182/121: Difference between revisions

Wikispaces>iamcamtaylor
**Imported revision 532973742 - Original comment: **
 
Address a name change and +necessary terminology
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox Interval
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name = minor minthmic fifth
: This revision was by author [[User:iamcamtaylor|iamcamtaylor]] and made on <tt>2014-11-27 22:06:56 UTC</tt>.<br>
| Color name = 3o1uuz6, tholuluzo 6th
: The original revision id was <tt>532973742</tt>.<br>
| Sound = Ji-182-121-csound-foscil-220hz.mp3
: The revision comment was: <tt></tt><br>
}}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
'''182/121''', the '''minor minthmic fifth''', is a [[13-limit]] interval measuring about 706.7{{cent}}. It is a [[364/363|minor minthma (364/363)]] sharp of the perfect fifth ([[3/2]]). It is the stack of [[14/11]] and [[13/11]] ((13/11)(14/11) = 182/121).
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[https://xenharmonic.wikispaces.com/page/182_121|182/121]], 706.7177 cents.
A gentle fifth, found between 11/14 and 13/11.


Note that ''minor minthmic'' modifies ''fifth'' and that ''minor minthmic'' is the name of the temperament that tempers out 364/363. ''Minor'' does not specify the size of the interval here.


Rather well approximated by the regular fifths in [[xenharmonic/17edo|17edo]].
== Approximation ==
This interval is rather well approximated by the regular fifths in [[17edo]]: 10\17 is 0.8{{cent}} flat of 182/121.


Also incredibly close to another gentle fifth, 176/117, 706.8803 cents, found between 13/16 and 11/9.</pre></div>
It is also incredibly close to the major minthmic fifth ([[176/117]], 706.8803{{cent}}), found as a stack of [[16/13]] and [[11/9]] ((11/9)(16/13) = 176/117).
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;182_121&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;a class="wiki_link_ext" href="https://xenharmonic.wikispaces.com/page/182_121" rel="nofollow"&gt;182/121&lt;/a&gt;, 706.7177 cents.&lt;br /&gt;
== See also ==
A gentle fifth, found between 11/14 and 13/11.&lt;br /&gt;
* [[Gallery of just intervals]]
&lt;br /&gt;
 
&lt;br /&gt;
[[Category:Fifth]]
Rather well approximated by the regular fifths in &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo"&gt;17edo&lt;/a&gt;.&lt;br /&gt;
[[Category:Minor minthmic]]
&lt;br /&gt;
Also incredibly close to another gentle fifth, 176/117, 706.8803 cents, found between 13/16 and 11/9.&lt;/body&gt;&lt;/html&gt;</pre></div>