Archytas clan: Difference between revisions

Blacksmith: +subgroup data
Update wording. - gencoms (trivial)
 
(89 intermediate revisions by 14 users not shown)
Line 1: Line 1:
The '''archytas clan''' tempers out the [[64/63|Archytas comma]], 64/63. This means that four stacked 3/2 fifths equal a 9/7 major third. (Note the similarity in function to [[81/80]] in meantone, where four stacked 3/2 fifths equal a 5/4 major third.) This leads to tunings with 3s and 7s quite sharp, such as those of [[22edo]].  
{{Technical data page}}
The '''archytas clan''' (or '''archy family''') [[tempering out|tempers out]] the [[64/63|Archytas' comma]], 64/63. This means a stack of two [[3/2]] fifths [[octave reduction|octave-reduced]] equals a whole tone of [[8/7]][[~]][[9/8]] tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a [[9/7]] major third. Note the similarity in function to [[81/80]] in meantone, where four stacked fifths octave-reduced equal a [[5/4]] major third. This leads to tunings with 3's and 7's quite sharp, such as those of [[22edo]], [[27edo]], or [[49edo]].  


Adding 50/49 to the list of commas gives pajara, 36/35 gives dominant, 16/15 gives mother, 126/125 gives augene, 28/27 gives blacksmith, 245/243 gives superpyth, 250/243 gives porcupine, 686/675 gives beatles, 360/343 gives schism, 3125/3087 gives passion, 2430/2401 gives quasisuper, and 4375/4374 gives modus.  
This article focuses on rank-2 temperaments. See [[Archytas family]] for the [[rank-3 temperament]] resulting from tempering out 64/63 alone in the full 7-limit.  


Discussed under subgroup temperaments is the 2.3.7 [[Subgroup temperaments #Archy|archy]]. Under their respective 5-limit families are [[Father family #Mother|mother]], [[Meantone family #Dominant|dominant]], [[Augmented family #Augene|augene]], [[Porcupine family|porcupine]], [[Diaschismic family #Pajara|pajara]], [[Tetracot family #Modus|modus]], and [[Immunity family #Immunized|immunized]]. The rest are considered below.
== Archy ==
{{Main| Superpyth }}


= Blacksmith =
[[Subgroup]]: 2.3.7


[[File:blacksmith10.jpg|alt=blacksmith10.jpg|thumb|Lattice of blacksmith]]
[[Comma list]]: 64/63


== 5-limit (blackwood) ==
{{Mapping|legend=2| 1 0 6 | 0 1 -2 }}


Period: 1\5
{{Mapping|legend=3| 1 0 0 6 | 0 1 0 -2 }}


Optimal ([[POTE]]) generator: ~5/4 = 399.594
: mapping generators: ~2, ~3


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1196.9552{{c}}, ~3/2 = 707.5215{{c}}
: [[error map]]: {{val| -3.045 +2.522 +3.952 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.3901{{c}}
: error map: {{val| 0.000 +7.435 +12.394 }}


Scales (Scala files):
{{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
[[Badness]] (Sintel): 0.159
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 256/243
Scales: [[archy5]], [[archy7]], [[archy12]]


Subgroup: 2.3.5
=== Overview to extensions ===
==== 7-limit extensions ====
The second comma in the comma list defines which [[7-limit]] family member we are looking at:  
* [[#Schism|Schism]] adds 360/343, for a tuning around [[12edo]];
* Dominant adds [[36/35]], for a tuning between [[12edo]] and [[17edo|17c-edo]];
* [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]];
* [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]];
* [[#Quasiultra|Quasiultra]] adds 33614/32805, for a tuning between 27edo and [[32edo]];
* [[#Ultrapyth|Ultrapyth]] adds 6860/6561, for a tuning sharp of 32edo;
* Mother adds [[16/15]], for an exotemperament well tuned around [[5edo]].  


Mapping: [{{val| 5 8 0 }}, {{val| 0 0 1 }}]
These all use the same generators as archy.


Mapping generators: ~9/8, ~5
[[686/675]] gives beatles, splitting the fifth in two. [[8748/8575]] gives immunized, splitting the twelfth in two. [[50/49]] gives pajara with a semioctave period. [[392/375]] gives progress, splitting the twelfth in three. [[250/243]] gives porcupine, splitting the fourth in three. [[126/125]] gives augene with a 1/3-octave period. [[4375/4374]] gives modus, splitting the fifth in four. [[3125/3024]] gives brightstone. [[9604/9375]] gives fervor. [[3125/2916]] gives sixix. [[3125/3087]] gives passion. Those split the generator in five in various ways. [[28/27]] gives blacksmith with a 1/5-octave period. Finally, [[15625/15552]] gives catalan, splitting the twelfth in six.


{{Val list|legend=1| 5, 10, 15 }}
Temperaments discussed elsewhere are:
* ''[[Mother]]'' (+16/15) → [[Father family #Mother|Father family]]
* [[Dominant (temperament)|Dominant]] (+36/35) → [[Meantone family #Dominant|Meantone family]]
* ''[[Medusa]]'' (+15/14) → [[Very low accuracy temperaments #Medusa|Very low accuracy temperaments]]
* ''[[Immunized]]'' (+8748/8575) → [[Immunity family #Immunized|Immunity family]]
* [[Pajara]] (+50/49) → [[Diaschismic family #Pajara|Diaschismic family]]
* [[Augene]] (+126/125) → [[Augmented family #Augene|Augmented family]]
* [[Porcupine]] (+250/243) → [[Porcupine family #Septimal porcupine|Porcupine family]]
* ''[[Modus]]'' (+4375/4374) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]]
* ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]]
* [[Blackwood]] (+28/27) → [[Limmic temperaments #Blackwood|Limmic temperaments]]
* ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]]


Badness: 0.0638
Considered below are superpyth, quasisuper, ultrapyth, quasiultra, schism, beatles, progress, fervor, and sixix.  


</div></div>
==== Subgroup extensions ====
Omitting prime 5, archy can be extended to the 2.3.7.11 subgroup by identifying 11/8 as a diminished fourth (C–Gb). This is called supra, given right below. Discussed elsewhere is [[suhajira]] of the [[neutral clan #Suhajira|neutral clan]].


== 7-limit ==
=== Supra ===
Subgroup: 2.3.7.11


Period: 1\5
Comma list: 64/63, 99/98


Optimal ([[POTE]]) generator: ~5/4 = 392.767
Subgroup-val mapping: {{mapping| 1 0 6 13 | 0 1 -2 -6 }}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Gencom mapping: {{mapping| 1 0 0 6 13 | 0 1 0 -2 -6 }}


Scales (Scala files):  
Optimal tunings:  
* WE: ~2 = 1197.2650{{c}}, ~3/2 = 705.5803{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 707.4981{{c}}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 49/48
Badness (Sintel): 0.352


Subgroup: 2.3.5.7
Scales: [[supra7]], [[supra12]]


Mapping: [{{val| 5 8 0 14 }}, {{val| 0 0 1 0 }}]
==== Supraphon ====
Subgroup: 2.3.7.11.13


Mapping generators: ~7/6, ~5
Comma list: 64/63, 78/77, 99/98


Wedgie: {{wedgie| 0 5 0 8 0 -14 }}
Subgroup-val mapping: {{mapping| 1 0 6 13 18 | 0 1 -2 -6 -9 }}


{{Val list|legend=1| 5, 10, 15, 40b, 55b }}
Gencom mapping: {{mapping| 1 0 0 6 13 18 | 0 1 0 -2 -6 -9 }}


Badness: 0.0256
Optimal tunings:  
* WE: ~2 = 1197.1909{{c}}, ~3/2 = 704.4836{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 706.4289{{c}}


</div></div>
{{Optimal ET sequence|legend=0| 12f, 17 }}


== 11-limit ==
Badness (Sintel): 0.498


Period: 1\5
Scales: [[supra7]], [[supra12]]


Optimal ([[POTE]]) generator: ~5/4 = 394.948
== Superpyth ==
{{Main| Superpyth }}
: ''For the 5-limit version, see [[Syntonic–diatonic equivalence continuum #Superpyth (5-limit)]].''


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Superpyth, virtually the canonical extension, adds [[245/243]] and [[1728/1715]] to the comma list and can be described as {{nowrap| 22 & 27 }}. ~5/4 is found at +9 generator steps, as an augmented second (C–D#). 49edo remains an obvious tuning choice.


Scales (Scala files):  
[[Subgroup]]: 2.3.5.7


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
[[Comma list]]: 64/63, 245/243
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 49/48, 55/54
{{Mapping|legend=1| 1 0 -12 6 | 0 1 9 -2 }}


Subgroup: 2.3.5.7.11
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1197.0549{{c}}, ~3/2 = 708.5478{{c}}
: [[error map]]: {{val| -2.945 +3.648 -0.548 +2.298 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 710.1193{{c}}
: error map: {{val| 0.000 +8.164 +4.760 +10.935 }}


Mapping: [{{val| 5 8 0 14 29 }}, {{val| 0 0 1 0 -1 }}]
{{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }}


{{Val list|legend=1| 5, 10, 15, 40be, 55be, 70bde, 85bcde}}
[[Badness]] (Sintel): 0.818


Badness: 0.0246
=== 11-limit ===
The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double-augmented second (C–Dx) and finds the ~13/8 at +13 generator steps, as a double-augmented fourth (C–Fx).  


</div></div>
Subgroup: 2.3.5.7.11


=== 13-limit ===
Comma list: 64/63, 100/99, 245/243


Period: 1\5
Mapping: {{mapping| 1 0 -12 6 -22 | 0 1 9 -2 16 }}


Optimal ([[POTE]]) generator: ~5/4 = 391.0367
Optimal tunings:  
* WE: ~2 = 1197.0673{{c}}, ~3/2 = 708.4391{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.0129{{c}}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
{{Optimal ET sequence|legend=0| 22, 27e, 49 }}


Scales (Scala files):  
Badness (Sintel): 0.826
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
 
Comma list: 28/27, 40/39, 49/48, 55/54


==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 5 8 0 14 29 7 }}, {{val| 0 0 1 0 -1 1 }}]
Comma list: 64/63, 78/77, 91/90, 100/99
 
{{Val list|legend=1| 5, 10, 15, 25e, 40bef}}
 
Badness: 0.0205
 
</div></div>
 
== Farrier ==
 
Period: 1\5
 
Optimal ([[POTE]]) generator: ~5/4 = 398.070
 
EDO generators: [[10edo|3\10]], [[15edo|4\15]]
 
Scales (Scala files):
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
 
Comma list: 28/27, 49/48, 77/75
 
Subgroup: 2.3.5.7.11
 
Mapping: [{{val| 5 8 0 14 -6 }}, {{val| 0 0 1 0 2 }}]
 
{{Val list|legend=1| 5e, 10e, 15 }}
 
Badness: 0.0292
 
</div></div>
 
=== 13-limit ===


Period: 1\5
Mapping: {{mapping| 1 0 -12 6 -22 -17 | 0 1 9 -2 16 13 }}


Optimal ([[POTE]]) generator: ~5/4 = 396.812
Optimal tunings:  
* WE: ~2 = 1197.3011{{c}}, ~3/2 = 708.8813{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.3219{{c}}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
{{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }}


Scales (Scala files):
Badness (Sintel): 1.02
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
 
Comma list: 28/27, 40/39, 49/48, 66/65


==== Thomas ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 5 8 0 14 -6 7 }}, {{val| 0 0 1 0 2 1 }}]
Comma list: 64/63, 100/99, 169/168, 245/243


{{Val list|legend=1| 5e, 10e, 15 }}
Mapping: {{mapping| 1 1 -3 4 -6 4 | 0 2 18 -4 32 -1 }}


Badness: 0.0223
Optimal tunings:  
* WE: ~2 = 1197.4942{{c}}, ~16/13 = 354.2950{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 354.9824{{c}}


</div></div>
{{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }}


== Ferrum ==
Badness (Sintel): 2.03


Period: 1\5
=== Suprapyth ===
 
Suprapyth finds the ~11/8 at the diminished fifth (C–Gb), and finds the ~13/8 at the diminished seventh (C–Bbb).
Optimal ([[POTE]]) generator: ~5/4 = 374.763
 
EDO generators: [[10edo|3\10]]
 
Scales (Scala files):
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
 
Comma list: 28/27, 35/33, 49/48


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Mapping: [{{val| 5 8 0 14 6 }}, {{val| 0 0 1 0 1 }}]
Comma list: 55/54, 64/63, 99/98


{{Val list|legend=1| 5e, 10 }}
Mapping: {{mapping| 1 0 -12 6 13 | 0 1 9 -2 -6 }}


Badness: 0.0309
Optimal tunings:  
* WE: ~2 = 1198.6960{{c}}, ~3/2 = 708.7235{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 709.4699{{c}}


</div></div>
{{Optimal ET sequence|legend=0| 5, 17, 22 }}


= Superpyth =
Badness (Sintel): 1.08
{{main| Superpyth }}


Period: 1\1
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Optimal ([[POTE]]) generator: ~3/2 = 710.291
Comma list: 55/54, 64/63, 65/63, 99/98


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Mapping: {{mapping| 1 0 -12 6 13 18 | 0 1 9 -2 -6 -9 }}


Scales (Scala files):  
Optimal tunings:  
* WE: ~2 = 1199.9871{{c}}, ~3/2 = 708.6952{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.7028{{c}}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Optimal ET sequence|legend=0| 5f, 17, 22 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 245/243
Badness (Sintel): 1.50


Mapping: [{{val| 1 0 -12 6 }}, {{val| 0 1 9 -2 }}]
== Quasisuper ==
Quasisuper can be described as {{nowrap| 17c & 22 }}, with the ~5/4 mapped to -13 generator steps, as a double-diminished fifth (C–Gbb).


Wedgie: {{wedgie| 1 9 -2 12 -6 -30 }}
[[Subgroup]]: 2.3.5.7


{{Val list|legend=1| 5, 17, 22, 27, 49 }}
[[Comma list]]: 64/63, 2430/2401


Badness: 0.0323
{{Mapping|legend=1| 1 0 23 6 | 0 1 -13 -2 }}


</div></div>
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.9830{{c}}, ~3/2 = 706.4578{{c}}
: [[error map]]: {{val| -3.017 +1.486 -0.435 +6.190 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 708.3716{{c}}
: error map: {{val| 0.000 +6.417 +4.855 +14.431 }}


== 11-limit ==
{{Optimal ET sequence|legend=1| 17c, 22, 61d }}


Period: 1\1
[[Badness]] (Sintel): 1.61


Optimal ([[POTE]]) generator: ~3/2 = 710.175
=== Quasisupra ===
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament [[supra]], with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).


EDO generators: [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Subgroup: 2.3.5.7.11


Scales (Scala files):  
Comma list: 64/63, 99/98, 121/120


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Mapping: {{mapping| 1 0 23 6 13 | 0 1 -13 -2 -6 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 100/99, 245/243
Optimal tunings:  
* WE: ~2 = 1197.5675{{c}}, ~3/2 = 706.7690{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.3200{{c}}


Mapping: [{{val| 1 0 -12 6 -22 }}, {{val| 0 1 9 -2 16 }}]
{{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }}


{{Val list|legend=1| 22, 27e, 49 }}
Badness (Sintel): 1.06


Badness: 0.0250
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


</div></div>
Comma list: 64/63, 78/77, 91/90, 121/120


=== 13-limit ===
Mapping: {{mapping| 1 0 23 6 13 18 | 0 1 -13 -2 -6 -9 }}


Period: 1\1
Optimal tunings:  
* WE: ~2 = 1198.2543{{c}}, ~3/2 = 706.9736{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0936{{c}}


Optimal ([[POTE]]) generator: ~3/2 = 710.479
{{Optimal ET sequence|legend=0| 17c, 22, 39d }}


EDO generators: [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Badness (Sintel): 1.25


Scales (Scala files):  
=== Quasisoup ===
Subgroup: 2.3.5.7.11


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Comma list: 55/54, 64/63, 2430/2401
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 78/77, 91/90, 100/99
Mapping: {{mapping| 1 0 23 6 -22 | 0 1 -13 -2 16 }}


Mapping: [{{val| 1 0 -12 6 -22 -17 }}, {{val| 0 1 9 -2 16 13 }}]
Optimal tunings:  
* WE: ~2 = 1198.8446{{c}}, ~3/2 = 708.3388{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0252{{c}}


{{Val list|legend=1| 22, 27e, 49, 76bcde }}
{{Optimal ET sequence|legend=0| 22 }}


Badness: 0.0247
Badness (Sintel): 2.76


</div></div>
== Ultrapyth ==
{{Main| Ultrapyth }}


== Suprapyth ==
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).


Period: 1\1
[[Subgroup]]: 2.3.5.7


Optimal ([[POTE]]) generator: ~3/2 = 709.495
[[Comma list]]: 64/63, 6860/6561


EDO generators: [[17edo|11\17]], [[22edo|14\22]]
{{Mapping|legend=1| 1 0 -20 6 | 0 1 14 -2 }}


Scales (Scala files):  
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1197.2673{{c}}, ~3/2 = 712.0258{{c}}
: [[error map]]: {{val| -2.733 +7.338 -1.557 -3.808 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5430{{c}}
: error map: {{val| 0.000 +11.588 +3.288 +4.088 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 55/54, 64/63, 99/98
[[Badness]] (Sintel): 2.74


Mapping: [{{val| 1 0 -12 6 13 }}, {{val| 0 1 9 -2 -6 }}]
=== 11-limit ===
Subgroup: 2.3.5.7.11


{{Val list|legend=1| 17, 22 }}
Comma list: 55/54, 64/63, 2401/2376


Badness: 0.0328
Mapping: {{mapping| 1 0 -20 6 21 | 0 1 14 -2 -11 }}


</div></div>
Optimal tunings:
* WE: ~2 = 1198.0290{{c}}, ~3/2 = 712.2235{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.3754{{c}}


=== 13-limit ===
{{Optimal ET sequence|legend=0| 5, 32, 37 }}


Period: 1\1
Badness (Sintel): 2.26


Optimal ([[POTE]]) generator: ~3/2 = 708.703
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


EDO generators: [[17edo|11\17]], [[22edo|14\22]]
Comma list: 55/54, 64/63, 91/90, 1573/1568


Scales (Scala files):  
Mapping: {{mapping| 1 0 -20 6 21 -25 | 0 1 14 -2 -11 18 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Optimal tunings:
<div style="line-height:1.6;">Technical data</div>
* WE: ~2 = 1198.1911{{c}}, ~3/2 = 712.4243{{c}}
<div class="mw-collapsible-content">
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.4684{{c}}


Comma list: 55/54, 64/63, 65/63, 99/98
{{Optimal ET sequence|legend=0| 5, 32, 37 }}


Mapping: [{{val| 1 0 -12 6 13 18 }}, {{val| 0 1 9 -2 -6 -9 }}]
Badness (Sintel): 2.03


{{Val list|legend=1| 17, 22, 83cdf }}
=== Ultramarine ===
Subgroup: 2.3.5.7.11


Badness: 0.0363
Comma list: 64/63, 100/99, 3773/3645


</div></div>
Mapping: {{mapping| 1 0 -20 6 -38 | 0 1 14 -2 26 }}


= Quasisuper =
Optimal tunings:
* WE: ~2 = 1197.2230{{c}}, ~3/2 = 712.1393{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.6928{{c}}


Period: 1\1
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }}


Optimal ([[POTE]]) generator: ~3/2 = 708.328
Badness (Sintel): 2.58


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Scales (Scala files):  
Comma list: 64/63, 91/90, 100/99, 847/845


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Mapping: {{mapping| 1 0 -20 6 -38 -25 | 0 1 14 -2 26 18 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 2430/2401
Optimal tunings:  
* WE: ~2 = 1197.2739{{c}}, ~3/2 = 712.1893{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.7079{{c}}


Mapping: [{{val| 1 0 23 6 }}, {{val| 0 1 -13 -2 }}]
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }}


Wedgie: {{wedgie| 1 -13 -2 -23 -2 -6 32 }}
Badness (Sintel): 1.89


{{Val list|legend=1| 17c, 22, 61d }}
== Quasiultra ==
Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the {{nowrap| 27 & 32 }} temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C–Abbb).


Badness: 0.0638
[[Subgroup]]: 2.3.5.7


</div></div>
[[Comma list]]: 64/63, 33614/32805


== Quasisupra ==
{{Mapping|legend=1| 1 0 31 6 | 0 1 -18 -2 }}
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament [[supra]], with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).


Period: 1\1
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.9257{{c}}, ~3/2 = 709.6211{{c}}
: [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 711.5429{{c}}
: error map: {{val| 0.000 +9.588 +5.914 +8.088 }}


Optimal ([[POTE]]) generator: ~3/2 = 708.205
{{Optimal ET sequence|legend=1| 27, 86bd, 113bcd, 140bbcd }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
[[Badness]] (Sintel): 3.34


Scales (Scala files):
== Schism ==
{{See also| Schismatic family #Schism }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Schism tempers out the [[schisma]], mapping the ~5/4 to -8 fifths as a diminished fourth (C–Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53dd val) can be used.  
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 99/98, 121/120
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 1 2 -3 2 1 }}, {{val| 0 -1 13 2 6 }}]
[[Comma list]]: 64/63, 360/343


{{Val list|legend=1| 17c, 22, 39d, 61d }}
{{Mapping|legend=1| 1 0 15 6 | 0 1 -8 -2 }}


Badness: 0.0322
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1197.3598{{c}}, ~3/2 = 700.0126{{c}}
: [[error map]]: {{val| -2.640 -4.583 -4.896 +20.588 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.7376{{c}}
: error map: {{val| 0.000 -0.217 -0.214 +27.699 }}


</div></div>
{{Optimal ET sequence|legend=1| 5c, 7c, 12 }}


=== 13-limit ===
[[Badness]] (Sintel): 1.43


Period: 1\1
=== 11-limit ===
Subgroup: 2.3.5.7.11


Optimal ([[POTE]]) generator: ~3/2 = 708.004
Comma list: 45/44, 64/63, 99/98


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
Mapping: {{mapping| 1 0 15 6 13 | 0 1 -8 -2 -6 }}


Scales (Scala files):  
Optimal tunings:  
* WE: ~2 = 1196.1607{{c}}, ~3/2 = 699.8897{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 702.4385{{c}}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 78/77, 91/90, 121/120
Badness (Sintel): 1.24


Mapping: [{{val| 1 0 23 6 13 18 }}, {{val| 0 1 -13 -2 -6 -9 }}]
== Beatles ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].''


{{Val list|legend=1| 17c, 22, 39d, 61df, 100bcdf }}
Beatles tempers out 686/675, which may also be characterized by saying it tempers out [[2401/2400]]. It may be described as the {{nowrap| 10 & 17c }} temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its [[ploidacot]] is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.


Badness: 0.0302
Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.  


</div></div>
[[Subgroup]]: 2.3.5.7


== Quasisoup ==
[[Comma list]]: 64/63, 686/675


Period: 1\1
{{Mapping|legend=1| 1 1 5 4 | 0 2 -9 -4 }}


Optimal ([[POTE]]) generator: ~3/2 = 709.021
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.6244{{c}}, ~49/40 = 354.9029{{c}}
: [[error map]]: {{val| -3.376 +4.475 +2.682 -1.940 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~49/40 = 356.0819{{c}}
: error map: {{val| 0.000 +10.209 +8.949 +6.847 }}


EDO generators: [[22edo|14\22]]
{{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }}


Scales (Scala files):  
[[Badness]] (Sintel): 1.16


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
; Music
<div style="line-height:1.6;">Technical data</div>
* [https://web.archive.org/web/20201127013829/http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/beatles-improv.mp3 ''Beatles Improv''] by [[Herman Miller]]
<div class="mw-collapsible-content">


Comma list: 55/54, 64/63, 2430/2401
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 0 23 6 -22 }}, {{val| 0 1 -13 -2 16 }}]
Comma list: 64/63, 100/99, 686/675


{{Val list|legend=1| 22 }}
Mapping: {{mapping| 1 1 5 4 10 | 0 2 -9 -4 -22 }}


Badness: 0.0835
Optimal tunings:  
* WE: ~2 = 1196.7001{{c}}, ~49/40 = 355.1606{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.2795{{c}}


</div></div>
{{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }}


= Beatles =
Badness (Sintel): 1.51
== 5-limit ==
Comma list: 524288/492075


POTE generator: ~512/405 = 355.930
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 1 1 5 }}, {{val| 0 2 -9 }}]
Comma list: 64/63, 91/90, 100/99, 169/168


{{Val list|legend=1| 10, 17c, 27, 64b, 91bc, 118bc }}
Mapping: {{mapping| 1 1 5 4 10 4 | 0 2 -9 -4 -22 -1 }}


Badness: 0.3585
Optimal tunings:  
* WE: ~2 = 1197.2504{{c}}, ~16/13 = 355.4132{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.3273{{c}}


== 7-limit ==
{{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }}
Comma list: 64/63, 686/675


[[POTE generator]]: ~49/40 = 355.904
Badness (Sintel): 1.25


Mapping: [{{val| 1 1 5 4 }}, {{val| 0 2 -9 -4 }}]
=== Ringo ===
Subgroup: 2.3.5.7.11


Wedgie: {{wedgie| 2 -9 -4 -19 -12 16 }}
Comma list: 56/55, 64/63, 540/539


{{Val list|legend=1| 10, 17c, 27, 64b, 91bcd, 118bcd }}
Mapping: {{mapping| 1 1 5 4 2 | 0 2 -9 -4 5 }}


Badness: 0.0459
Optimal tunings:  
* WE: ~2 = 1195.4102{{c}}, ~11/9 = 354.0597{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5207{{c}}


Music: [http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/beatles-improv.mp3 Beatles Improv] by Herman Miller
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}


== 11-limit ==
Badness (Sintel): 1.09
Comma list: 64/63, 100/99, 686/675


POTE generator: ~49/40 = 356.140
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 1 1 5 4 10 }}, {{val| 0 2 -9 -4 -22 }}]
Comma list: 56/55, 64/63, 78/77, 91/90


{{Val list|legend=1| 27e, 37, 64be, 91bcde }}
Mapping: {{mapping| 1 1 5 4 2 4 | 0 2 -9 -4 5 -1 }}


Badness: 0.0456
Optimal tunings:  
* WE: ~2 = 1195.9943{{c}}, ~11/9 = 354.2695{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5398{{c}}


=== 13-limit ===
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}
Comma list: 64/63, 91/90, 100/99, 169/168


POTE generator: ~16/13 = 356.229
Badness (Sintel): 0.935


Mapping: [{{val| 1 1 5 4 10 4 }}, {{val| 0 2 -9 -4 -22 -1 }}]
=== Beetle ===
Subgroup: 2.3.5.7.11


{{Val list|legend=1| 27e, 37, 64be }}
Comma list: 55/54, 64/63, 686/675


Badness: 0.0302
Mapping: {{mapping| 1 1 5 4 -1 | 0 2 -9 -4 15 }}


== Ringo ==
Optimal tunings:
Comma list: 56/55, 64/63, 540/539
* WE: ~2 = 1197.9660{{c}}, ~49/40 = 356.1056{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.7075{{c}}


POTE generator: ~11/9 = 355.419
{{Optimal ET sequence|legend=0| 10, 27, 37 }}


Mapping: [{{val| 1 1 5 4 2 }}, {{val| 0 2 -9 -4 5 }}]
Badness (Sintel): 1.92


{{Val list|legend=1| 10, 17c, 27e }}
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Badness: 0.0329
Comma list: 55/54, 64/63, 91/90, 169/168


=== 13-limit ===
Mapping: {{mapping| 1 1 5 4 -1 4 | 0 2 -9 -4 15 -1 }}
Comma list: 56/55, 64/63, 78/77, 91/90


POTE generator: ~11/9 = 355.456
Optimal tunings:  
* WE: ~2 = 1198.1741{{c}}, ~16/13 = 356.1582{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.7008{{c}}


Mapping: [{{val| 1 1 5 4 2 4 }}, {{val| 0 2 -9 -4 5 -1 }}]
{{Optimal ET sequence|legend=0| 10, 27, 37 }}


{{Val list|legend=1| 10, 17c, 27e }}
Badness (Sintel): 1.40


Badness: 0.0226
== Progress ==
{{Distinguish| Progression }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].''


= Schism =
Progress tempers out 392/375 and may be described as {{nowrap| 15 & 17c }}. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.
{{see also|Schismatic family #Schism}}


Comma list: 64/63, 360/343
[[Subgroup]]: 2.3.5.7


[[POTE generator]]: ~3/2 = 701.556
[[Comma list]]: 64/63, 392/375


Mapping: [{{val| 1 0 15 6 }}, {{val| 0 1 -8 -2 }}]
{{Mapping|legend=1| 1 0 5 6 | 0 3 -5 -6 }}


Wedgie: {{wedgie| 1 -8 -2 -15 -6 18 }}
: mapping generators: ~2, ~10/7


{{Val list|legend=1| 12, 41d, 53d }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1195.1377{{c}}, ~10/7 = 635.2932{{c}}
: [[error map]]: {{val| -4.862 +3.925 +12.908 -9.759 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 638.0791{{c}}
: error map: {{val| 0.000 +12.282 +23.291 +2.700 }}


Badness: 0.0566
{{Optimal ET sequence|legend=1| 2, 13, 15, 32c }}


== 11-limit ==
[[Badness]] (Sintel): 1.68
Comma list: 45/44, 64/63, 99/98


POTE generator ~3/2 = 702.136
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 0 15 6 13 }}, {{val| 0 1 -8 -2 -6 }}]
Comma list: 56/55, 64/63, 77/75


{{Val list|legend=1| 12, 29de, 41de }}
Mapping: {{mapping| 1 0 5 6 4 | 0 3 -5 -6 -1 }}


Badness: 0.0375
Optimal tunings:  
* WE: ~2 = 1195.4920{{c}}, ~10/7 = 635.5183{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 638.0884{{c}}


= Passion =
{{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }}
== 5-limit ==
Comma list: 262144/253125


POTE generator: ~16/15 = 98.670
Badness (Sintel): 1.03


Mapping: [{{val| 1 2 2 }}, {{val| 0 -5 4 }}]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Val list|legend=1| 11, 12, 49, 61, 73 }}
Comma list: 56/55, 64/63, 66/65, 77/75


Badness: 0.1686
Mapping: {{mapping| 1 0 5 6 4 0 | 0 3 -5 -6 -1 7 }}


== 7-limit ==
Optimal tunings:
Comma list: 64/63, 3125/3087
* WE: ~2 = 1195.0786{{c}}, ~10/7 = 635.0197{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 637.6691{{c}}


[[POTE generator]]: ~16/15 = 98.153
{{Optimal ET sequence|legend=0| 15, 17c, 32cf }}


Mapping: [{{val| 1 2 2 2 }}, {{val| 0 -5 4 10 }}]
Badness (Sintel): 1.08


Mapping generators: 2, 16/15
==== Progressive ====
Subgroup: 2.3.5.7.11.13


Wedgie: {{wedgie| 5 -4 -10 -18 -30 -12 }}
Comma list: 26/25, 56/55, 64/63, 77/75


{{Val list|legend=1| 12, 37, 49, 110bcd }}
Mapping: {{mapping| 1 0 5 6 4 9 | 0 3 -5 -6 -1 -10 }}


Badness: 0.0623
Optimal tunings:  
* WE: ~2 = 1196.0245{{c}}, ~10/7 = 634.6516{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 636.9528{{c}}


== 11-limit ==
{{Optimal ET sequence|legend=0| 2f, 15f, 17c }}
Comma list: 64/63, 100/99, 1375/1372


POTE generator: ~16/15 = 98.019
Badness (Sintel): 1.35


Mapping: [{{val| 1 2 2 2 2 }}, {{val| 0 -5 4 10 18 }}]
== Fervor ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].''


{{Val list|legend=1| 12, 37, 49 }}
Fervor tempers out 9704/9375 and may be described as {{nowrap| 25 & 27 }}. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.


Badness: 0.0408
[[Subgroup]]: 2.3.5.7


== 13-limit ==
[[Comma list]]: 64/63, 9604/9375
Comma list: 64/63, 100/99, 196/195, 275/273


POTE generator: ~16/15 = 97.910
{{Mapping|legend=1| 1 -1 7 8 | 0 5 -9 -10 }}


Mapping: [{{val| 1 2 2 2 2 2 }}, {{val| 0 -5 4 10 18 21 }}]
: mapping generators: ~2, ~10/7


{{Val list|legend=1| 12f, 37, 49f }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.2742{{c}}, ~10/7 = 620.2918{{c}}
: [[error map]]: {{val| -3.726 +3.230 +4.980 -1.550 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 622.3179{{c}}
: error map: {{val| 0.000 +9.634 +12.826 +7.996 }}


Badness: 0.0309
{{Optimal ET sequence|legend=1| 2, 25, 27 }}


= Fervor =
[[Badness]] (Sintel): 2.74
== 5-limit ==
Comma list: 67108864/61509375


POTE generator: ~64/45 = 577.705
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 4 -2 }}, {{val| 0 -5 9 }}]
Comma list: 56/55, 64/63, 1350/1331


{{Val list|legend=1| 25, 27 }}
Mapping: {{mapping| 1 -1 7 8 4 | 0 5 -9 -10 -1 }}


Badness: 0.8526
Optimal tunings:  
* WE: ~2 = 1195.4148{{c}}, ~10/7 = 619.7729{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.2525{{c}}


== 7-limit ==
{{Optimal ET sequence|legend=0| 2, 25e, 27e }}
Comma list: 64/63, 9604/9375


POTE generator: ~7/5 = 577.777
Badness (Sintel): 1.72


Mapping: [{{val| 1 4 -2 -2 }}, {{val| 0 -5 9 10 }}]
=== 13-limit ===
 
Subgroup: 2.3.5.7.11.13
Wedgie: {{wedgie| 5 -9 -10 -26 -30 2 }}
 
{{Val list|legend=1| 25, 27 }}
 
Badness: 0.1085
 
== 11-limit ==
Comma list: 56/55, 64/63, 1350/1331
 
POTE generator: ~7/5 = 577.850


Mapping: [{{val| 1 4 -2 -2 3 }}, {{val| 0 -5 9 10 1 }}]
{{Val list|legend=1| 25e, 27e }}
Badness: 0.0521
== 13-limit ==
Comma list: 56/55, 64/63, 78/77, 507/500
Comma list: 56/55, 64/63, 78/77, 507/500


POTE generator: ~7/5 = 578.060
Mapping: {{mapping| 1 -1 7 8 4 12 | 0 5 -9 -10 -1 -16 }}


Mapping: [{{val| 1 4 -2 -2 3 -4 }}, {{val| 0 -5 9 10 1 16 }}]
Optimal tunings:  
* WE: ~2 = 1195.6284{{c}}, ~10/7 = 619.6738{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.0631{{c}}


{{Val list|legend=1| 27e }}
{{Optimal ET sequence|legend=0| 2f, 27e }}


Badness: 0.0397
Badness (Sintel): 1.64


= Progress =
== Sixix ==
== 5-limit ==
: ''For the 5-limit version, see [[Syntonic–chromatic equivalence continuum #Sixix (5-limit)]].''
Comma list: 32768/30375
{{See also| Dual-fifth temperaments #Dual-3 Sixix }}


POTE generator: ~64/45 = 561.264
Sixix tempers out 3125/2916 and may be described as {{nowrap| 25 & 32 }}. It is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.  


Mapping: [{{val| 1 0 5 }}, {{val| 0 3 -5 }}]
[[Subgroup]]: 2.3.5.7


{{Val list|legend=1| 4, 13, 15, 32c, 47bc, 62bc }}
[[Comma list]]: 64/63, 3125/2916


Badness: 0.2461
{{Mapping|legend=1| 1 3 4 0 | 0 -5 -6 10 }}


== 7-limit ==
[[Optimal tuning]]s:
Comma list: 64/63, 392/375
* [[WE]]: ~2 = 1198.9028{{c}}, ~6/5 = 337.1334{{c}}
: [[error map]]: {{val| -1.097 +9.086 -13.503 +2.508 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~6/5 = 337.4588{{c}}
: error map: {{val| 0.000 +10.751 -11.066 +5.762 }}


POTE generator: ~7/5 = 562.122
{{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }}


Mapping: [{{val| 1 0 5 6 }}, {{val| 0 3 -5 -6 }}]
[[Badness]] (Sintel): 4.02


Wedgie: {{wedgie| 3 -5 -6 -15 -18 0 }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


{{Val list|legend=1| 13, 15, 32c, 79bcc, 111bcc }}
Comma list: 55/54, 64/63, 125/121


Badness: 0.0664
Mapping: {{mapping| 1 3 4 0 6 | 0 -5 -6 10 -9 }}


== 11-limit ==
Optimal tunings:
Comma list: 56/55, 64/63, 77/75
* WE: ~2 = 1198.5480{{c}}, ~6/5 = 337.1557{{c}}
 
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.6000{{c}}
POTE generator: ~7/5 = 562.085
 
Mapping: [{{val| 1 0 5 6 4 }}, {{val| 0 3 -5 -6 -1 }}]


{{Val list|legend=1| 13, 15, 32c, 47bc, 79bcce }}
{{Optimal ET sequence|legend=0| 7, 25e, 32 }}


Badness: 0.0310
Badness (Sintel): 2.34


=== 13-limit ===
=== 13-limit ===
Comma list: 56/55, 64/63, 66/65, 77/75
Subgroup: 2.3.5.7.11.13
 
POTE generator: ~7/5 = 562.365
 
Mapping: [{{val| 1 0 5 6 4 0 }}, {{val| 0 3 -5 -6 -1 7 }}]
 
{{Val list|legend=1| 15, 17c, 32cf }}
 
Badness: 0.0262
 
=== Progressive ===
Comma list: 26/25, 56/55, 64/63, 77/75
 
POTE generator: ~7/5 = 563.239
 
Mapping: [{{val| 1 0 5 6 4 9 }}, {{val| 0 3 -5 -6 -1 -10 }}]


{{Val list|legend=1| 15f, 17c, 32c, 49c }}
Comma list: 40/39, 55/54, 64/63, 125/121


Badness: 0.0327
Mapping: {{mapping| 1 3 4 0 6 4 | 0 -5 -6 10 -9 -1 }}


= Sixix =
Optimal tunings:
== 5-limit ==
* WE: ~2 = 1197.7111{{c}}, ~6/5 = 336.8391{{c}}
Comma list: 3125/2916
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5336{{c}}


POTE generator: ~6/5 = 338.365
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}


Mapping: [{{val| 1 3 4 }}, {{val| 0 -5 -6 }}]
Badness (Sintel): 1.91


{{Val list|legend=1| 7, 25, 32 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Badness: 0.1531
Comma list: 40/39, 55/54, 64/63, 85/84, 125/121


== 7-limit ==
Mapping: {{mapping| 1 3 4 0 6 4 1 | 0 -5 -6 10 -9 -1 11 }}
Comma list: 3125/2916, 64/63


POTE generator: ~6/5 = 337.4419
Optimal tunings:  
* WE: ~2 = 1197.7807{{c}}, ~6/5 = 336.8884{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5279{{c}}


Mapping: [{{val| 1 3 4 0 }}, {{val| 0 -5 -6 10 }}]
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}


{{Val list|legend=1| 7, 25, 32 }}
Badness (Sintel): 2.00


[[Category:Theory]]
[[Category:Archytas clan| ]] <!-- main article -->
[[Category:Temperament clan]]
[[Category:Temperament clans]]
[[Category:Archytas]]
[[Category:Pages with mostly numerical content]]
[[Category:Rank 2]]
[[Category:Rank 2]]