12276edo: Difference between revisions

Wikispaces>hearneg
**Imported revision 614809973 - Original comment: **
m Cleanup & + category
 
(18 intermediate revisions by 12 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:hearneg|hearneg]] and made on <tt>2017-06-17 05:15:55 UTC</tt>.<br>
: The original revision id was <tt>614809973</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 12276 division divides the octave into equal steps of size 0.097752 cents. This creates a unit known as the **prima,** useful for measurement of 11-limit intervals and commas. The Pythagorean comma is represented by 240 prima, and the syntonic comma by 220. A prima is almost exactly three **tuning units**.


12276 is a strong 11-limit system, with a lower 11-limit relative error than any division aside from [[6691edo|6691]]. It factors as 12276 = 2^2 * 3^2 * 11 * 31, and among its divisors are [[12edo|12]], [[22edo|22]], [[31edo|31]], [[99edo|99]] and [[198edo|198]]. 12276 tempers out the atom, so that the Pythagorean and syntonic commas an be approximated by 12 and 11 schismas respectively. </pre></div>
12276 is a strong 11-limit system, with a lower 11-limit relative error than any lower division aside from [[6691edo|6691]]. 12276 tempers out the [[Kirnberger's atom|atom]] and the [[septimal ruthenia]], so that the Pythagorean and syntonic commas an be approximated by 12 and 11 schismas, 240 and 220 steps respectively, and septimal comma is represented by 1/44 of the octave, 279 steps.
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;12276edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 12276 division divides the octave into equal steps of size 0.097752 cents. This creates a unit known as the &lt;strong&gt;prima,&lt;/strong&gt; useful for measurement of 11-limit intervals and commas. The Pythagorean comma is represented by 240 prima, and the syntonic comma by 220. A prima is almost exactly three &lt;strong&gt;tuning units&lt;/strong&gt;. &lt;br /&gt;
=== Prime harmonics ===
&lt;br /&gt;
{{Harmonics in equal|12276|columns=11}}
12276 is a strong 11-limit system, with a lower 11-limit relative error than any division aside from &lt;a class="wiki_link" href="/6691edo"&gt;6691&lt;/a&gt;. It factors as 12276 = 2^2 * 3^2 * 11 * 31, and among its divisors are &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99&lt;/a&gt; and &lt;a class="wiki_link" href="/198edo"&gt;198&lt;/a&gt;. 12276 tempers out the atom, so that the Pythagorean and syntonic commas an be approximated by 12 and 11 schismas respectively.&lt;/body&gt;&lt;/html&gt;</pre></div>
 
=== Subsets and supersets ===
12276edo factors into primes as {{nowrap| 2<sup>2</sup> × 3<sup>2</sup> × 11 × 31 }}, and among its divisors are [[12edo|12]], [[22edo|22]], [[31edo|31]], [[99edo|99]] and [[198edo|198]]. This creates a unit known as the ''[[prima]]'', useful for measurement of 11-limit intervals and commas. A prima is almost exactly three [[tuning unit]]s.  
 
[[Category:3-limit record edos|#####]] <!-- 5-digit number -->