|
|
(68 intermediate revisions by 21 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-21 17:40:29 UTC</tt>.<br>
| |
| : The original revision id was <tt>256757372</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//130edo// divides the octave into 130 parts of size 9.231 cents each. It is the tenth [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta integral edo]] but not a gap edo. It can be used to tune a variety of temperaments, including hemiwuerschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[Wuerschmidt family#Hemiwuerschmidt|hemiwuerschmidt]] and [[Schismatic family#Sesquiquartififths|sesquart]] and 13-limit [[Breedsmic temperaments#Harry|harry]] temperaments.
| |
|
| |
|
| 7-limit commas: 2401/2400, 3136/3125, 19683/19600
| | == Theory == |
| | 130edo is a [[zeta peak edo]], a [[zeta peak integer edo]], and a [[zeta integral edo]] but not a gap edo. It is [[distinctly consistent]] to the [[15-odd-limit]] and is the first [[trivial temperament|nontrivial edo]] to be consistent in the 14-[[odd prime sum limit|odd-prime-sum-limit]]. As an equal temperament, it [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[19683/19600]] in the 7-limit; [[243/242]], [[441/440]], [[540/539]], and [[4000/3993]] in the 11-limit; and [[351/350]], [[364/363]], [[676/675]], [[729/728]], [[1001/1000]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]] in the 13-limit. It can be used to tune a variety of temperaments, including [[hemiwürschmidt]], [[sesquiquartififths]], [[harry]] and [[hemischis]]. It also can be used to tune the [[rank-3 temperament]] [[jove]], tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and [[595/594]] for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[hemiwürschmidt]] and [[Schismatic family #Sesquiquartififths|sesquart]] and 13-limit [[harry]]. |
|
| |
|
| 11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993
| | === Prime harmonics === |
| | {{Harmonics in equal|130|columns=9}} |
| | {{Harmonics in equal|130|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 130edo (continued)}} |
|
| |
|
| 13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363 | | === Subsets and supersets === |
| | Since 130 factors into 2 × 5 × 13, 130edo has subset edos {{EDOs| 2, 5, 10, 13, 26, and 65 }}. |
|
| |
|
| 17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875
| | [[260edo]], which divides the edostep in two, provides a strong correction for the 29th harmonic. |
|
| |
|
| ==Intervals== | | == Intervals == |
| | {| class="wikitable center-all right-2 left-3" |
| | |- |
| | ! Degree |
| | ! Cents |
| | ! Approximate ratios |
| | |- |
| | | 0 |
| | | 0.00 |
| | | 1/1 |
| | |- |
| | | 1 |
| | | 9.23 |
| | | ''126/125'', 144/143, 169/168, 176/175, 196/195, 225/224 |
| | |- |
| | | 2 |
| | | 18.46 |
| | | 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 |
| | |- |
| | | 3 |
| | | 27.69 |
| | | 56/55, 64/63, 65/64, 66/65 |
| | |- |
| | | 4 |
| | | 36.92 |
| | | 45/44, 49/48, 50/49, ''55/54'' |
| | |- |
| | | 5 |
| | | 46.15 |
| | | 36/35, 40/39 |
| | |- |
| | | 6 |
| | | 55.38 |
| | | 33/32 |
| | |- |
| | | 7 |
| | | 64.62 |
| | | 27/26, 28/27 |
| | |- |
| | | 8 |
| | | 73.85 |
| | | 25/24, 26/25 |
| | |- |
| | | 9 |
| | | 83.08 |
| | | 21/20, 22/21 |
| | |- |
| | | 10 |
| | | 92.31 |
| | | 135/128 |
| | |- |
| | | 11 |
| | | 101.54 |
| | | 35/33 |
| | |- |
| | | 12 |
| | | 110.77 |
| | | 16/15 |
| | |- |
| | | 13 |
| | | 120.00 |
| | | 15/14 |
| | |- |
| | | 14 |
| | | 129.23 |
| | | 14/13 |
| | |- |
| | | 15 |
| | | 138.46 |
| | | 13/12 |
| | |- |
| | | 16 |
| | | 147.69 |
| | | 12/11 |
| | |- |
| | | 17 |
| | | 156.92 |
| | | 35/32 |
| | |- |
| | | 18 |
| | | 166.15 |
| | | 11/10 |
| | |- |
| | | 19 |
| | | 175.38 |
| | | 72/65 |
| | |- |
| | | 20 |
| | | 184.62 |
| | | 10/9 |
| | |- |
| | | 21 |
| | | 193.85 |
| | | 28/25 |
| | |- |
| | | 22 |
| | | 203.08 |
| | | 9/8 |
| | |- |
| | | 23 |
| | | 212.31 |
| | | 44/39 |
| | |- |
| | | 24 |
| | | 221.54 |
| | | 25/22 |
| | |- |
| | | 25 |
| | | 230.77 |
| | | 8/7 |
| | |- |
| | | 26 |
| | | 240.00 |
| | | 55/48 |
| | |- |
| | | 27 |
| | | 249.23 |
| | | 15/13 |
| | |- |
| | | 28 |
| | | 258.46 |
| | | 64/55 |
| | |- |
| | | 29 |
| | | 267.69 |
| | | 7/6 |
| | |- |
| | | 30 |
| | | 276.92 |
| | | 75/64 |
| | |- |
| | | 31 |
| | | 286.15 |
| | | 13/11 |
| | |- |
| | | 32 |
| | | 295.38 |
| | | 32/27 |
| | |- |
| | | 33 |
| | | 304.62 |
| | | 25/21 |
| | |- |
| | | 34 |
| | | 313.85 |
| | | 6/5 |
| | |- |
| | | 35 |
| | | 323.08 |
| | | 65/54 |
| | |- |
| | | 36 |
| | | 332.31 |
| | | 40/33 |
| | |- |
| | | 37 |
| | | 341.54 |
| | | 39/32 |
| | |- |
| | | 38 |
| | | 350.77 |
| | | 11/9, 27/22 |
| | |- |
| | | 39 |
| | | 360.00 |
| | | 16/13 |
| | |- |
| | | 40 |
| | | 369.23 |
| | | 26/21 |
| | |- |
| | | 41 |
| | | 378.46 |
| | | 56/45 |
| | |- |
| | | 42 |
| | | 387.69 |
| | | 5/4 |
| | |- |
| | | 43 |
| | | 396.92 |
| | | 44/35 |
| | |- |
| | | 44 |
| | | 406.15 |
| | | 81/64 |
| | |- |
| | | 45 |
| | | 415.38 |
| | | 14/11 |
| | |- |
| | | 46 |
| | | 424.62 |
| | | 32/25 |
| | |- |
| | | 47 |
| | | 433.85 |
| | | 9/7 |
| | |- |
| | | 48 |
| | | 443.08 |
| | | 84/65, 128/99 |
| | |- |
| | | 49 |
| | | 452.31 |
| | | 13/10 |
| | |- |
| | | 50 |
| | | 461.54 |
| | | 64/49, ''72/55'' |
| | |- |
| | | 51 |
| | | 470.77 |
| | | 21/16 |
| | |- |
| | | 52 |
| | | 480.00 |
| | | 33/25 |
| | |- |
| | | 53 |
| | | 489.23 |
| | | 65/49 |
| | |- |
| | | 54 |
| | | 498.46 |
| | | 4/3 |
| | |- |
| | | 55 |
| | | 507.69 |
| | | 75/56 |
| | |- |
| | | 56 |
| | | 516.92 |
| | | 27/20 |
| | |- |
| | | 57 |
| | | 526.15 |
| | | 65/48 |
| | |- |
| | | 58 |
| | | 535.38 |
| | | 15/11 |
| | |- |
| | | 59 |
| | | 544.62 |
| | | 48/35 |
| | |- |
| | | 60 |
| | | 553.85 |
| | | 11/8 |
| | |- |
| | | 61 |
| | | 563.08 |
| | | 18/13 |
| | |- |
| | | 62 |
| | | 572.31 |
| | | 25/18 |
| | |- |
| | | 63 |
| | | 581.54 |
| | | 7/5 |
| | |- |
| | | 64 |
| | | 590.77 |
| | | 45/32 |
| | |- |
| | | 65 |
| | | 600.00 |
| | | 99/70, 140/99 |
| | |- |
| | |… |
| | |… |
| | |… |
| | |} |
|
| |
|
| || degree of 130edo || cents value || associated temperament || | | == Notation == |
| || 0 || 0.00 || ||
| | === Sagittal notation === |
| || 1 || 9.23 || ||
| | {| class="wikitable center-all" |
| || 2 || 18.46 || ||
| | ! Steps |
| || 3 || 27.69 || ||
| | | 0 |
| || 4 || 36.92 || ||
| | | 1 |
| || 5 || 46.15 || ||
| | | 2 |
| || 6 || 55.38 || ||
| | | 3 |
| || 7 || 64.62 || ||
| | | 4 |
| || 8 || 73.85 || ||
| | | 5 |
| || 9 || 83.08 || ||
| | | 6 |
| || 10 || 92.31 || ||
| | | 7 |
| || 11 || 101.54 || ||
| | | 8 |
| || 12 || 110.77 || ||
| | | 9 |
| || 13 || 120 || || | | | 10 |
| || 14 || 129.23 || ||
| | | 11 |
| || 15 || 138.46 || || | | | 12 |
| || 16 || 147.69 || || | | |- |
| || 17 || 156.92 || || | | ! Symbol |
| || 18 || 166.15 || || | | | [[File:Sagittal natural.png]] |
| || 19 || 175.38 || ||
| | | [[File:Sagittal nai.png]] |
| || 20 || 184.62 || ||
| | | [[File:Sagittal pai.png]] |
| || 21 || 193.85 || ||
| | | [[File:Sagittal tai.png]] |
| || 22 || 203.08 || ||
| | | [[File:Sagittal phai.png]] |
| || 23 || 212.31 || ||
| | | [[File:Sagittal patai.png]] |
| || 24 || 221.54 || ||
| | | [[File:Sagittal pakai.png]] |
| || 25 || 230.77 || ||
| | | [[File:Sagittal jakai.png]] |
| || 26 || 240 || ||
| | | [[File:Sagittal sharp phao.png]] |
| || 27 || 249.23 || || | | | [[File:Sagittal sharp tao.png]] |
| || 28 || 258.46 || || | | | [[File:Sagittal sharp pao.png]] |
| || 29 || 267.69 || || | | | [[File:Sagittal sharp nao.png]] |
| || 30 || 276.92 || || | | | [[File:Sagittal sharp.png]] |
| || 31 || 286.15 || || | | |} |
| || 32 || 295.38 || || | |
| || 33 || 304.62 || || | |
| || 34 || 313.85 || || | |
| || 35 || 323.08 || || | |
| || 36 || 332.31 || || | |
| || 37 || 341.54 || ||
| |
| || 38 || 350.77 || ||
| |
| || 39 || 360 || ||
| |
| || 40 || 369.23 || ||
| |
| || 41 || 378.46 || ||
| |
| || 42 || 387.69 || ||
| |
| || 43 || 396.92 || ||
| |
| || 44 || 406.15 || ||
| |
| || 45 || 415.38 || ||
| |
| || 46 || 424.62 || ||
| |
| || 47 || 433.85 || ||
| |
| || 48 || 443.08 || ||
| |
| || 49 || 452.31 || ||
| |
| || 50 || 461.54 || ||
| |
| || 51 || 470.77 || ||
| |
| || 52 || 480 || ||
| |
| || 53 || 489.23 || ||
| |
| || 54 || 498.46 || ||
| |
| || 55 || 507.69 || ||
| |
| || 56 || 516.92 || ||
| |
| || 57 || 526.15 || ||
| |
| || 58 || 535.38 || ||
| |
| || 59 || 544.62 || ||
| |
| || 60 || 553.85 || ||
| |
| || 61 || 563.08 || ||
| |
| || 62 || 572.31 || ||
| |
| || 63 || 581.54 || ||
| |
| || 64 || 590.77 || ||
| |
| || 65 || 600 || ||
| |
| || 66 || 609.23 || ||
| |
| || 67 || 618.46 || ||
| |
| || 68 || 627.69 || ||
| |
| || 69 || 636.92 || ||
| |
| || 70 || 646.15 || ||
| |
| || 71 || 655.38 || ||
| |
| || 72 || 664.62 || ||
| |
| || 73 || 673.85 || ||
| |
| || 74 || 683.08 || ||
| |
| || 75 || 692.31 || ||
| |
| || 76 || 701.54 || ||
| |
| || 77 || 710.77 || ||
| |
| || 78 || 720 || ||
| |
| || 79 || 729.23 || ||
| |
| || 80 || 738.46 || ||
| |
| || 81 || 747.69 || ||
| |
| || 82 || 756.92 || ||
| |
| || 83 || 766.15 || ||
| |
| || 84 || 775.38 || ||
| |
| || 85 || 784.62 || ||
| |
| || 86 || 793.85 || ||
| |
| || 87 || 803.08 || ||
| |
| || 88 || 812.31 || ||
| |
| || 89 || 821.54 || ||
| |
| || 90 || 830.77 || ||
| |
| || 91 || 840 || ||
| |
| || 92 || 849.23 || ||
| |
| || 93 || 858.46 || ||
| |
| || 94 || 867.69 || ||
| |
| || 95 || 876.92 || ||
| |
| || 96 || 886.15 || ||
| |
| || 97 || 895.38 || ||
| |
| || 98 || 904.62 || ||
| |
| || 99 || 913.85 || ||
| |
| || 100 || 923.08 || ||
| |
| || 101 || 932.31 || ||
| |
| || 102 || 941.54 || ||
| |
| || 103 || 950.77 || ||
| |
| || 104 || 960 || ||
| |
| || 105 || 969.23 || ||
| |
| || 106 || 978.46 || ||
| |
| || 107 || 987.69 || ||
| |
| || 108 || 996.92 || ||
| |
| || 109 || 1006.15 || ||
| |
| || 110 || 1015.38 || ||
| |
| || 111 || 1024.62 || ||
| |
| || 112 || 1033.85 || ||
| |
| || 113 || 1043.08 || ||
| |
| || 114 || 1052.31 || ||
| |
| || 115 || 1061.54 || ||
| |
| || 116 || 1070.77 || ||
| |
| || 117 || 1080 || ||
| |
| || 118 || 1089.23 || ||
| |
| || 119 || 1098.46 || ||
| |
| || 120 || 1107.69 || ||
| |
| || 121 || 1116.92 || ||
| |
| || 122 || 1126.15 || ||
| |
| || 123 || 1135.38 || ||
| |
| || 124 || 1144.62 || ||
| |
| || 125 || 1153.85 || ||
| |
| || 126 || 1163.08 || ||
| |
| || 127 || 1172.31 || ||
| |
| || 128 || 1181.54 || ||
| |
| || 129 || 1190.77 || ||
| |
|
| |
|
| | == Approximation to JI == |
| | === Zeta peak index === |
| | {{ZPI |
| | | zpi = 796 |
| | | steps = 130.003910460506 |
| | | step size = 9.23049157328654 |
| | | tempered height = 10.355108 |
| | | pure height = 10.339572 |
| | | integral = 1.634018 |
| | | gap = 19.594551 |
| | | octave = 1199.96390452725 |
| | | consistent = 16 |
| | | distinct = 16 |
| | }} |
|
| |
|
| ==Music== | | == Regular temperament properties == |
| [[http://www.archive.org/details/TheParadiseOfCantor|The Paradise of Cantor]] [[http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3|play]] by [[Gene Ward Smith]]</pre></div>
| | {| class="wikitable center-4 center-5 center-6" |
| <h4>Original HTML content:</h4>
| | |- |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>130edo</title></head><body><em>130edo</em> divides the octave into 130 parts of size 9.231 cents each. It is the tenth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists">zeta integral edo</a> but not a gap edo. It can be used to tune a variety of temperaments, including hemiwuerschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11-limit <a class="wiki_link" href="/Wuerschmidt%20family#Hemiwuerschmidt">hemiwuerschmidt</a> and <a class="wiki_link" href="/Schismatic%20family#Sesquiquartififths">sesquart</a> and 13-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Harry">harry</a> temperaments.<br />
| | ! rowspan="2" | [[Subgroup]] |
| <br />
| | ! rowspan="2" | [[Comma list]] |
| 7-limit commas: 2401/2400, 3136/3125, 19683/19600<br />
| | ! rowspan="2" | [[Mapping]] |
| <br />
| | ! rowspan="2" | Optimal<br>8ve stretch (¢) |
| 11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993<br /> | | ! colspan="2" | Tuning error |
| <br />
| | |- |
| 13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363<br /> | | ! [[TE error|Absolute]] (¢) |
| <br />
| | ! [[TE simple badness|Relative]] (%) |
| 17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875<br />
| | |- |
| <br />
| | | 2.3.5.7 |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h2>
| | | 2401/2400, 3136/3125, 19683/19600 |
| <br />
| | | {{Mapping| 130 206 302 365 }} |
| | | −0.119 |
| | | 0.311 |
| | | 3.37 |
| | |- |
| | | 2.3.5.7.11 |
| | | 243/242, 441/440, 3136/3125, 4000/3993 |
| | | {{Mapping| 130 206 302 365 450 }} |
| | | −0.241 |
| | | 0.370 |
| | | 4.02 |
| | |- |
| | | 2.3.5.7.11.13 |
| | | 243/242, 351/350, 364/363, 441/440, 3136/3125 |
| | | {{Mapping| 130 206 302 365 450 481 }} |
| | | −0.177 |
| | | 0.367 |
| | | 3.98 |
| | |} |
|
| |
|
| | === Rank-2 temperaments === |
| | Note: temperaments supported by [[65edo|65et]] are not included. |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable center-all left-5" |
| <tr>
| | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator |
| <td>degree of 130edo<br />
| | |- |
| </td>
| | ! Periods<br>per 8ve |
| <td>cents value<br />
| | ! Generator* |
| </td>
| | ! Cents* |
| <td>associated temperament<br />
| | ! Associated<br>ratio* |
| </td>
| | ! Temperament |
| </tr>
| | |- |
| <tr>
| | | 1 |
| <td>0<br />
| | | 3\130 |
| </td>
| | | 27.69 |
| <td>0.00<br />
| | | 64/63 |
| </td>
| | | [[Arch]] |
| <td><br />
| | |- |
| </td>
| | | 1 |
| </tr>
| | | 7\130 |
| <tr>
| | | 64.62 |
| <td>1<br />
| | | 26/25 |
| </td>
| | | [[Rectified hebrew]] |
| <td>9.23<br />
| | |- |
| </td>
| | | 1 |
| <td><br />
| | | 9\130 |
| </td>
| | | 83.08 |
| </tr>
| | | 21/20 |
| <tr>
| | | [[Sextilifourths]] |
| <td>2<br />
| | |- |
| </td>
| | | 1 |
| <td>18.46<br />
| | | 19\130 |
| </td>
| | | 175.38 |
| <td><br />
| | | 72/65 |
| </td>
| | | [[Sesquiquartififths]] / [[sesquart]] |
| </tr>
| | |- |
| <tr>
| | | 1 |
| <td>3<br />
| | | 21\130 |
| </td>
| | | 193.85 |
| <td>27.69<br />
| | | 28/25 |
| </td>
| | | [[Hemiwürschmidt]] |
| <td><br />
| | |- |
| </td>
| | | 1 |
| </tr>
| | | 27\130 |
| <tr>
| | | 249.23 |
| <td>4<br />
| | | 15/13 |
| </td>
| | | [[Hemischis]] |
| <td>36.92<br />
| | |- |
| </td>
| | | 1 |
| <td><br />
| | | 41\130 |
| </td>
| | | 378.46 |
| </tr>
| | | 56/45 |
| <tr>
| | | [[Subpental]] |
| <td>5<br />
| | |- |
| </td>
| | | 2 |
| <td>46.15<br />
| | | 6\130 |
| </td>
| | | 55.38 |
| <td><br />
| | | 33/32 |
| </td>
| | | [[Septisuperfourth]] |
| </tr>
| | |- |
| <tr>
| | | 2 |
| <td>6<br />
| | | 9\130 |
| </td>
| | | 83.08 |
| <td>55.38<br />
| | | 21/20 |
| </td>
| | | [[Harry]] |
| <td><br />
| | |- |
| </td>
| | | 2 |
| </tr>
| | | 17\130 |
| <tr>
| | | 156.92 |
| <td>7<br />
| | | 35/32 |
| </td>
| | | [[Bison]] |
| <td>64.62<br />
| | |- |
| </td>
| | | 2 |
| <td><br />
| | | 19\130 |
| </td>
| | | 175.38 |
| </tr>
| | | 448/405 |
| <tr>
| | | [[Bisesqui]] |
| <td>8<br />
| | |- |
| </td>
| | | 2 |
| <td>73.85<br />
| | | 54\130<br>(11\130) |
| </td>
| | | 498.46<br>(101.54) |
| <td><br />
| | | 4/3<br>(35/33) |
| </td>
| | | [[Bischismic]] |
| </tr>
| | |- |
| <tr>
| | | 5 |
| <td>9<br />
| | | 27\130<br>(1\130) |
| </td>
| | | 249.23<br>(9.23) |
| <td>83.08<br />
| | | 81/70<br>(176/175) |
| </td>
| | | [[Hemiquintile]] |
| <td><br />
| | |- |
| </td>
| | | 10 |
| </tr>
| | | 27\130<br>(1\130) |
| <tr>
| | | 249.23<br>(9.23) |
| <td>10<br />
| | | 15/13<br>(176/175) |
| </td>
| | | [[Decoid]] |
| <td>92.31<br />
| | |- |
| </td>
| | | 10 |
| <td><br />
| | | 54\130<br>(2\130) |
| </td>
| | | 498.46<br>(18.46) |
| </tr>
| | | 4/3<br>(81/80) |
| <tr>
| | | [[Decile]] |
| <td>11<br />
| | |- |
| </td>
| | | 26 |
| <td>101.54<br />
| | | 54\130<br>(1\130) |
| </td>
| | | 498.46<br>(9.23) |
| <td><br />
| | | 4/3<br>(225/224) |
| </td>
| | | [[Bosonic]] |
| </tr>
| | |} |
| <tr>
| | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
| <td>12<br />
| |
| </td>
| |
| <td>110.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>129.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>138.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>147.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>156.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>166.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>175.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>184.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>193.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>203.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>212.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>221.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>230.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>249.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>258.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>267.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>276.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>286.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>295.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>304.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>313.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>323.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>332.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>341.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>350.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>360<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>369.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>378.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>387.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>396.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>406.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>415.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>424.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>433.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>443.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>452.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>461.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>470.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>480<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>489.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>498.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>507.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>516.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>526.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>535.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>544.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>553.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>563.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>572.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>581.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>590.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>600<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>609.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>618.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>68<br />
| |
| </td>
| |
| <td>627.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>636.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>70<br />
| |
| </td>
| |
| <td>646.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>655.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>72<br />
| |
| </td>
| |
| <td>664.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>73<br />
| |
| </td>
| |
| <td>673.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>74<br />
| |
| </td>
| |
| <td>683.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>75<br />
| |
| </td>
| |
| <td>692.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>76<br />
| |
| </td>
| |
| <td>701.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>77<br />
| |
| </td>
| |
| <td>710.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78<br />
| |
| </td>
| |
| <td>720<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>79<br />
| |
| </td>
| |
| <td>729.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>80<br />
| |
| </td>
| |
| <td>738.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>81<br />
| |
| </td>
| |
| <td>747.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>82<br />
| |
| </td>
| |
| <td>756.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>83<br />
| |
| </td>
| |
| <td>766.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>84<br />
| |
| </td>
| |
| <td>775.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>85<br />
| |
| </td>
| |
| <td>784.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>86<br />
| |
| </td>
| |
| <td>793.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>87<br />
| |
| </td>
| |
| <td>803.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>88<br />
| |
| </td>
| |
| <td>812.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>89<br />
| |
| </td>
| |
| <td>821.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>90<br />
| |
| </td>
| |
| <td>830.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>91<br />
| |
| </td>
| |
| <td>840<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>92<br />
| |
| </td>
| |
| <td>849.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>93<br />
| |
| </td>
| |
| <td>858.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>94<br />
| |
| </td>
| |
| <td>867.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>95<br />
| |
| </td>
| |
| <td>876.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>96<br />
| |
| </td>
| |
| <td>886.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>97<br />
| |
| </td>
| |
| <td>895.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>98<br />
| |
| </td>
| |
| <td>904.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>99<br />
| |
| </td>
| |
| <td>913.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>100<br />
| |
| </td>
| |
| <td>923.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>101<br />
| |
| </td>
| |
| <td>932.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>102<br />
| |
| </td>
| |
| <td>941.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>103<br />
| |
| </td>
| |
| <td>950.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>104<br />
| |
| </td>
| |
| <td>960<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>105<br />
| |
| </td>
| |
| <td>969.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>106<br />
| |
| </td>
| |
| <td>978.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>107<br />
| |
| </td>
| |
| <td>987.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>108<br />
| |
| </td>
| |
| <td>996.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>109<br />
| |
| </td>
| |
| <td>1006.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>110<br />
| |
| </td>
| |
| <td>1015.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>111<br />
| |
| </td>
| |
| <td>1024.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>112<br />
| |
| </td>
| |
| <td>1033.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>113<br />
| |
| </td>
| |
| <td>1043.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>114<br />
| |
| </td>
| |
| <td>1052.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>115<br />
| |
| </td>
| |
| <td>1061.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>116<br />
| |
| </td>
| |
| <td>1070.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>117<br />
| |
| </td>
| |
| <td>1080<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>118<br />
| |
| </td>
| |
| <td>1089.23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>119<br />
| |
| </td>
| |
| <td>1098.46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>120<br />
| |
| </td>
| |
| <td>1107.69<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>121<br />
| |
| </td>
| |
| <td>1116.92<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>122<br />
| |
| </td>
| |
| <td>1126.15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>123<br />
| |
| </td>
| |
| <td>1135.38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>124<br />
| |
| </td>
| |
| <td>1144.62<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>125<br />
| |
| </td>
| |
| <td>1153.85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>126<br />
| |
| </td>
| |
| <td>1163.08<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>127<br />
| |
| </td>
| |
| <td>1172.31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>128<br />
| |
| </td>
| |
| <td>1181.54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>129<br />
| |
| </td>
| |
| <td>1190.77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | == Scales == |
| <br />
| | {| class="wikitable" |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h2>
| | |+ style="font-size: 105%;" | 14-tone temperament of "Narrative Wars"<br />as an example of using 130edo: |
| <a class="wiki_link_ext" href="http://www.archive.org/details/TheParadiseOfCantor" rel="nofollow">The Paradise of Cantor</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a></body></html></pre></div>
| | |- |
| | ! Step |
| | ! Cents |
| | ! Distance to the nearest JI interval<br />(selected ratios) |
| | |- |
| | | 13 (13/130) |
| | | 120.000 |
| | | [[15/14]] (+0.557{{c}}) |
| | |- |
| | | 7 (20/130) |
| | | 184.615 |
| | | [[10/9]] (+2.211{{c}}) |
| | |- |
| | | 9 (29/130) |
| | | 267.692 |
| | | [[7/6]] (+0,821{{c}}) |
| | |- |
| | | 9 (38/130) |
| | | 350.769 |
| | | [[11/9]] (+3.361{{c}}) |
| | |- |
| | | 9 (47/130) |
| | | 433.846 |
| | | [[9/7]] (−1.238{{c}}) |
| | |- |
| | | 7 (54/130) |
| | | 498.462 |
| | | [[4/3]] (+0.417{{c}}) |
| | |- |
| | | 13 (67/130) |
| | | 618.462 |
| | | [[10/7]] (+0.974{{c}}) |
| | |- |
| | | 9 (76/130) |
| | | 701.538 |
| | | [[3/2]] (−0.417{{c}}) |
| | |- |
| | | 7 (83/130) |
| | | 766.154 |
| | | [[14/9]] (+1.238{{c}}) |
| | |- |
| | | 13 (96/130) |
| | | 886.154 |
| | | [[5/3]] (+1.795{{c}}) |
| | |- |
| | | 5 (101/130) |
| | | 932.308 |
| | | [[12/7]] (−0.821{{c}}) |
| | |- |
| | | 13 (114/130) |
| | | 1052.308 |
| | | [[11/6]] (+2.945{{c}}) |
| | |- |
| | | 7 (121/130) |
| | | 1116.923 |
| | | [[21/11]] (−2.540{{c}}) |
| | |- |
| | | 9 (130/130) |
| | | 1200.000 |
| | | [[Octave]] (2/1, 0{{c}}) |
| | |} |
| | |
| | == Instruments == |
| | [[Lumatone mapping for 130edo]] |
| | |
| | == Music == |
| | {{Catrel|130edo tracks}} |
| | |
| | ; [[birdshite stalactite]] |
| | * [https://www.youtube.com/watch?v=q41n5XI6YA4 ''wazzock''] (2024) |
| | |
| | ; [[Sevish]] |
| | * [https://www.youtube.com/watch?v=30UQVYWnsDU Narrative Wars] |
| | |
| | ; [[Gene Ward Smith]] |
| | * [https://www.archive.org/details/TheParadiseOfCantor ''The Paradise of Cantor''] [https://www.archive.org/download/TheParadiseOfCantor/cantor.mp3 play] (2006) |
| | |
| | [[Category:Harry]] |
| | [[Category:Hemischis]] |
| | [[Category:Hemiwürschmidt]] |
| | [[Category:Listen]] |
| | [[Category:Sesquiquartififths]] |