9801/9800, 15625/15552, 32805/32768
 
Mapping: [{{val| 106 168 246 0 69 }}, {{val| 0 0 0 1 1 }}]
 
Mapping generators: ~2835/2816, ~7
 
Optimal tuning (POTE): ~225/224 = 6.3976 or ~441/440 = 4.9232
 
{{Optimal ET sequence|legend=1| 106, 212 }}
 
Badness: 0.109648
 
== Joliet ==
Joliet can be characterized as the 53 &amp; 106 temperament, having 7-limit representation akin to 53EDO with the addition of harmonic 11 represented by an independent generator. The name for this temperament is a reference to 106 being the maximum number of characters in the Joliet extension to the ISO 9660 file system.
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 225/224, 1728/1715, 3125/3087
 
[[Mapping]]: [{{val| 53 84 123 149 0 }}, {{val| 0 0 0 0 1 }}]
 
Mapping generators: ~81/80, ~11/1
 
[[Optimal tuning]] ([[POTE]]): ~176/175 = 8.8283
 
{{Optimal ET sequence|legend=1| 53, 106, 159d }}
 
[[Badness]]: 0.063254
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 225/224, 325/324, 640/637
 
Mapping: [{{val| 53 84 123 149 0 196 }}, {{val| 0 0 0 0 1 0 }}]
 
Mapping generators: ~81/80, ~11/1
 
Optimal tuning (POTE): ~176/175 = 8.1254
 
{{Optimal ET sequence|legend=1| 53, 106, 159d }}
 
Badness: 0.036988
 
== Iodine ==
Proposed by Eliora, the name of ''iodine'' is taken from the convention of naming some fractional-octave temperaments after elements, in this case the 53rd chemical element. It can be expressed as the 159 & 742 temperament. 2 periods + 3 less than 600 cent generators correspond to [[8/5]]. 5 less than 600 cent generators (minus 1 octave) correspond to [[8/7]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: {{monzo| -19 14 -5 3 }}, {{monzo| 8 3 -20 12 }}
 
[[Mapping]]: [{{val| 53 84 2 -53 }}, {{val| 0 0 3 5 }}]
 
Mapping generators: ~3125/3087, 6075/3584
 
[[Optimal tuning]] ([[CTE]]): ~6075/3584 = 913.7347
 
{{Optimal ET sequence|legend=1| 159, 424cd, 583, 742, 2385d, 3127d }}
 
[[Badness]]: 0.477
 
=== 11-limit ===
24 periods plus the reduced generator correspond to [[11/8]].
 
Subgroup: 2.3.5.7.11
 
Comma list: 160083/160000, 820125/819896, 4302592/4296875
 
Mapping: [{{val| 53 84 2 -53 143 }}, {{val| 0 0 3 5 1 }}]
 
Optimal tuning (CTE): ~6075/3584 = 913.7322
 
{{Optimal ET sequence|legend=1| 159, 424cd, 583, 742, 2385d, 3127d }}
 
Badness: 0.0875
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 6656/6655, 34398/34375, 43904/43875, 59535/59488
 
Mapping: [{{val| 53 84 2 -53 143 -46 }}, {{val| 0 0 3 5 1 6 }}]
 
Optimal tuning (CTE): ~441/260 = 913.7115
 
{{Optimal ET sequence|legend=1| 159, 424cdff, 583f, 742, 1643 }}
 
Badness: 0.0476
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 1701/1700, 6656/6655, 8624/8619, 12376/12375, 14875/14872
 
Mapping: [{{val| 53 84 2 -53 143 -46 257 }}, {{val| 0 0 3 5 1 6 -1 }}]
 
Optimal tuning (CTE): ~441/260 = 913.7131
 
{{Optimal ET sequence|legend=1| 159, 583f, 742 }}
 
Badness: 0.0328
 
{{Navbox fractional-octave|53}}
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Mercator family]] <!-- main article -->
[[Category:Rank 2]]