|
|
(29 intermediate revisions by 14 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-01-26 13:37:06 UTC</tt>.<br>
| |
| : The original revision id was <tt>485361746</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 121 equal temperament divides the octave into 121 equal steps of 9.917 cents each. It has a distinctly sharp tendency, in that the odd primes from 3 to 19 all have sharp tunings. It tempers out 15625/15552 in the 5-limit; 4000/3969, 6144/6125, 10976/10935 in the 7-limit; 540/539, 896/891 and 1375/1372 in the 11-limit; 325/324, 352/351, 364/363 and 625/624 in the 13-limit; 256/255, 375/374 and 442/441 in the 17-limit; 190/189 and 361/360 in the 19-limit. It also serves as the [[optimal patent val]] for 13-limit [[Mirkwai clan|grendel temperament]]. It is [[consistent]] through to the 19 odd limit and uniquely consistent to the 15 odd limit.
| |
|
| |
|
| Because it tempers out 540/539 it allows [[swetismic chords]], because it tempers out 325/324 it allows [[marveltwin triad|marveltwin chords]], because it tempers out 640/637 it allows [[huntmic chords]], because it tempers out 352/351 it allows [[minthmic chords]], because it tempers out 364/363 it allows [[gentle chords]], because it tempers out 676/675 it allows [[island tetrad|island chords]] and because it tempers out 1575/1573 it allows the [[nicolic tetrad]]. That makes for a very flexible system, and since this suite of commas defines 13-limit 121et, it is a system only associated with 121.
| | == Theory == |
| | 121edo has a distinctly sharp tendency, in that the odd [[harmonic]]s from 3 to 19 all have sharp tunings. It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]) in the [[5-limit]]; [[4000/3969]], [[6144/6125]], [[10976/10935]] in the [[7-limit]]; [[540/539]], [[896/891]] and [[1375/1372]] in the 11-limit; [[325/324]], [[352/351]], [[364/363]] and [[625/624]] in the [[13-limit]]; [[256/255]], [[375/374]] and [[442/441]] in the [[17-limit]]; [[190/189]] and [[361/360]] in the [[19-limit]]. It also serves as the [[optimal patent val]] for 13-limit [[grendel]] temperament. It is [[consistent]] through to the [[19-odd-limit]] and uniquely consistent to the [[15-odd-limit]]. |
|
| |
|
| =13-limit detempering of 121et=
| | Because it tempers out 540/539 it allows [[swetismic chords]], because it tempers out 325/324 it allows [[marveltwin chords]], because it tempers out 640/637 it allows [[huntmic chords]], because it tempers out 352/351 it allows [[major minthmic chords]], because it tempers out 364/363 it allows [[minor minthmic chords]], because it tempers out 676/675 it allows [[island chords]] and because it tempers out 1575/1573 it allows [[nicolic chords]]. That makes for a very flexible system, and since this suite of commas defines 13-limit 121et, it is a system only associated with 121. |
| [100/99, 64/63, 50/49, 40/39, 36/35, 28/27, 25/24, 22/21, 21/20, 35/33, 16/15, 15/14, 14/13, 13/12, 12/11, 35/32, 11/10, 10/9, 39/35, 28/25, 9/8, 25/22, 8/7, 55/48, 15/13, 64/55, 7/6, 75/64, 13/11, 25/21, 105/88, 6/5, 63/52, 40/33, 11/9, 16/13, 26/21, 56/45, 5/4, 44/35, 63/50, 14/11, 32/25, 9/7, 35/27, 13/10, 55/42, 21/16, 33/25, 4/3, 75/56, 35/26, 27/20, 15/11, 48/35, 11/8, 18/13, 39/28, 7/5, 45/32, 64/45, 10/7, 56/39, 13/9, 16/11, 35/24, 22/15, 40/27, 49/33, 112/75, 3/2, 50/33, 32/21, 55/36, 20/13, 54/35, 14/9, 25/16, 11/7, 63/40, 35/22, 8/5, 45/28, 21/13, 13/8, 18/11, 33/20, 104/63, 5/3, 117/70, 42/25, 22/13, 75/44, 12/7, 55/32, 26/15, 96/55, 7/4, 44/25, 16/9, 25/14, 70/39, 9/5, 20/11, 64/35, 11/6, 24/13, 13/7, 28/15, 15/8, 49/26, 40/21, 21/11, 25/13, 27/14, 35/18, 39/20, 49/25, 63/32, 99/50, 2]</pre></div> | | |
| <h4>Original HTML content:</h4> | | === Odd harmonics === |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>121edo</title></head><body>The 121 equal temperament divides the octave into 121 equal steps of 9.917 cents each. It has a distinctly sharp tendency, in that the odd primes from 3 to 19 all have sharp tunings. It tempers out 15625/15552 in the 5-limit; 4000/3969, 6144/6125, 10976/10935 in the 7-limit; 540/539, 896/891 and 1375/1372 in the 11-limit; 325/324, 352/351, 364/363 and 625/624 in the 13-limit; 256/255, 375/374 and 442/441 in the 17-limit; 190/189 and 361/360 in the 19-limit. It also serves as the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 13-limit <a class="wiki_link" href="/Mirkwai%20clan">grendel temperament</a>. It is <a class="wiki_link" href="/consistent">consistent</a> through to the 19 odd limit and uniquely consistent to the 15 odd limit.<br /> | | {{Harmonics in equal|121}} |
| <br />
| | |
| Because it tempers out 540/539 it allows <a class="wiki_link" href="/swetismic%20chords">swetismic chords</a>, because it tempers out 325/324 it allows <a class="wiki_link" href="/marveltwin%20triad">marveltwin chords</a>, because it tempers out 640/637 it allows <a class="wiki_link" href="/huntmic%20chords">huntmic chords</a>, because it tempers out 352/351 it allows <a class="wiki_link" href="/minthmic%20chords">minthmic chords</a>, because it tempers out 364/363 it allows <a class="wiki_link" href="/gentle%20chords">gentle chords</a>, because it tempers out 676/675 it allows <a class="wiki_link" href="/island%20tetrad">island chords</a> and because it tempers out 1575/1573 it allows the <a class="wiki_link" href="/nicolic%20tetrad">nicolic tetrad</a>. That makes for a very flexible system, and since this suite of commas defines 13-limit 121et, it is a system only associated with 121.<br />
| | === Subsets and supersets === |
| <br />
| | Since 121 factors into 11<sup>2</sup>, 121edo contains [[11edo]] as its only nontrivial subset. |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13-limit detempering of 121et"></a><!-- ws:end:WikiTextHeadingRule:0 -->13-limit detempering of 121et</h1>
| | |
| [100/99, 64/63, 50/49, 40/39, 36/35, 28/27, 25/24, 22/21, 21/20, 35/33, 16/15, 15/14, 14/13, 13/12, 12/11, 35/32, 11/10, 10/9, 39/35, 28/25, 9/8, 25/22, 8/7, 55/48, 15/13, 64/55, 7/6, 75/64, 13/11, 25/21, 105/88, 6/5, 63/52, 40/33, 11/9, 16/13, 26/21, 56/45, 5/4, 44/35, 63/50, 14/11, 32/25, 9/7, 35/27, 13/10, 55/42, 21/16, 33/25, 4/3, 75/56, 35/26, 27/20, 15/11, 48/35, 11/8, 18/13, 39/28, 7/5, 45/32, 64/45, 10/7, 56/39, 13/9, 16/11, 35/24, 22/15, 40/27, 49/33, 112/75, 3/2, 50/33, 32/21, 55/36, 20/13, 54/35, 14/9, 25/16, 11/7, 63/40, 35/22, 8/5, 45/28, 21/13, 13/8, 18/11, 33/20, 104/63, 5/3, 117/70, 42/25, 22/13, 75/44, 12/7, 55/32, 26/15, 96/55, 7/4, 44/25, 16/9, 25/14, 70/39, 9/5, 20/11, 64/35, 11/6, 24/13, 13/7, 28/15, 15/8, 49/26, 40/21, 21/11, 25/13, 27/14, 35/18, 39/20, 49/25, 63/32, 99/50, 2]</body></html></pre></div>
| | == Regular temperament properties == |
| | {| class="wikitable center-4 center-5 center-6" |
| | |- |
| | ! rowspan="2" | [[Subgroup]] |
| | ! rowspan="2" | [[Comma list]] |
| | ! rowspan="2" | [[Mapping]] |
| | ! rowspan="2" | Optimal<br />8ve stretch (¢) |
| | ! colspan="2" | Tuning error |
| | |- |
| | ! [[TE error|Absolute]] (¢) |
| | ! [[TE simple badness|Relative]] (%) |
| | |- |
| | | 2.3 |
| | | {{monzo| 192 -121 }} |
| | | {{mapping| 121 192 }} |
| | | −0.687 |
| | | 0.687 |
| | | 6.93 |
| | |- |
| | | 2.3.5 |
| | | 15625/15552, {{monzo| 31 -21 1 }} |
| | | {{mapping| 121 192 281 }} |
| | | −0.524 |
| | | 0.606 |
| | | 6.11 |
| | |- |
| | | 2.3.5.7 |
| | | 4000/3969, 6144/6125, 10976/10935 |
| | | {{mapping| 121 192 281 340 }} |
| | | −0.667 |
| | | 0.580 |
| | | 5.85 |
| | |- |
| | | 2.3.5.7.11 |
| | | 540/539, 896/891, 1375/1372, 4375/4356 |
| | | {{mapping| 121 192 281 340 419 }} |
| | | −0.768 |
| | | 0.556 |
| | | 5.61 |
| | |- |
| | | 2.3.5.7.11.13 |
| | | 325/324, 352/351, 364/363, 540/539, 625/624 |
| | | {{mapping| 121 192 281 340 419 448 }} |
| | | −0.750 |
| | | 0.510 |
| | | 5.14 |
| | |- |
| | | 2.3.5.7.11.13.17 |
| | | 256/255, 325/324, 352/351, 364/363, 375/374, 442/441 |
| | | {{mapping| 121 192 281 340 419 448 495 }} |
| | | −0.787 |
| | | 0.480 |
| | | 4.85 |
| | |- |
| | | 2.3.5.7.11.13.17.19 |
| | | 190/189, 256/255, 325/324, 352/351, 361/360, 364/363, 375/374 |
| | | {{mapping| 121 192 281 340 419 448 495 514 }} |
| | | −0.689 |
| | | 0.519 |
| | | 5.23 |
| | |} |
| | * 121et (121i val) has lower absolute errors than any previous equal temperaments in the 13-, 17-, 19-, and 23-limit, beating [[111edo|111]] before being superseded by [[130edo|130]] in all those limits except for the 17-limit, where it is superseded by [[140edo|140]]. |
| | |
| | === Rank-2 temperaments === |
| | {| class="wikitable center-all left-5" |
| | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator |
| | |- |
| | ! Periods<br />per 8ve |
| | ! Generator* |
| | ! Cents* |
| | ! Associated<br />ratio* |
| | ! Temperament |
| | |- |
| | | 1 |
| | | 9\121 |
| | | 89.26 |
| | | 21/20 |
| | | [[Slithy]] |
| | |- |
| | | 1 |
| | | 10\121 |
| | | 99.17 |
| | | 18/17 |
| | | [[Quintupole]] |
| | |- |
| | | 1 |
| | | 12\121 |
| | | 119.01 |
| | | 15/14 |
| | | [[Subsedia]] |
| | |- |
| | | 1 |
| | | 13\121 |
| | | 128.93 |
| | | 14/13 |
| | | [[Tertiathirds]] |
| | |- |
| | | 1 |
| | | 16\121 |
| | | 158.68 |
| | | 35/32 |
| | | [[Hemikleismic]] |
| | |- |
| | | 1 |
| | | 27\121 |
| | | 267.77 |
| | | 7/6 |
| | | [[Hemimaquila]] |
| | |- |
| | | 1 |
| | | 32\121 |
| | | 317.36 |
| | | 6/5 |
| | | [[Metakleismic]] |
| | |- |
| | | 1 |
| | | 39\121 |
| | | 386.78 |
| | | 5/4 |
| | | [[Grendel]] |
| | |- |
| | | 1 |
| | | 40\121 |
| | | 396.69 |
| | | 44/35 |
| | | [[Squarschmidt]] |
| | |- |
| | | 1 |
| | | 42\121 |
| | | 416.53 |
| | | 14/11 |
| | | [[Sqrtphi]] |
| | |- |
| | | 1 |
| | | 46\121 |
| | | 456.20 |
| | | 125/96 |
| | | [[Qak]] |
| | |- |
| | | 1 |
| | | 47\121 |
| | | 466.12 |
| | | 55/42 |
| | | [[Hemiseptisix]] |
| | |- |
| | | 1 |
| | | 48\121 |
| | | 476.03 |
| | | 21/16 |
| | | [[Subfourth]] |
| | |- |
| | | 1 |
| | | 50\121 |
| | | 495.87 |
| | | 4/3 |
| | | [[Leapday]] / [[polypyth]] |
| | |- |
| | | 1 |
| | | 51\121 |
| | | 505.79 |
| | | 75/56 |
| | | [[Marfifths]] / marf / diatessic |
| | |- |
| | | 1 |
| | | 54\121 |
| | | 535.54 |
| | | 512/375 |
| | | [[Maquila]] |
| | |- |
| | | 1 |
| | | 59\121 |
| | | 585.12 |
| | | 7/5 |
| | | [[Pluto]] |
| | |- |
| | | 11 |
| | | 50\121<br />(5\121) |
| | | 495.87<br />(49.59) |
| | | 4/3<br />(36/35) |
| | | [[Hendecatonic]] |
| | |} |
| | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct |
| | |
| | == 13-limit detempering of 121et == |
| | {{See also| Detempering }} |
| | |
| | [100/99, 64/63, 50/49, 40/39, 36/35, 28/27, 25/24, 22/21, 21/20, 35/33, 16/15, 15/14, 14/13, 13/12, 12/11, 35/32, 11/10, 10/9, 39/35, 28/25, 9/8, 25/22, 8/7, 55/48, 15/13, 64/55, 7/6, 75/64, 13/11, 25/21, 105/88, 6/5, 63/52, 40/33, 11/9, 16/13, 26/21, 56/45, 5/4, 44/35, 63/50, 14/11, 32/25, 9/7, 35/27, 13/10, 55/42, 21/16, 33/25, 4/3, 75/56, 35/26, 27/20, 15/11, 48/35, 11/8, 18/13, 39/28, 7/5, 45/32, 64/45, 10/7, 56/39, 13/9, 16/11, 35/24, 22/15, 40/27, 49/33, 112/75, 3/2, 50/33, 32/21, 55/36, 20/13, 54/35, 14/9, 25/16, 11/7, 63/40, 35/22, 8/5, 45/28, 21/13, 13/8, 18/11, 33/20, 104/63, 5/3, 117/70, 42/25, 22/13, 75/44, 12/7, 55/32, 26/15, 96/55, 7/4, 44/25, 16/9, 25/14, 70/39, 9/5, 20/11, 64/35, 11/6, 24/13, 13/7, 28/15, 15/8, 49/26, 40/21, 21/11, 25/13, 27/14, 35/18, 39/20, 49/25, 63/32, 99/50, 2] |
| | |
| | == Miscellany == |
| | Since 121 is part of the Fibonacci sequence beginning with 5 and 12, 121edo closely approximates [[peppermint]] temperament. This makes it suitable for [[neo-Gothic]] tunings. |
| | |
| | [[Category:Grendel]] |
| | [[Category:Quintupole]] |