87edo: Difference between revisions

General expansion. This edo is relevant in a lot of ways
Sintel (talk | contribs)
Approximation to JI: -zeta peak index
 
(87 intermediate revisions by 15 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{ED intro}}
== Theory ==
== Theory ==
87edo is solid as both a [[13-limit]] (or [[15-odd-limit]]) and as a [[5-limit]] system, and does well enough in any limit in between. It is the smallest edo that is [[distinctly consistent]] in the [[13-odd-limit]] [[tonality diamond]], the smallest edo that is [[purely consistent]]{{idiosyncratic}} in the [[15-odd-limit]] (maintains [[relative interval error]]s of no greater than 25% on all of the first 16 [[harmonic]]s of the [[harmonic series]]). It is also a [[zeta peak integer edo]]. Since {{nowrap|87 {{=}} 3 × 29}}, 87edo shares the same perfect fifth with [[29edo]].


The '''87 equal temperament''', often abbreviated '''87-tET''', '''87-EDO''', or '''87-ET''', is the scale derived by dividing the octave into 87 equally-sized steps, where each step represents a frequency ratio of 13.79 [[cent|cents]]. It is solid as both a [[13-limit]] (or [[15-odd-limit]]) and as a [[5-limit]] system, and of course does well enough in any limit in between. It represents the [[13-limit]] [[tonality diamond]] both uniquely and [[consistent|consistently]] (see [[87edo/13-limit detempering]]), and is the smallest equal temperament to do so.  
87edo also shows some potential in limits beyond 13. The next four prime harmonics [[17/1|17]], [[19/1|19]], [[23/1|23]], and [[29/1|29]] are all near-critically sharp, but the feature of it is that the overtones and undertones are distinct, and most intervals are usable as long as they do not combine with [[7/1|7]], which is flat. Actually, as a no-sevens system, it is consistent in the 33-odd-limit.  


87et also shows some potential in limits beyond 13. The next four prime harmonies 17, 19, 23 and 29 are all near-critically sharp, but the feature of it is that the overtones and undertones are distinct, and most intervals are usable as long as they don't combine with 7, which is flat. Actually, as a no-sevens system, it is consistent in the 33-odd-limit.  
It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].  


87et [[tempering out|tempers out]] 196/195, 325/324, 352/351, 364/363, 385/384, 441/440, 625/624, 676/675, and 1001/1000 as well as the 29-comma, <46 -29|, the misty comma, <26 -12 -3|, the kleisma, 15625/15552, 245/243, 1029/1024, 3136/3125, and 5120/5103.
87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00061{{c}} sharper than the 13-limit [[CWE tuning|CWE generator]]. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.01479{{c}} sharp of the 13-limit CWE generator.


87et is a particularly good tuning for [[Gamelismic clan #Rodan|rodan temperament]]. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit [[POTE tuning|POTE]] generator and is close to the [[11-limit]] POTE generator also. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.04455 cents sharp of the 7-limit POTE generator.
=== Prime harmonics ===
In higher limits it excels as a [[subgroup]] temperament, especially as an incomplete 71-limit temperament with [[128/127]] and [[129/128]] (the subharmonic and harmonic hemicomma-sized intervals, respectively) mapped accurately to a single step. Generalizing a single step of 87edo harmonically yields harmonics 115 through 138, which when detempered is the beginning of the construction of [[Ringer scale|Ringer]] 87, thus tempering [[S-expression|S116 through S137]] by patent val and corresponding to the gravity of the fact that 87edo is a circle of [[126/125]]'s, meaning ([[126/125]])<sup>87</sup> only very slightly exceeds the octave.
{{Harmonics in equal|87|columns=12}}
{{Harmonics in equal|87|columns=12|start=13|collapsed=1|title=Approximation of prime harmonics in 87edo (continued)}}
 
=== Subsets and supersets ===
87edo contains [[3edo]] and [[29edo]] as subset edos.


== Intervals ==
== Intervals ==
{| class="wikitable center-all right-2 left-3 left-4"
{| class="wikitable center-all right-2 left-3 left-4"
|-
! rowspan="2" | #
! rowspan="2" | #
! rowspan="2" | Cents
! rowspan="2" | Cents
! colspan="2" | Approximated Ratios
! colspan="2" | Approximated ratios
! colspan="2" rowspan="2" |[[Ups and Downs Notation]]
! colspan="2" rowspan="2" | [[Ups and downs notation]]
|-
|-
!13-Limit
! 13-limit
!31-Limit No-7s Extension
! 31-limit extension
|-
|-
|0
| 0
|0.000
| 0.0
|[[1/1]]
| [[1/1]]
|
|
|P1
| P1
|D
| D
|-
|-
|1
| 1
|13.793
| 13.8
|[[126/125]], [[100/99]], [[91/90]]
| [[91/90]], [[100/99]], [[126/125]]
|
|
|^1
| ^1
|^D
| ^D
|-
|-
|2
| 2
|27.586
| 27.6
|[[81/80]], [[64/63]], [[49/48]], [[55/54]], [[65/64]]
| ''[[49/48]]'', [[55/54]], [[64/63]], [[65/64]], [[81/80]]
|
|
|^^1
| ^^1
|^^D
| ^^D
|-
|-
|3
| 3
|41.379
| 41.4
|[[50/49]], [[45/44]], [[40/39]]
| [[40/39]], [[45/44]], [[50/49]]
|[[39/38]]
| [[39/38]]
|^<sup>3</sup>1
| ^<sup>3</sup>1
|^<sup>3</sup>D/v<sup>3</sup>Eb
| ^<sup>3</sup>D/v<sup>3</sup>Eb
|-
|-
|4
| 4
|55.172
| 55.2
|[[28/27]], [[36/35]], [[33/32]]
| ''[[28/27]]'', [[33/32]], [[36/35]]
|[[34/33]], [[30/29]], [[32/31]], [[31/30]]
| [[30/29]], [[31/30]], [[32/31]], [[34/33]]
|vvm2
| vvm2
|vvEb
| vvEb
|-
|-
|5
| 5
|68.966
| 69.0
|[[25/24]], [[27/26]], [[26/25]]
| [[25/24]], [[26/25]], [[27/26]]
|[[24/23]]
| [[24/23]]
|vm2
| vm2
|vEb
| vEb
|-
|-
|6
| 6
|82.759
| 82.8
|[[21/20]], [[22/21]]
| [[21/20]], [[22/21]]
|[[20/19]], [[23/22]]
| [[20/19]], [[23/22]]
|m2
| m2
|Eb
| Eb
|-
|-
|7
| 7
|96.552
| 96.6
|[[35/33]]
| [[35/33]]
|[[18/17]], [[19/18]]
| [[18/17]], [[19/18]]
|^m2
| ^m2
|^Eb
| ^Eb
|-
|-
|8
| 8
|110.345
| 110.3
|[[16/15]]
| [[16/15]]
|[[17/16]], [[33/31]], [[31/29]]
| [[17/16]], [[31/29]], [[33/31]]
|^^m2
| ^^m2
|^^Eb
| ^^Eb
|-
|-
|9
| 9
|124.138
| 124.1
|[[15/14]], [[14/13]]
| [[14/13]], [[15/14]]
|[[29/27]]
| [[29/27]]
|vv~2
| vv~2
|^<sup>3</sup>Eb
| ^<sup>3</sup>Eb
|-
|-
|10
| 10
|137.931
| 137.9
|[[13/12]], [[27/25]]
| [[13/12]], [[27/25]]
|[[25/23]]
| [[25/23]]
|v~2
| v~2
|^<sup>4</sup>Eb
| ^<sup>4</sup>Eb
|-
|-
|11
| 11
|151.724
| 151.7
|[[12/11]], [[35/32]]
| [[12/11]], [[35/32]]
|
|
|^~2
| ^~2
|v<sup>4</sup>E
| v<sup>4</sup>E
|-
|-
|12
| 12
|165.517
| 165.5
|[[11/10]]
| [[11/10]]
|[[32/29]], [[34/31]]
| [[32/29]], [[34/31]]
|^^~2
| ^^~2
|v<sup>3</sup>E
| v<sup>3</sup>E
|-
|-
|13
| 13
|179.310
| 179.3
|[[10/9]]
| [[10/9]]
|
|
|vvM2
| vvM2
|vvE
| vvE
|-
|-
|14
| 14
|193.103
| 193.1
|[[28/25]]
| [[28/25]]
|[[19/17]], [[29/26]]
| [[19/17]], [[29/26]]
|vM2
| vM2
|vE
| vE
|-
|-
|15
| 15
|206.897
| 206.9
|[[9/8]]
| [[9/8]]
|[[26/23]]
| [[26/23]]
|M2
| M2
|E
| E
|-
|-
|16
| 16
|220.690
| 220.7
|[[25/22]]
| [[25/22]]
|[[17/15]], [[33/29]]
| [[17/15]], [[33/29]]
|^M2
| ^M2
|^E
| ^E
|-
|-
|17
| 17
|234.483
| 234.5
|[[8/7]]
| [[8/7]]
|[[31/27]]
| [[31/27]]
|^^M2
| ^^M2
|^^E
| ^^E
|-
|-
|18
| 18
|248.276
| 248.3
|[[15/13]]
| [[15/13]]
|[[22/19]], [[38/33]], [[23/20]]
| [[22/19]], [[23/20]], [[38/33]]
|^<sup>3</sup>M2/v<sup>3</sup>m3
| ^<sup>3</sup>M2/v<sup>3</sup>m3
|^<sup>3</sup>E/v<sup>3</sup>F
| ^<sup>3</sup>E/v<sup>3</sup>F
|-
|-
|19
| 19
|262.089
| 262.1
|[[7/6]]
| [[7/6]]
|[[29/25]], [[36/31]]
| [[29/25]], [[36/31]]
|vvm3
| vvm3
|vvF
| vvF
|-
|-
|20
| 20
|275.862
| 275.9
|[[75/64]]
| [[75/64]]
|[[27/23]], [[34/29]]
| [[20/17]], [[27/23]], [[34/29]]
|vm3
| vm3
|vF
| vF
|-
|-
|21
| 21
|289.655
| 289.7
|[[32/27]], [[33/28]], [[13/11]]
| [[13/11]], [[32/27]], [[33/28]]
|
|
|m3
| m3
|F
| F
|-
|-
|22
| 22
|303.448
| 303.4
|[[25/21]]
| [[25/21]]
|[[19/16]], [[31/26]]
| [[19/16]], [[31/26]]
|^m3
| ^m3
|^F
| ^F
|-
|-
|23
| 23
|317.241
| 317.2
|[[6/5]]
| [[6/5]]
|
|
|^^m3
| ^^m3
|^^F
| ^^F
|-
|-
|24
| 24
|331.034
| 331.0
|[[40/33]]
| [[40/33]]
|[[23/19]], [[29/24]]
| [[23/19]], [[29/24]]
|vv~3
| vv~3
|^<sup>3</sup>F
| ^<sup>3</sup>F
|-
|-
|25
| 25
|344.828
| 344.8
|[[11/9]], [[39/32]]
| [[11/9]], [[39/32]]
|
|
|v~3
| v~3
|^<sup>4</sup>F
| ^<sup>4</sup>F
|-
|-
|26
| 26
|358.621
| 358.6
|[[27/22]], [[16/13]]
| [[16/13]], [[27/22]]
|[[38/31]]
| [[38/31]]
|^~3
| ^~3
|v<sup>4</sup>F#
| v<sup>4</sup>F#
|-
|-
|27
| 27
|372.414
| 372.4
|[[26/21]]
| [[26/21]]
|[[31/25]], [[36/29]]
| [[31/25]], [[36/29]]
|^^3
| ^^3
|v<sup>3</sup>F#
| v<sup>3</sup>F#
|-
|-
|28
| 28
|386.207
| 386.2
|[[5/4]]
| [[5/4]]
|
|
|vvM3
| vvM3
|vvF#
| vvF#
|-
|-
|29
| 29
|400.000
| 400.0
|[[44/35]]
| [[44/35]]
|[[34/27]], [[24/19]], [[29/23]]
| [[24/19]], [[29/23]], [[34/27]]
|vM3
| vM3
|vF#
| vF#
|-
|-
|30
| 30
|413.793
| 413.8
|[[81/64]], [[14/11]], [[33/26]]
| [[14/11]], [[33/26]], [[81/64]]
|[[19/15]]
| [[19/15]]
|M3
| M3
|F#
| F#
|-
|-
|31
| 31
|427.586
| 427.6
|[[32/25]]
| [[32/25]]
|[[23/18]]
| [[23/18]]
|^M3
| ^M3
|^F#
| ^F#
|-
|-
|32
| 32
|441.379
| 441.4
|[[9/7]], [[35/27]]
| [[9/7]], [[35/27]]
|[[22/17]], [[31/24]], [[40/31]]
| [[22/17]], [[31/24]], [[40/31]]
|^^M3
| ^^M3
|^^F#
| ^^F#
|-
|-
|33
| 33
|455.172
| 455.2
|[[13/10]]
| [[13/10]]
|[[30/23]]
| [[30/23]]
|^<sup>3</sup>M3/v<sup>3</sup>4
| ^<sup>3</sup>M3/v<sup>3</sup>4
|^<sup>3</sup>F#/v<sup>3</sup>G
| ^<sup>3</sup>F#/v<sup>3</sup>G
|-
|-
|34
| 34
|468.966
| 469.0
|[[21/16]]
| [[21/16]]
|[[17/13]], [[25/19]], [[38/29]]
| [[17/13]], [[25/19]], [[38/29]]
|vv4
| vv4
|vvG
| vvG
|-
|-
|35
| 35
|482.759
| 482.8
|[[33/25]]
| [[33/25]]
|
|
|v4
| v4
|vG
| vG
|-
|-
|36
| 36
|496.552
| 496.6
|[[4/3]]
| [[4/3]]
|
|
|P4
| P4
|G
| G
|-
|-
|37
| 37
|510.345
| 510.3
|[[35/26]]
| [[35/26]]
|[[31/23]]
| [[31/23]]
|^4
| ^4
|^G
| ^G
|-
|-
|38
| 38
|524.138
| 524.1
|[[27/20]]
| [[27/20]]
|[[23/17]]
| [[23/17]]
|^^4
| ^^4
|^^G
| ^^G
|-
|-
|39
| 39
|537.931
| 537.9
|[[15/11]]
| [[15/11]]
|[[26/19]], [[34/25]]
| [[26/19]], [[34/25]]
|^<sup>3</sup>4
| ^<sup>3</sup>4
|^<sup>3</sup>G
| ^<sup>3</sup>G
|-
|-
|40
| 40
|551.724
| 551.7
|[[11/8]], [[48/35]]
| [[11/8]], [[48/35]]
|
|
|^<sup>4</sup>4
| ^<sup>4</sup>4
|^<sup>4</sup>G
| ^<sup>4</sup>G
|-
| 41
| 565.5
| [[18/13]]
| [[32/23]]
| v<sup>4</sup>A4, vd5
| v<sup>4</sup>G#, vAb
|-
|-
|41
| 42
|565.517
| 579.3
|[[18/13]]
| [[7/5]]
|[[32/23]]
| [[46/33]]
|v<sup>4</sup>A4, vd5
| v<sup>3</sup>A4, d5
|v<sup>4</sup>G#, vAb
| v<sup>3</sup>G#, Ab
|-
|-
|42
| 43
|579.310
| 593.1
|[[7/5]]
| [[45/32]]
|[[46/33]]
| [[24/17]], [[31/22]], [[38/27]]
|v<sup>3</sup>A4, d5
| vvA4, ^d5
|v<sup>3</sup>G#, Ab
| vvG#, ^Ab
|-
|-
|43
|
|593.103
|
|[[45/32]]
|
|[[24/17]], [[38/27]], [[31/22]]
|
|vvA4, ^d5
|
|vvG#, ^Ab
|
|}
|}


=== Selected just intervals by error ===
== Approximation to JI ==
{| class="wikitable center-all"
=== Interval mappings ===
! colspan="2" |
{{Q-odd-limit intervals|87}}
!prime 2
 
!prime 3
== Regular temperament properties ==
!prime 5
{| class="wikitable center-4 center-5 center-6"
!prime 7
|-
!prime 11
! rowspan="2" | [[Subgroup]]
!prime 13
! rowspan="2" | [[Comma list]]
!prime 17
! rowspan="2" | [[Mapping]]
!prime 19
! rowspan="2" | Optimal<br>8ve stretch (¢)
!prime 23
! colspan="2" | Tuning error
!prime 29
|-
!prime 31
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5
| 15625/15552, 67108864/66430125
| {{mapping| 87 138 202 }}
| −0.299
| 0.455
| 3.30
|-
| 2.3.5.7
| 245/243, 1029/1024, 3136/3125
| {{mapping| 87 138 202 244 }}
| +0.070
| 0.752
| 5.45
|-
| 2.3.5.7.11
| 245/243, 385/384, 441/440, 3136/3125
| {{mapping| 87 138 202 244 301 }}
| +0.033
| 0.676
| 4.90
|-
| 2.3.5.7.11.13
| 196/195, 245/243, 352/351, 364/363, 625/624
| {{mapping| 87 138 202 244 301 322 }}
| −0.011
| 0.625
| 4.53
|-
|-
! rowspan="2" |Error
| 2.3.5.7.11.13.17
!absolute (¢)
| 154/153, 196/195, 245/243, 273/272, 364/363, 375/374
|0.00
| {{mapping| 87 138 202 244 301 322 356 }}
| +1.49
| −0.198
| -0.11
| 0.738
| -3.31
| 5.35
| +0.41
| +0.85
| +5.39
| +5.94
| +6.21
| +4.91
| -0.21
|-
|-
!relative (%)
| 2.3.5.7.11.13.17.19
|0.0
| 154/153, 196/195, 210/209, 245/243, 273/272, 286/285, 364/363
| +10.8
| {{mapping| 87 138 202 244 301 322 356 370 }}
| -0.8
| −0.348
| -24.0
| 0.796
| +2.9
| 5.77
| +6.2
| +39.1
| +43.0
| +45.0
| +35.6
| -1.5
|}
|}


== 13-limit detempering of 87et ==
=== 13-limit detempering ===
 
{{Main|87edo/13-limit detempering}}
''See also: [[Detempering]]''
 
''Main article: [[87edo/13-limit detempering]]''
 
== Rank two temperaments ==


{| class="wikitable center-all right-3 left-5"
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods <br> per <br> octave
! Periods<br>per 8ve
! Generator
! Generator*
! Cents
! Cents*
! Associated <br> ratio
! Associated<br>ratio*
! Temperament
! Temperament
|-
| 1
| 2\87
| 27.586
| 64/63
| [[Arch]]
|-
|-
| 1
| 1
| 4\87
| 4\87
| 55.172
| 55.172
| [[33/32]]
| 33/32
| [[Sensa]]
| [[Escapade]] / [[escaped]] / [[alphaquarter]]
|-
|-
| 1
| 1
| 10\87
| 10\87
| 137.931
| 137.931
| [[13/12]]
| 13/12
| [[Quartemka]]
| [[Quartemka]]
|-
|-
Line 402: Line 439:
| 14\87
| 14\87
| 193.103
| 193.103
| [[28/25]]
| 28/25
| [[Luna]] / [[Hemithirds]]
| [[Luna]] / [[didacus]] / [[hemithirds]]
|-
|-
| 1
| 1
| 17\87
| 17\87
| 234.483
| 234.483
| [[8/7]]
| 8/7
| [[Rodan]]
| [[Slendric]] / [[rodan]]
|-
|-
| 1
| 1
| 23\87
| 23\87
| 317.241
| 317.241
| [[6/5]]
| 6/5
| [[Hanson]] / [[Countercata]] / [[Metakleismic]]
| [[Hanson]] / [[countercata]] / [[metakleismic]]
|-
| 1
| 26\87
| 358.621
| 16/13
| [[Restles]]
|-
|-
| 1
| 1
| 32\87
| 32\87
| 441.379
| 441.379
| [[9/7]]
| 9/7
| [[Clyde]]
| [[Clyde]]
|-
|-
Line 426: Line 469:
| 38\87
| 38\87
| 524.138
| 524.138
| [[65/48]]
| 65/48
| [[Widefourth]]
| [[Widefourth]]
|-
|-
Line 432: Line 475:
| 40\87
| 40\87
| 551.724
| 551.724
| [[11/8]]
| 11/8
| [[Emkay]]
| [[Emka]] / [[emkay]]
|-
|-
| 3
| 3
| 23\87
| 18\87<br>(11\87)
| 317.241
| 248.276<br>(151.724)
| [[6/5]]
| 15/13<br>(12/11)
| [[Hemimist]]
|-
| 3
| 23\87<br>(6\87)
| 317.241<br>(82.759)
| 6/5<br>(21/20)
| [[Tritikleismic]]
| [[Tritikleismic]]
|-
| 3
| 28\87<br>(1\87)
| 386.207<br>(13.793)
| 5/4<br>(126/125)
| [[Mutt]]
|-
| 3
| 36\87<br>(7\87)
| 496.552<br>(96.552)
| 4/3<br>(18/17~19/18)
| [[Misty]]
|-
|-
| 29
| 29
| 28\87
| 28\87<br>(1\87)
| 386.207
| 386.207<br>(13.793)
| [[5/4]]
| 5/4<br>(121/120)
| [[Mystery]]
| [[Mystery]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


87 can serve as a MOS in these:
87 can serve as a mos in these:


* [[M&N temperaments|270&amp;87]] &lt;&lt;24 -9 -66 12 27 ... ||
* [[Avicenna (temperament)|Avicenna]] ([[Breed|87 & 270]])
* [[M&N temperaments|494&amp;87]] &lt;&lt;51 -1 -133 11 32 ... ||
* [[Breed|87 & 494]]  


== Scales ==
== Scales ==
=== Mos scales ===
{{main|List of MOS scales in 87edo}}


=== Harmonic Scale ===
=== Harmonic scales ===
87edo accurately approximates the mode 8 of [[harmonic series]], and the only intervals not distinct are 14/13 and 15/14. It does mode 16 fairly decent, with the only anomaly at 28/27 (4 steps) and 29/28 (5 steps).  
87edo accurately approximates the mode 8 of [[harmonic series]], and the only interval pair not distinct is 14/13 and 15/14. It can also do mode 12 decently.  


==== Mode 8 ====
==== (Mode 8) ====
{| class="wikitable center-all"
{| class="wikitable center-all"
|Overtones
|8
|9
|10
|11
|12
|13
|14
|15
|16
|-
|-
|JI Ratios
! Overtones
|1/1
| 8
|9/8
| 9
|5/4
| 10
|11/8
| 11
|3/2
| 12
|13/8
| 13
|7/4
| 14
|15/8
| 15
|2/1
| 16
|-
|-
|… in cents
! JI Ratios
|0.0
| 1/1
|203.9
| 9/8
|386.3
| 5/4
|551.3
| 11/8
|702.0
| 3/2
|840.5
| 13/8
|968.8
| 7/4
|1088.3
| 15/8
|1200.0
| 2/1
|-
|-
|Degrees in 87edo
! … in cents
|0
| 0.0
|15
| 203.9
|28
| 386.3
|40
| 551.3
|51
| 702.0
|61
| 840.5
|70
| 968.8
|79
| 1088.3
|87
| 1200.0
|-
|-
|… in cents
! Degrees in 87edo
|0.0
| 0
|206.9
| 15
|386.2
| 28
|551.7
| 40
|703.5
| 51
|841.4
| 61
|965.5
| 70
|1089.7
| 79
|1200.0
| 87
|-
! … in cents
| 0.0
| 206.9
| 386.2
| 551.7
| 703.5
| 841.4
| 965.5
| 1089.7
| 1200.0
|}
|}
* The scale in adjacent steps is 15, 13, 12, 11, 10, 9, 9, 8.


==== Mode 16 ====
The scale in adjacent steps is 15, 13, 12, 11, 10, 9, 9, 8.
 
==== (Mode 12) ====
{| class="wikitable center-all"
{| class="wikitable center-all"
|Odd overtones
|17
|19
|21
|23
|25
|27
|29
|31
|-
|-
|JI Ratios
! Overtones
|17/16
| 12
|19/16
| 13
|21/16
| 14
|23/16
| 15
|25/16
| 16
|27/16
| 17
|29/16
| 18
|31/16
| 19
| 20
| 21
| 22
| 23
| 24
|-
|-
|… in cents
! JI Ratios
|105.0
| 1/1
|297.5
| 13/12
|470.8
| 7/6
|628.3
| 5/4
|772.6
| 4/3
|905.9
| 17/12
|1029.6
| 3/2
|1145.0
| 19/12
| 5/3
| 7/4
| 11/6
| 23/12
| 2/1
|-
|-
|Degrees in 87edo
! … in cents
|8
| 0.0
|22
| 138.6
|34
| 266.9
|46
| 386.3
|56
| 498.0
|66
| 603.0
|75
| 702.0
|83
| 795.6
| 884.4
| 968.8
| 1049.4
| 1126.3
| 1200.0
|-
|-
|… in cents
! Degrees in 87edo
|110.3
| 0
|303.4
| 10
|469.0
| 19
|634.5
| 28
|772.4
| 36
|910.3
| 44
|1034.5
| 51
|1144.8
| 58
| 64
| 70
| 76
| 82
| 87
|-
! … in cents
| 0.0
| 137.9
| 262.1
| 386.2
| 496.6
| 606.9
| 703.4
| 800.0
| 882.8
| 965.5
| 1048.3
| 1131.0
| 1200.0
|}
|}
* The scale in adjacent steps is 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 4, 4, 4.


* 25 and 31 are close matches.  
The scale in adjacent steps is 10, 9, 9, 8, 7, 7, 6, 6, 6, 6, 5.
 
13, 15, 16, 18, 20, and 22 are close matches.
 
14 and 21 are flat; 17, 19, and 23 are sharp. Still decent all things considered.


* 21 is a little bit flat, but still decent.
=== Other scales ===
* [[Sequar5m]]


* The others (17, 19, 23, 27 and 29) are extremely sharp, but the intervals between them are close.
== Instruments ==
* [[Lumatone mapping for 87edo]]
* [[Skip fretting system 87 2 17]]


== Music ==
== Music ==
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/ecxELXmkYAs ''microtonal improvisation in 87edo''] (2025)


* [http://www.archive.org/details/Pianodactyl Pianodactyl] [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] by [[Gene Ward Smith]]
; [[Gene Ward Smith]]
* ''Pianodactyl'' (archived 2010) – [https://soundcloud.com/genewardsmith/pianodactyl SoundCloud] | [http://www.archive.org/details/Pianodactyl detail] | [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] – rodan[26] in 87edo tuning


[[Category:theory]]
[[Category:Zeta|##]] <!-- 2-digit number -->
[[Category:edo]]
[[Category:Listen]]
[[Category:87edo]]
[[Category:Clyde]]
[[Category:listen]]
[[Category:Countercata]]
[[Category:clyde]]
[[Category:Hemithirds]]
[[Category:countercata]]
[[Category:Mystery]]
[[Category:hemithirds]]
[[Category:Rodan]]
[[Category:mystery]]
[[Category:Tritikleismic]]
[[Category:rodan]]
[[Category:tritikleismic]]