69edo: Difference between revisions
+ prime intervals |
→Music: Add Bryan Deister's ''Compass - Mili (microtonal cover in 69edo)'' (2025) |
||
(61 intermediate revisions by 18 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652{{c}}. Such a fifth is closer to [[2/7-comma meantone]] than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes. | |||
In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step | 69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 [[Meantone family#Lithium|lithium]] scale, which has a 6:5 step ratio and stems from a temperament tempering out [[3125/3087]] along with [[81/80]]. It should be noted that while the lithium scale has a meantone fifth, it produces a [[3L 6s|tcherepnin]] scale instead of traditional diatonic. | ||
{| class="wikitable center-1 right-3" | |||
In the [[7-limit]] it is a [[mohajira]] system, tempering out [[6144/6125]], but not a septimal meantone system, as [[126/125]] maps to one step. In the 11-limit it tempers out [[99/98]], and supports the {{nowrap|31 & 69}} variant of mohajira, identical to the standard 11-limit mohajira in [[31edo]] but not in 69. | |||
The [[concoctic scale]] for 69edo is 22\69, and the corresponding rank two temperament is {{nowrap|22 & 69}}, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|69}} | |||
== Intervals == | |||
{{Interval table}} | |||
=== Proposed names === | |||
{| class="wikitable mw-collapsible mw-collapsed collapsible center-1 right-3" | |||
|- | |||
! Degree | |||
! Carmen's naming system | |||
! Cents | |||
! Approximate Ratios* | |||
! Error (abs, [[cent|¢]]) | |||
|- | |||
| 0 | |||
| Natural Unison, 1 | |||
| 0.000 | |||
| [[1/1]] | |||
| 0.000 | |||
|- | |||
| 1 | |||
| Ptolemy's comma | |||
| 17.391 | |||
| [[100/99]] | |||
| −0.008 | |||
|- | |||
| 2 | |||
| Jubilisma, lesser septimal sixth tone | |||
| 34.783 | |||
| [[50/49]], [[101/99]] | |||
| −0.193, 0.157 | |||
|- | |||
| 3 | |||
| lesser septendecimal quartertone, _____ | |||
| 52.174 | |||
| [[34/33]], [[101/98]] | |||
| 0.491, −0.028 | |||
|- | |||
| 4 | |||
| _____ | |||
| 69.565 | |||
| [[76/73]] | |||
| −0.158 | |||
|- | |||
| 5 | |||
| Small undevicesimal semitone | |||
| 86.957 | |||
| [[20/19]] | |||
| −1.844 | |||
|- | |||
| 6 | |||
| Large septendecimal semitone | |||
| 104.348 | |||
| [[17/16]] | |||
| −0.608 | |||
|- | |||
| 7 | |||
| Septimal diatonic semitone | |||
| 121.739 | |||
| [[15/14]] | |||
| 2.296 | |||
|- | |||
| 8 | |||
| Tridecimal neutral second | |||
| 139.130 | |||
| [[13/12]] | |||
| 0.558 | |||
|- | |||
| 9 | |||
| Vicesimotertial neutral second | |||
| 156.522 | |||
| [[23/21]] | |||
| −0.972 | |||
|- | |||
| 10 | |||
| Undevicesimal large neutral second, undevicesimal whole tone | |||
| 173.913 | |||
| [[21/19]] | |||
| 0.645 | |||
|- | |||
| 11 | |||
| Quasi-meantone | |||
| 191.304 | |||
| [[19/17]] | |||
| −1.253 | |||
|- | |||
| 12 | |||
| Whole tone | |||
| 208.696 | |||
| [[9/8]] | |||
| 4.786 | |||
|- | |||
| 13 | |||
| Septimal whole tone | |||
| 226.087 | |||
| [[8/7]] | |||
| −5.087 | |||
|- | |||
| 14 | |||
| Vicesimotertial semifourth | |||
| 243.478 | |||
| [[23/20]] | |||
| 1.518 | |||
|- | |- | ||
| 15 | |||
| Subminor third, undetricesimal subminor third | |||
| 260.870 | |||
| [[7/6]], [[29/25]] | |||
| −6.001, 3.920 | |||
|- | |- | ||
| | | 16 | ||
| | | Vicesimotertial subminor third | ||
| | | 278.261 | ||
|[[ | | [[27/23]] | ||
|0. | | 0.670 | ||
|- | |- | ||
| | | 17 | ||
| | | Pythagorean minor third | ||
| | | 295.652 | ||
|[[ | | [[32/27]] | ||
| | | 1.517 | ||
|- | |- | ||
| | | 18 | ||
| | | Classic minor third | ||
| | | 313.043 | ||
|[[ | | [[6/5]] | ||
| | | −2.598 | ||
|- | |- | ||
| | | 19 | ||
| | | Vicesimotertial supraminor third | ||
| | | 330.435 | ||
|[[ | | [[23/19]] | ||
| | | −0.327 | ||
|- | |- | ||
| | | 20 | ||
| | | Undecimal neutral third | ||
| | | 347.826 | ||
|[[ | | [[11/9]] | ||
| | | 0.418 | ||
|- | |- | ||
| | | 21 | ||
| | | Septendecimal submajor third | ||
| | | 365.217 | ||
|[[ | | [[21/17]] | ||
| | | −0.608 | ||
|- | |- | ||
| | | 22 | ||
| | | Classic major third | ||
| | | 382.609 | ||
|[[ | | [[5/4]] | ||
| | | −3.705 | ||
|- | |- | ||
| | | 23 | ||
| | | Undetricesimal major third, Septendecimal major third | ||
| | | 400.000 | ||
|[[ | | [[29/23]], [[34/27]] | ||
| | | −1.303, 0.910 | ||
|- | |- | ||
| | | 24 | ||
| | | Undecimal major third | ||
| | | 417.391 | ||
|[[ | | [[14/11]] | ||
| | | −0.117 | ||
|- | |- | ||
| | | 25 | ||
| | | Supermajor third | ||
| | | 434.783 | ||
|[[ | | [[9/7]] | ||
| | | −0.301 | ||
|- | |- | ||
| | | 26 | ||
| | | Barbados third | ||
| | | 452.174 | ||
|[[ | | [[13/10]] | ||
| | | −2.040 | ||
|- | |- | ||
| | | 27 | ||
| | | Septimal sub-fourth | ||
| | | 469.565 | ||
|[[ | | [[21/16]] | ||
| | | −1.216 | ||
|- | |- | ||
| | | 28 | ||
| | | _____ | ||
| | | 486.957 | ||
|[[ | | [[53/40]] | ||
| | | −0.234 | ||
|- | |- | ||
| | | 29 | ||
| | | Just perfect fourth | ||
| | | 504.348 | ||
|[[ | | [[4/3]] | ||
| | | 6.303 | ||
|- | |- | ||
| | | 30 | ||
|Vicesimotertial | | Vicesimotertial acute fourth | ||
| | | 521.739 | ||
|[[23/ | | [[23/17]] | ||
| | | −1.580 | ||
|- | |- | ||
| | | 31 | ||
| | | Undecimal augmented fourth | ||
| | | 539.130 | ||
|[[ | | [[15/11]] | ||
| | | 2.180 | ||
|- | |- | ||
| | | 32 | ||
| | | Undecimal superfourth, undetricesimal superfourth | ||
| | | 556.522 | ||
|[[ | | [[11/8]], [[29/21]] | ||
| | | 5.204, −2.275 | ||
|- | |- | ||
| | | 33 | ||
| | | Narrow tritone, classic augmented fourth | ||
| | | 573.913 | ||
|[[ | | [[7/5]], [[25/18]] | ||
| | | −8.600, 5.196 | ||
|- | |- | ||
| | | 34 | ||
| | | _____ | ||
| | | 591.304 | ||
|[[ | | [[31/22]] | ||
| | | −2.413 | ||
|- | |- | ||
| | | 35 | ||
| | | High tritone, undevicesimal tritone | ||
| | | 608.696 | ||
|[[ | | [[10/7]], [[27/19]] | ||
| | | −8.792, 0.344 | ||
|- | |- | ||
| | | 36 | ||
| | | _____ | ||
| | | 626.087 | ||
|[[ | | [[33/23]] | ||
| | | 1.088 | ||
|- | |- | ||
| | | 37 | ||
| | | Undetricesimal tritone | ||
| | | 643.478 | ||
|[[ | | [[29/20]] | ||
| | | 0.215 | ||
|- | |- | ||
| | | 38 | ||
| | | Undevicesimal diminished fifth, undecimal diminished fifth | ||
| | | 660.870 | ||
|[[ | | [[19/13]], [[22/15]] | ||
| | | 3.884, −2.180 | ||
|- | |- | ||
| | | 39 | ||
| | | Vicesimotertial grave fifth, _____ | ||
| | | 678.261 | ||
|[[ | | [[34/23]], [[37/25]] | ||
| | | 1.580, −0.456 | ||
|- | |- | ||
| | | 40 | ||
| | | Just perfect fifth | ||
| | | 695.652 | ||
|[[ | | [[3/2]] | ||
| | | −6.303 | ||
|- | |- | ||
| | | 41 | ||
| | | _____ | ||
| | | 713.043 | ||
|[[ | | [[80/53]] | ||
| | | 0.234 | ||
|- | |- | ||
| | | 42 | ||
| | | Super-fifth, undetricesimal super-fifth | ||
| | | 730.435 | ||
|[[ | | [[32/21]], [[29/19]] | ||
| | | 1.216, −1.630 | ||
|- | |- | ||
| | | 43 | ||
| | | Septendecimal subminor sixth | ||
| | | 747.826 | ||
|[[ | | [[17/11]] | ||
| | | −5.811 | ||
|- | |- | ||
| | | 44 | ||
| | | Subminor sixth | ||
| | | 765.217 | ||
|[[ | | [[14/9]] | ||
| | | 0.301 | ||
|- | |- | ||
| | | 45 | ||
| | | Undecimal minor sixth | ||
| | | 782.609 | ||
|[[ | | [[11/7]] | ||
| | | 0.117 | ||
|- | |- | ||
| | | 46 | ||
| | | Septendecimal subminor sixth | ||
| | | 800.000 | ||
|[[ | | [[27/17]] | ||
| | | −0.910 | ||
|- | |- | ||
| | | 47 | ||
| | | Classic minor sixth | ||
| | | 817.391 | ||
|[[ | | [[8/5]] | ||
| | | 3.705 | ||
|- | |- | ||
| | | 48 | ||
| | | Septendecimal supraminor sixth | ||
| | | 834.783 | ||
|[[ | | [[34/21]] | ||
| | | 0.608 | ||
|- | |- | ||
| | | 49 | ||
| | | Undecimal neutral sixth | ||
| | | 852.174 | ||
|[[ | | [[18/11]] | ||
| | | −0.418 | ||
|- | |- | ||
| | | 50 | ||
| | | Vicesimotertial submajor sixth | ||
| | | 869.565 | ||
|[[ | | [[38/23]] | ||
| | | 0.327 | ||
|- | |- | ||
| | | 51 | ||
| | | Classic major sixth | ||
| | | 886.957 | ||
|[[ | | [[5/3]] | ||
| | | 2.598 | ||
|- | |- | ||
| | | 52 | ||
| | | Pythagorean major sixth | ||
| | | 904.348 | ||
|[[ | | [[27/16]] | ||
| | | −1.517 | ||
|- | |- | ||
| | | 53 | ||
| | | Septendecimal major sixth, undetricesimal major sixth | ||
| | | 921.739 | ||
|[[29/ | | [[17/10]], [[29/17]] | ||
| | | 3.097, −2.883 | ||
|- | |- | ||
| | | 54 | ||
| | | Supermajor sixth, undetricesimal supermajor sixth | ||
| | | 939.130 | ||
|[[ | | [[12/7]], [[50/29]] | ||
| | | 6.001, −3.920 | ||
|- | |- | ||
| | | 55 | ||
|Vicesimotertial | | Vicesimotertial supermajor sixth | ||
| | | 956.522 | ||
|[[ | | [[40/23]] | ||
| | | −1.518 | ||
|- | |- | ||
| | | 56 | ||
| | | Harmonic seventh | ||
| | | 973.913 | ||
|[[ | | [[7/4]] | ||
| | | 5.087 | ||
|- | |- | ||
| | | 57 | ||
| | | Pythagorean minor seventh | ||
| | | 991.304 | ||
|[[ | | [[16/9]] | ||
| | | −4.786 | ||
|- | |- | ||
| | | 58 | ||
| | | Quasi-meantone minor seventh | ||
| | | 1008.696 | ||
|[[ | | [[34/19]] | ||
|1. | | 1.253 | ||
|- | |- | ||
| | | 59 | ||
| | | Minor neutral undevicesimal seventh | ||
| | | 1026.087 | ||
|[[ | | [[38/21]] | ||
| | | −0.645 | ||
|- | |- | ||
| | | 60 | ||
| | | Vicesimotertial neutral seventh | ||
| | | 1043.478 | ||
|[[ | | [[42/23]] | ||
|0. | | 0.972 | ||
|- | |- | ||
| | | 61 | ||
| | | Tridecimal neutral seventh | ||
| | | 1060.870 | ||
|[[ | | [[24/13]] | ||
| | | −0.558 | ||
|- | |- | ||
| | | 62 | ||
| | | Septimal diatonic major seventh | ||
| | | 1078.261 | ||
|[[ | | [[28/15]] | ||
| | | −2.296 | ||
|- | |- | ||
| | | 63 | ||
| | | Small septendecimal major seventh | ||
| | | 1095.652 | ||
|[[ | | [[32/17]] | ||
| | | 0.608 | ||
|- | |- | ||
| | | 64 | ||
| | | Small undevicesimal semitone | ||
| | | 1113.043 | ||
|[[ | | [[20/19]] | ||
| | | 1.844 | ||
|- | |- | ||
| | | 65 | ||
| | | _____ | ||
| | | 1130.435 | ||
|[[ | | [[73/38]] | ||
| | | 0.158 | ||
|- | |- | ||
| | | 66 | ||
| | | Septendecimal supermajor seventh | ||
| | | 1147.826 | ||
|[[ | | [[33/17]] | ||
| | | −0.491 | ||
|- | |- | ||
| | | 67 | ||
| | | _____ | ||
| | | 1165.217 | ||
|[[ | | [[49/25]] | ||
| | | −0.193 | ||
|- | |- | ||
| | | 68 | ||
| | | _____ | ||
| | | 1182.609 | ||
|[[ | | [[99/50]] | ||
| | | 0.008 | ||
|- | |- | ||
| | | 69 | ||
| | | Octave, 8 | ||
| | | 1200.000 | ||
|[[ | | [[2/1]] | ||
| | | 0.000 | ||
|} | |||
<nowiki />* Some simpler ratios listed | |||
== Notation == | |||
=== Ups and downs notation === | |||
69edo can be notated with [[ups and downs]], spoken as up, dup, downsharp, sharp, upsharp etc. and down, dud, upflat etc. Note that dup is equivalent to dudsharp and dud is equivalent to dupflat. | |||
{{Sharpness-sharp4a}} | |||
[[Alternative symbols for ups and downs notation]] uses sharps and flats along with Stein–Zimmerman [[24edo#Notation|quarter-tone]] accidentals, combined with arrows, borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp4}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[62edo#Sagittal notation|62]] and [[76edo#Sagittal notation|76]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:69-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 783 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:69-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:69-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 751 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:69-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:69-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 759 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:69-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |- | ||
| | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list|Comma List]] | |||
! rowspan="2" | [[Mapping]] | |||
|[[ | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
| | ! colspan="2" | Tuning Error | ||
|- | |- | ||
| | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | |||
|- | |- | ||
| | | 2.3 | ||
| | | {{monzo| -109 69 }} | ||
| | | {{mapping| 69 109 }} | ||
| | | +1.99 | ||
| | | 1.99 | ||
| 11.43 | |||
|- | |- | ||
| | | 2.3.5 | ||
| | | 81/80, {{monzo| -41 1 17 }} | ||
| | | {{mapping| 69 109 160 }} | ||
| | | +1.86 | ||
| | | 1.64 | ||
| 9.40 | |||
|- | |- | ||
| | | 2.3.5.7 | ||
| | | 81/80, 126/125, 4117715/3981312 | ||
| | | {{mapping| 69 109 160 193 }} (69d) | ||
| | | +2.49 | ||
| | | 1.79 | ||
| 10.28 | |||
|- | |- | ||
| | | 2.3.5.7 | ||
| | | 81/80, 3125/3087, 6144/6125 | ||
| | | {{mapping| 69 109 160 194 }} (69) | ||
| | | +0.94 | ||
| - | | 2.13 | ||
| 12.23 | |||
|} | |||
=== Rank 2 temperaments === | |||
{| class="wikitable center-1 center-2" | |||
|- | |- | ||
! Periods<br>per 8ve | |||
! Generator | |||
! Temperaments | |||
|- | |- | ||
| | | 1 | ||
| | | 2\69 | ||
| [[Gammy]] (69de) | |||
|[[ | |||
|- | |- | ||
| | |1 | ||
| | |5\69 | ||
| | |[[Devichromic chords|Devichromic Octacot]]<ref group="note" name="tempname">Placeholder name, with link to [[Devichromic chords]] article — no general article currently exists for Devichromic temperament, and this particular incarnation of Devichromic temperament is likely to receive a different permanent name.</ref> | ||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 19\69 | ||
| [[Rarity]] | |||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 20\69 | ||
| [[Mohaha]] (69e) | |||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 22\69 | ||
| [[Caleb]] (69)<br>[[marveltri]] (69) | |||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 29\69 | ||
| [[Meantone]] (69d) | |||
|[[ | |||
|- | |- | ||
| | | 3 | ||
| | | 5\69 | ||
| [[Augmented family #Ogene|Ogene]] (69bceef) | |||
|[[ | |||
|- | |- | ||
| | | 3 | ||
| | | 6\69 | ||
| [[August]] (7-limit, 69cdd)<br>[[Lithium]] (69) | |||
|[[ | |||
|- | |- | ||
| | | 3 | ||
| | | 9\69 | ||
| [[Nessafof]] (69e) | |||
|[[ | |||
|} | |} | ||
< | <references group="note" /> | ||
[[Category: | |||
[[Category: | == Scales == | ||
* Supermajor[11], [[3L 8s]] – 6 6 6 7 6 6 6 7 6 6 7 | |||
* Meantone[7], [[5L 2s]] (gen = 40\69) – 11 11 7 11 11 11 7 | |||
* Meantone[12], [[7L 5s]] (gen = 40\69) – 7 4 7 4 7 4 7 7 4 7 4 7 | |||
* Lithium[9], [[3L 6s]] – 11 6 6 11 6 6 11 6 6 | |||
* Lithium[12], [[9L 3s]] – 5 6 6 6 5 6 6 6 5 6 6 6 | |||
== Instruments == | |||
A [[Lumatone mapping for 69edo]] is available. | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/watch?v=ZAqPonAHuUM ''microtonal improvisation in 69edo''] (2025) | |||
* [https://www.youtube.com/shorts/4XBELeySMPk ''Compass - Mili (microtonal cover in 69edo)''] (2025) | |||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=a4vNlDU6Vkw ''Hypergiant Sakura''] (2021) | |||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=Z3m4KqpuKPw ''69 hours before''] (2023) | |||
[[Category:Meantone]] | |||
[[Category:Listen]] | |||
{{Todo| review }} |