Ragismic microtemperaments: Difference between revisions

Xenllium (talk | contribs)
Tags: Mobile edit Mobile web edit
 
(231 intermediate revisions by 20 users not shown)
Line 1: Line 1:
__FORCETOC__
{{Technical data page}}
The ragisma is 4375/4374 with a [[monzo]] of |-1 -7 4 1>, the smallest 7-limit [[superparticular]] ratio. Since (10/9)^4=4375/4374 * 32/21, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 * (27/25)^2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
This is a collection of [[rank-2 temperament|rank-2]] [[regular temperament|temperaments]] [[tempering out]] the ragisma, [[4375/4374]] ({{monzo| -1 -7 4 1 }}). The ragisma is the smallest [[7-limit]] [[superparticular ratio]].  


=Ennealimmal=
Since {{nowrap|(10/9)<sup>4</sup> {{=}} (4375/4374)⋅(32/21) }}, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have {{nowrap| 7/6 {{=}} (4375/4374)⋅(27/25)<sup>2</sup> }}, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
Ennealimmal temperament tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma comma, |1 -27 18&gt;, which leads to the identification of (27/25)^9 with the octave, and gives ennealimmal a period of 1/9 octave. While 27/25 is a 5-limit interval, two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit. Its wedgie is &lt;&lt;18 27 18 1 -22 -34||.


Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40 and 60/49, all of which have their own interesting advantages. Possible tunings are 441, 612, or 3600 equal, though its hardly likely anyone could tell the difference.
Microtemperaments considered below, sorted by [[badness]], are supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, crazy, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are:
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Crepuscular]]'' (+50/49) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]]
* [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]]
* [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]]
* ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]]
* ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]]
* [[Ennealimmal]] (+2401/2400) → [[Septiennealimmal clan #Ennealimmal|Septiennealimmal clan]]
* ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]]
* [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]]
* [[Pontiac]] (+32805/32768) → [[Schismatic family #Pontiac|Schismatic family]]
* ''[[Zarvo]]'' (+33075/32768) → [[Gravity family #Zarvo|Gravity family]]
* ''[[Whirrschmidt]]'' (+393216/390625) → [[Würschmidt family #Whirrschmidt|Würschmidt family]]
* ''[[Mitonic]]'' (+2100875/2097152) → [[Minortonic family #Mitonic|Minortonic family]]
* ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Alphatrillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Alphatricot family #Trillium|Alphatricot family]]
* ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]]
* ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]]
* ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments #Chlorine|17th-octave temperaments]]
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]]
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]]


If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example.) In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.
== Supermajor ==
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos.


[[Tuning_Ranges_of_Regular_Temperaments|valid range]]: [26.667, 66.667] (45bcd to 18bcd)
[[Subgroup]]: 2.3.5.7


nice range: [48.920, 49.179]
[[Comma list]]: 4375/4374, 52734375/52706752


strict range: [48.920, 49.179]
{{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }}


Commas: 2401/2400, 4375/4374
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082


POTE generators: 36/35: 49.0205; 10/9: 182.354; 6/5: 315.687; 49/40: 350.980
{{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }}


Map: [&lt;9 1 1 2|, &lt;0 2 3 2|]
[[Badness]]: 0.010836


Wedgie: &lt;&lt;18 27 18 1 -22 -34||
=== Semisupermajor ===
Subgroup: 2.3.5.7.11


EDOs: [[27edo|27]], [[45edo|45]], [[72edo|72]], [[99edo|99]], [[171edo|171]], [[270edo|270]], [[441edo|441]], [[612edo|612]], [[3600edo|3600]]
Comma list: 3025/3024, 4375/4374, 35156250/35153041


Badness: 0.00361
Mapping: {{mapping| 2 30 38 60 41 | 0 -37 -46 -75 -47 }}


==Hemiennealimmal==
Optimal tuning (POTE): ~99/70 = 1\2, ~9/7 = 435.082
Commas: 2401/2400, 4375/4374, 3025/3024


valid range: [13.333, 22.222] (90bcd, 54c)
{{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}


nice range: [17.304, 17.985]
Badness: 0.012773


strict range:  [17.304, 17.985]
== Enneadecal ==
Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning.


POTE generator: 99/98: 17.6219 or 6/5: 315.7114
''For the 5-limit temperament, see [[19th-octave temperaments#(5-limit) enneadecal]].''


Map: [&lt;18 0 -1 22 48|, &lt;0 2 3 2 1|]
[[Subgroup]]: 2.3.5.7


EDOs: 72, 198, 270, 342, 612, 954, 1566
[[Comma list]]: 4375/4374, 703125/702464


Badness: 0.00628
{{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }}


===13-limit===
: mapping generators: ~28/27, ~3
Commas: 676/675, 1001/1000, 1716/1715, 3025/3024


valid range: [16.667, 22.222] (72 to 54cf)
[[Optimal tuning]] ([[CTE]]): ~28/27 = 1\19, ~3/2 = 701.9275 (~225/224 = 7.1907)


nice range: [17.304, 18.309]
{{Optimal ET sequence|legend=1| 19, …, 152, 171, 665, 836, 1007, 2185, 3192c }}


strict range: [17.304, 18.309]
[[Badness]]: 0.010954


POTE generator ~99/98 = 17.7504
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;18 0 -1 22 48 -19|, &lt;0 2 3 2 1 6|]
Comma list: 540/539, 4375/4374, 16384/16335


EDOs: 72, 198, 270
Mapping: {{mapping| 19 0 14 -37 126 | 0 1 1 3 -2 }}


Badness: 0.0125
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 702.1483 (~225/224 = 7.4115)


==Semiennealimmal==
{{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }}
Commas: 2401/2400, 4375/4374, 4000/3993


POTE generator: ~140/121 = 250.3367
Badness: 0.043734


Map: [&lt;9 3 4 14 18|, &lt;0 6 9 6 7|]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


EDOs: 72, 369, 441
Comma list: 540/539, 625/624, 729/728, 2205/2197


Badness: 0.0342
Mapping: {{mapping| 19 0 14 -37 126 -20 | 0 1 1 3 -2 3 }}


===13-limit===
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 701.9258 (~225/224 = 7.1890)
Commas: 1575/1573, 2080/2079, 2401/2400, 4375/4374


POTE generator: ~140/121 = 250.3375
{{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }}


Map: [&lt;9 3 4 14 18 -8|, &lt;0 6 9 6 7 22|]
Badness: 0.033545


EDOs: 72, 441
=== Hemienneadecal ===
Subgroup: 2.3.5.7.11


Badness: 0.0261
Comma list: 3025/3024, 4375/4374, 234375/234256


==Quadraennealimmal==
Mapping: {{mapping| 38 0 28 -74 11 | 0 1 1 3 2 }}
Commas: 2401/2400 4375/4374 234375/234256


POTE generator: ~77/75 = 45.595
: mapping generators: ~55/54, ~3


Map: [&lt;9 1 1 12 -7|, [0 8 12 8 23]]
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9351 (~225/224 = 7.1983)


EDOs: 342, 1053, 1395, 1737, 4869d, 6606cd
{{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }}
 
Badness: 0.009985
 
==== Hemienneadecalis ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256
 
Mapping: {{mapping| 38 0 28 -74 11 -281 | 0 1 1 3 2 7 }}
 
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9955 (~225/224 = 7.2587)
 
{{Optimal ET sequence|legend=1| 152f, 342f, 494 }}
 
Badness: 0.020782
 
==== Hemienneadec ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213
 
Mapping: {{mapping| 38 0 28 -74 11 502 | 0 1 1 3 2 -6 }}
 
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9812 (~225/224 = 7.2444)
 
{{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }}
 
Badness: 0.030391
 
==== Semihemienneadecal ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078
 
Mapping: {{mapping| 38 1 29 -71 13 111 | 0 2 2 6 4 1 }}
 
: mapping generators: ~55/54 = 1\38, ~55/54, ~429/250
 
Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895)
 
{{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }}
 
Badness: 0.014694
 
=== Kalium ===
Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups.
 
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344
 
Mapping: {{mapping| 19 3 17 -28 82 92 159 78 | 0 10 10 30 -6 -8 -30 1 }}
 
Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244
 
{{Optimal ET sequence|legend=1| 855, 988, 1843 }}
 
== Semidimi ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].''
 
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo| -12 -73 55 }} and 7-limit 3955078125/3954653486, as well as 4375/4374.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 3955078125/3954653486
 
{{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270
 
{{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }}
 
[[Badness]]: 0.015075
 
== Brahmagupta ==
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625.
 
Early in the design of the [[Sagittal]] notation system, Secor and Keenan found that an economical JI notation system could be defined, which divided the apotome (Pythagorean sharp or flat) into 21 almost-equal divisions. This required only 10 microtonal accidentals, although a few others were added for convenience in alternative spellings. This is called the Athenian symbol set (which includes the Spartan set). Its symbols are defined to exactly notate many common 11-limit ratios and the 17th harmonic, and to approximate within ±0.4 ¢ many common 13-limit ratios. If the divisions were made exactly equal, this would be the specific tuning of Brahmagupta temperament that has pure octaves and pure fifths, which can also be described as a 17-limit extension having 1/7th octave period (171.4286 ¢) and 1/21st apotome generator (5.4136 ¢).
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 70368744177664/70338939985125
 
{{Mapping|legend=1| 7 2 -8 53 | 0 3 8 -11 }}
 
: mapping generators: ~1157625/1048576, ~27/20
 
[[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716
 
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }}
 
[[Badness]]: 0.029122
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 4000/3993, 4375/4374, 131072/130977
 
Mapping: {{mapping| 7 2 -8 53 3 | 0 3 8 -11 7 }}
 
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.704
 
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }}
 
Badness: 0.052190
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374
 
Mapping: {{mapping| 7 2 -8 53 3 35 | 0 3 8 -11 7 -3 }}
 
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.706
 
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }}
 
Badness: 0.023132
 
== Abigail ==
Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930]: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref>
 
''For the 5-limit temperament, see [[Very high accuracy temperaments#Abigail]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 2147483648/2144153025
 
{{Mapping|legend=1| 2 7 13 -1 | 0 -11 -24 19 }}
 
: mapping generators: ~46305/32768, ~27/20
 
[[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899
 
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }}
 
[[Badness]]: 0.037000
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 131072/130977
 
Mapping: {{mapping| 2 7 13 -1 1 | 0 -11 -24 19 17 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~1155/1024 = 208.901
 
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }}
 
Badness: 0.012860
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095
 
Mapping: {{mapping| 2 7 13 -1 1 -2 | 0 -11 -24 19 17 27 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~44/39 = 208.903
 
{{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }}
 
Badness: 0.008856
 
== Gamera ==
''For the 5-limit temperament, see [[High badness temperaments#Gamera]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 589824/588245
 
{{Mapping|legend=1| 1 6 10 3 | 0 -23 -40 -1 }}
 
: mapping generators: ~2, ~8/7
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336
 
{{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }}
 
[[Badness]]: 0.037648
 
=== Hemigamera ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 589824/588245
 
Mapping: {{mapping| 2 12 20 6 5 | 0 -23 -40 -1 5 }}
 
: mapping generators: ~99/70, ~8/7
 
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3370
 
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }}
 
Badness: 0.040955
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024
 
Mapping: {{mapping| 2 12 20 6 5 17 | 0 -23 -40 -1 5 -25 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3373
 
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }}
 
Badness: 0.020416
 
=== Semigamera ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 14641/14580, 15488/15435
 
Mapping: {{mapping| 1 6 10 3 12 | 0 -46 -80 -2 -89 }}
 
: mapping generators: ~2, ~77/72
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1642
 
{{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }}
 
Badness: 0.078
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580
 
Mapping: {{mapping| 1 6 10 3 12 18 | 0 -46 -80 -2 -89 -149 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1628
 
{{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }}
 
Badness: 0.044
 
== Crazy ==
: ''For the 5-limit version, see [[Very high accuracy temperaments #Kwazy]].''
 
Crazy tempers out the [[kwazy comma]] in the 5-limit, and adds the ragisma to extend it to the 7-limit. It can be described as the {{nowrap| 118 & 494 }} temperament. [[1106edo]] is an strong tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, {{monzo| -53 10 16 }}
 
{{Mapping|legend=1| 2 1 6 -15 | 0 8 -5 76 }}
 
: mapping generators: ~332150625/234881024, ~1125/1024
 
[[Optimal tuning]]s:
* [[CTE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7475
* [[error map]]: {{val| 0.0000 +0.0253 -0.0514 -0.0133 }}
* [[CWE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7474
* error map: {{val| 0.0000 +0.0244 -0.0508 -0.0218 }}
 
{{Optimal ET sequence|legend=1| 118, 376, 494, 612, 1106, 1718 }}
 
[[Badness]] (Smith): 0.0394
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 2791309312/2790703125
 
Mapping: {{mapping| 2 1 6 -15 -8 | 0 8 -5 76 55 }}
 
Optimal tunings:
* CTE: ~99/70 = 162.7485, ~1125/1024 = 162.7485
* CWE: ~99/70 = 162.7485, ~1125/1024 = 162.7481
 
{{Optimal ET sequence|legend=0| 118, 376, 494, 612, 1106, 2824, 3930e }}
 
Badness (Smith): 0.0170
 
== Orga ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 54975581388800/54936068900769
 
{{Mapping|legend=1| 2 21 36 5 | 0 -29 -51 1 }}
 
: mapping generators: ~7411887/5242880, ~1310720/1058841
 
[[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104
 
{{Optimal ET sequence|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }}
 
[[Badness]]: 0.040236
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 5767168/5764801
 
Mapping: {{mapping| 2 21 36 5 2 | 0 -29 -51 1 8 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103
 
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836, 1106 }}
 
Badness: 0.016188
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360
 
Mapping: {{mapping| 2 21 36 5 2 24 | 0 -29 -51 1 8 -27 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103
 
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836f, 1106f }}
 
Badness: 0.021762
 
== Seniority ==
{{See also| Very high accuracy temperaments #Senior }}
 
Aside from the ragisma, the seniority temperament (26 &amp; 145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ({{monzo| -17 62 -35 }}, quadla-sepquingu) is tempered out.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 201768035/201326592
 
{{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804
 
{{Optimal ET sequence|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }}
 
[[Badness]]: 0.044877
 
=== Senator ===
The senator temperament (26 &amp; 145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.
 
Subgroup: 2.3.5.7.11
 
Comma list: 441/440, 4375/4374, 65536/65219
 
Mapping: {{mapping| 1 11 19 2 4 | 0 -35 -62 3 -2 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793
 
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316e, 487ee }}
 
Badness: 0.092238
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 364/363, 441/440, 2200/2197, 4375/4374
 
Mapping: {{mapping| 1 11 19 2 4 15 | 0 -35 -62 3 -2 -42 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793
 
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}
 
Badness: 0.044662
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197
 
Mapping: {{mapping| 1 11 19 2 4 15 17 | 0 -35 -62 3 -2 -42 -48 }}
 
Optimal tuning (POTE): ~77/64 = 322.793
 
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}
 
Badness: 0.026562
 
== Monzismic ==
: ''For the 5-limit version of this temperament, see [[Very high accuracy temperaments #Monzismic]].
 
The monzismic temperament (53 &amp; 612) tempers out the [[monzisma]], {{monzo| 54 -37 2 }}, and in the 7-limit, the [[nanisma]], {{monzo| 109 -67 0 -1 }}, as well as the ragisma, [[4375/4374]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, {{monzo| -55 30 2 1 }}
 
{{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207
 
{{Optimal ET sequence|legend=1| 53, …, 559, 612, 1277, 1889 }}
 
[[Badness]]: 0.046569
 
=== Monzism ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 41503/41472, 184549376/184528125
 
Mapping: {{mapping| 1 2 10 -25 46 | 0 -2 -37 134 -205 }}
 
Optimal tuning (POTE): ~231/200 = 249.0193
 
{{Optimal ET sequence|legend=1| 53, 559, 612 }}
 
Badness: 0.057083
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625
 
Mapping: {{mapping| 1 2 10 -25 46 23 | 0 -2 -37 134 -205 -93 }}
 
Optimal tuning (POTE): ~231/200 = 249.0199
 
{{Optimal ET sequence|legend=1| 53, 559, 612 }}
 
Badness: 0.053780
 
== Semidimfourth ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimfourth]].''
 
The semidimfourth temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 235298/234375
 
[[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456
 
{{Optimal ET sequence|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }}
 
[[Badness]]: 0.055249
 
=== Neusec ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 235298/234375
 
Mapping: {{mapping| 2 11 15 19 15 | 0 -31 -41 -53 -32 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.547
 
{{Optimal ET sequence|legend=1| 8d, 190, 388 }}
 
Badness: 0.059127
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374
 
Mapping: {{mapping| 2 11 15 19 15 17 | 0 -31 -41 -53 -32 -38 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.545
 
{{Optimal ET sequence|legend=1| 8d, 190, 198, 388 }}
 
Badness: 0.030941
 
== Acrokleismic ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 2202927104/2197265625
 
{{Mapping|legend=1| 1 10 11 27 | 0 -32 -33 -92 }}
 
: mapping generators: ~2, ~6/5
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557
 
{{Optimal ET sequence|legend=1| 19, …, 251, 270, 2449c, 2719c, 2989bc }}
 
[[Badness]]: 0.056184
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 41503/41472, 172032/171875
 
Mapping: {{mapping| 1 10 11 27 -16 | 0 -32 -33 -92 74 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.558
 
{{Optimal ET sequence|legend=1| 19, 251, 270, 829, 1099, 1369, 1639 }}
 
Badness: 0.036878
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976
 
Mapping: {{mapping| 1 10 11 27 -16 25 | 0 -32 -33 -92 74 -81 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.557
 
{{Optimal ET sequence|legend=1| 19, 251, 270 }}
 
Badness: 0.026818
 
=== Counteracro ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 5632/5625, 117649/117612
 
Mapping: {{mapping| 1 10 11 27 55 | 0 -32 -33 -92 -196 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.553
 
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}
 
Badness: 0.042572
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374
 
Mapping: {{mapping| 1 10 11 27 55 25 | 0 -32 -33 -92 -196 -81 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.554
 
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}
 
Badness: 0.026028
 
== Quasithird ==
The quasithird temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.
 
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| 55 -64 20 }}
 
{{Mapping|legend=1| 4 0 -11 | 0 5 16 }}
 
: mapping generators: ~51200000/43046721, ~1594323/1280000
 
[[Optimal tuning]] ([[POTE]]): ~51200000/43046721, ~1594323/1280000 = 380.395
 
{{Optimal ET sequence|legend=1| 60, 104c, 164, 224, 388, 612, 1612, 2224, 2836, 6284, 9120, 15404 }}
 
[[Badness]]: 0.099519
 
=== 7-limit ===
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, {{monzo| -60 29 0 5 }}
 
{{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }}
 
[[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388
 
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }}
 
[[Badness]]: 0.061813
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296
 
Mapping: {{mapping| 4 0 -11 48 43 | 0 5 16 -29 -23 }}
 
Optimal tuning (POTE): ~5103/4096 = 380.387 (or ~22/21 = 80.387)
 
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448 }}
 
Badness: 0.021125
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374
 
Mapping: {{mapping| 4 0 -11 48 43 11 | 0 5 16 -29 -23 3 }}
 
Optimal tuning (POTE): ~81/65 = 380.385 (or ~22/21 = 80.385)
 
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}
 
Badness: 0.029501
 
== Deca ==
: ''For 5-limit version of this temperament, see [[10th-octave temperaments #Neon]].''
 
Deca temperament has a period of 1/10 octave and tempers out the [[linus comma]], {{monzo| 11 -10 -10 10 }}, neon comma {{monzo| 21 60 -50 }} and {{monzo| 12 -3 -14 9 }} = 165288374272/164794921875 (satritrizo-asepbigu).
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 165288374272/164794921875
 
{{Mapping|legend=1| 10 4 9 2 | 0 5 6 11 }}
 
: mapping generators: ~15/14, ~6/5
 
[[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577
 
{{Optimal ET sequence|legend=1| 80, 190, 270, 1270, 1540, 1810, 2080 }}
 
[[Badness]]: 0.080637
 
Badness (Sintel): 2.041
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 391314/390625
 
Mapping: {{mapping| 10 4 9 2 18 | 0 5 6 11 7 }}
 
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.582
 
{{Optimal ET sequence|legend=1| 80, 190, 270, 1000, 1270, 1540e, 1810e }}
 
Badness: 0.024329
 
Badness (Sintel): 0.804
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374
 
Mapping: {{mapping| 10 4 9 2 18 37 | 0 5 6 11 7 0 }}
 
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.602 (~40/39 = 44.398)
 
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}
 
Badness: 0.016810
 
Badness (Sintel): 0.695
 
=== no-17's 19-limit ===
Subgroup: 2.3.5.7.11.13.19
 
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374, 1521/1520
 
Mapping: {{mapping| 10 4 9 2 18 37 33 | 0 5 6 11 7 0 4 }}
 
Optimal tuning (CTE): ~15/14 = 1\10, ~6/5 = 315.581 (~39/38 = 44.419)
 
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}
 
Badness (Sintel): 0.556
 
== Keenanose ==
Keenanose is named for the fact that it uses [[385/384]], the keenanisma, as the generator.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, {{monzo| -56 1 -8 26 }}
 
{{Mapping|legend=1| 1 2 3 3 | 0 -112 -183 -52 }}
 
: mapping generators: ~2, ~{{monzo| 21 3 1 -10 }}
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~{{monzo| 21 3 1 -10 }} = 4.4465
 
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 2159, 4048, 18081cd }}
 
[[Badness]]: 0.0858
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 117649/117612, 67110351/67108864
 
Mapping: {{mapping| 1 2 3 3 3 | 0 -112 -183 -52 124 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4465
 
{{Optimal ET sequence|legend=1| 270, 1349, 1619, 1889, 2159, 11065, 13224 }}
 
Badness: 0.0308
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 4225/4224, 4375/4374, 6656/6655, 117649/117612
 
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -112 -183 -52 124 189 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4466
 
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 4048 }}


Badness: 0.0213
Badness: 0.0213


==Ennealimnic==
== Aluminium ==
Commas: 243/242, 441/440, 4375/4356
Aluminium is named after the 13th element, and tempers out the {{monzo| 92 -39 -13 }} comma which sets [[135/128]] interval to be equal to 1/13th of the octave.
 
[[Subgroup]]: 2.3.5
 
[[Comma list]]: {{monzo| 92 -39 -13 }}
 
[[Mapping]]: {{mapping| 13 0 92 | 0 1 -3 }}
 
: mapping generators: ~135/128, ~3
 
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 701.9897


valid range: [44.444, 53.333] (27e to 45e)
{{Optimal ET sequence|legend=1| 65, 299, 364, 429, 494, 559, 1053, 1612, 5889, 7501, 9113, 10725, 23062bc, 33787bcc, 44512bbcc }}


nice range: [48.920, 52.592]
[[Badness]]: 0.123


strict range: [48.920, 52.592]
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


POTE generator: ~36/35 = 49.395
[[Comma list]]: 4375/4374, {{monzo| 92 -39 -13 }}


Map: [&lt;9 1 1 12 -2|, &lt;0 2 3 2 5|]
[[Mapping]]: {{mapping| 13 0 92 -355 | 0 1 -3 19 }}


EDOs: 72, 171, 243
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 702.0024


Badness: 0.0203
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 8788, 10335, 11882, 13429b, 14976b }}


===13-limit===
[[Badness]]: 0.126
Commas: 243/242, 364/363, 441/440, 625/624


valid range: [48.485, 50.000] (99ef to 72)
=== 11-limit ===
Subgroup: 2.3.5.7.11


nice range: [48.825, 52.592]
Comma list: 4375/4374, 234375/234256, 2097152/2096325


strict range: [48.825, 50.000]
Mapping: {{mapping| 13 0 92 -355 148 | 0 1 -3 19 -5 }}


POTE generator: ~36/35 = 49.341
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0042


Map: [&lt;9 1 1 12 -2 -33|, &lt;0 2 3 2 5 10|]
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 3588e, 5135e }}


EDOs: 72, 171, 243
Badness: 0.0421


Badness: 0.0233
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


===17-limit===
Comma list: 4096/4095, 4375/4374, 6656/6655, 78125/78078
Commas: 243/242, 364/363, 375/374, 441/440, 595/594


valid range: [48.485, 50.000] (99ef to 72)
Mapping: {{mapping| 13 0 92 -355 148 419 | 0 1 -3 19 -5 -18 }}


nice range: [46.363, 52.592]
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0099


strict range: [48.485, 50.000]
{{Optimal ET sequence|legend=1| 494, 1547, 2041, 4576def }}


POTE generator: ~36/35 = 49.335
Badness: 0.0286


Map: [&lt;9 1 1 12 -2 -33 -3|, &lt;0 2 3 2 5 10 6|]
== Countritonic ==
: ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]].''


EDOs: 72, 171, 243
Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit.


Badness: 0.0146
[[Subgroup]]: 2.3.5.7


==Ennealim==
[[Comma list]]: 4375/4374, 68719476736/68356598625
Commas: 169/168, 243/242, 325/324, 441/440


POTE generator: ~36/35 = 49.708
{{Mapping|legend=1| 1 6 19 -33 | 0 -9 -34 73 }}


Map: [&lt;9 1 1 12 -2 20|, &lt;0 2 3 2 5 2|]
: mapping generators: ~2, ~45927/32768


EDOs: 27e, 45f, 72, 315ff, 387cff, 459cdfff
[[Optimal tuning]] (CTE): ~2 = 1\1, ~45927/32768 = 588.6216


Badness: 0.0207
{{Optimal ET sequence|legend=1| 53, 210d, 263, 316, 369, 422, 791, 1213cd, 2004bcdd }}


==Ennealiminal==
[[Badness]]: 0.133
Commas: 385/384, 1375/1372, 4375/4374


POTE generator: ~36/35 = 49.504
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;9 1 1 12 51|, &lt;0 2 3 2 -3|]
Comma list: 4375/4374, 5632/5625, 2621440/2614689


EDOs: 27, 45, 72, 171e, 243e, 315e
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 }}


Badness: 0.0311
Optimal tuning (CTE): ~2 = 1\1, ~539/384 = 588.6258


===13-limit===
{{Optimal ET sequence|legend=1| 53, 316e, 369, 422, 791e, 1213cde }}
Commas: 169/168, 325/324, 385/384, 1375/1372


POTE generator: ~36/35 = 49.486
Badness: 0.0707


Map: [&lt;9 1 1 12 51 20|, &lt;0 2 3 2 -3 2|]
=== 13-limit ===
Subgroup: 2.3.5.7.11


EDOs: 27, 45f, 72, 171ef, 243ef
Comma list: 2080/2079, 2200/2197, 4375/4374, 5632/5625


Badness: 0.0303
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 -74 }}


==Trinealimmal==
Optimal tuning (CTE): ~2 = 1\1, ~128/91 = 588.6277
Commas: 2401/2400, 4375/4374, 2097152/2096325


POTE generator: ~6/5 = 315.644
{{Optimal ET sequence|legend=1| 53, 316ef, 369f, 422, 1213cdeff, 1635bcdefff }}


Map: [&lt;27 1 0 34 177|, &lt;0 2 3 2 -4|]
Badness: 0.0366


EDOs: 27, 243, 270, 783, 1053, 1323, 10854bcde
== Quatracot ==
{{See also| Stratosphere }}


Badness: 0.0298
[[Subgroup]]: 2.3.5.7


==Semihemiennealimmal==
[[Comma list]]: 4375/4374, {{monzo| -32 5 14 -3 }}
Commas: 2401/2400, 4375/4374, 3025/3024, 4225/4224


POTE generator: ~39/32 = 342.139
{{Mapping|legend=1| 2 7 7 23 | 0 -13 -8 -59 }}


Map: [&lt;18 0 -1 22 48 88|, &lt;0 4 6 4 2 -3|]
: mapping generators: ~2278125/1605632, ~448/405


EDOs: 126, 144, 270, 684, 954
[[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805


Badness: 0.0131
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }}


=Gamera=
[[Badness]]: 0.175982
Commas: 4375/4374, 589824/588245


POTE generator ~8/7 = 230.336
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;1 6 10 3|, &lt;0 -23 -40 -1|]
Comma list: 3025/3024, 4375/4374, 1265625/1261568


EDOs: 26, 73, 99, 224, 323, 422, 735
Mapping: {{mapping| 2 7 7 23 19 | 0 -13 -8 -59 -41 }}


Badness: 0.0376
Optimal tuning (POTE): ~99/70 = 1\2, ~448/405 = 176.806


==Hemigamera==
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c }}
Commas: 3025/3024, 4375/4374, 202397184/201768035


POTE generator: ~8/7 = 230.337
Badness: 0.041043


Map: [&lt;2 12 20 6 5|, &lt;0 -23 -40 -1 5|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


EDOs: 26, 198, 224, 422, 646, 1068d
Comma list: 625/624, 729/728, 1575/1573, 2200/2197


Badness: 0.0410
Mapping: {{mapping| 2 7 7 23 19 13 | 0 -13 -8 -59 -41 -19 }}


===13-limit===
Optimal tuning (POTE): ~99/70 = 1\2, ~195/176 = 176.804
Commas: 1716/1715 2080/2079 2200/2197 3025/3024


Map: [&lt;2 12 20 6 5 17|, &lt;0 -23 -40 -1 5 -25|]
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1690bcc, 2328bccde }}


EDOs: 26, 198, 224, 422, 646f, 1068df
Badness: 0.022643


Badness: 0.0204
== Moulin ==
Moulin has a generator of 22/13, and it is named after the ''Law & Order: Special Victims Unit'' episode Season 22, Episode 13. "Trick-Rolled At The Moulin". It can be described as the 494 & 1619 temperament.


=Supermajor=
[[Subgroup]]: 2.3.5.7
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.0002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of &lt;&lt;37 46 75 -13 15 45||. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.


Commas: 4375/4374, 52734375/52706752
[[Comma list]]: 4375/4374, {{monzo| -88 2 45 -7 }}


POTE generator: ~9/7 = 435.082
{{Mapping|legend=1| 1 57 38 248 | 0 -73 -47 -323 }}


Map: [&lt;1 15 19 30|, &lt;0 -37 -46 -75|]
: mapping generators: ~2, ~6422528/3796875


EDOs: 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6422528/3796875 = 910.9323


Badness: 0.0108
{{Optimal ET sequence|legend=1| 494, 1125, 1619 }}


==Semisupermajor==
[[Badness]]: 0.234
Commas: 3025/3024, 4375/4374, 35156250/35153041


POTE generator: ~9/7 = 435.082
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;2 30 38 60 41|, &lt;0 -37 -46 -75 -47|]
Comma list: 4375/4374, 759375/758912, 100663296/100656875


EDOs: 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf
Mapping: {{mapping| 1 57 38 248 -14 | 0 -73 -47 -323 23 }}


Badness: 0.0128
Optimal tuning (CTE): ~2 = 1\1, ~1024/605 = 910.9323


=Enneadecal=
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}
Enndedecal temperament tempers out the enneadeca, |-14 -19 19&gt;, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5 or 7 limits, and [[494edo]] shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning.


Commas: 4375/4374, 703125/702464
Badness: 0.0678


POTE generator: ~3/2 = 701.880
=== 13-limit ===
Since 11/8 is within 23 generators, the 25 tone MOS (4L 21s) of this temperament contains the 8:11:13 triad.


Map: [&lt;19 0 14 -37|, &lt;0 1 1 3|]
Subgroup: 2.3.5.7.11.13


Generators: 28/27, 3
Comma list: 4225/4224, 4375/4374, 6656/6655, 78125/78078


EDOs: 19, 152, 171, 665, 836, 1007, 2185
Mapping: {{mapping| 1 57 38 248 -14 -13 | 0 -73 -47 -323 23 22 }}


Badness: 0.0110
Optimal tuning (CTE): ~2 = 1\1, ~22/13 = 910.9323


==Hemienneadecal==
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}
Commas: 3025/3024, 4375/4374, 234375/234256


POTE generator: ~3/2 = 701.881
Badness: 0.0271


Map: [&lt;38 0 28 -74 11|, &lt;0 1 1 3 2|]
== Palladium ==
: ''For the 5-limit version of this temperament, see [[46th-octave temperaments]]''.


EDOs: 152, 342, 494, 836, 1178, 2014
The name of the ''palladium'' temperament comes from palladium, the 46th element. Palladium has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo| -39 92 -46 }}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46 &amp; 414 temperament, which tempers out {{monzo| -51 8 2 12 }} as well as the ragisma.


Badness: 0.00999
[[Subgroup]]: 2.3.5.7


===13-limit===
[[Comma list]]: 4375/4374, {{monzo| -51 8 2 12 }}
Commas: 3025/3024, 4096/4095, 4375/4374, 31250/31213


POTE generator: ~3/2 = 701.986
{{Mapping|legend=1| 46 0 -39 202 | 0 1 2 -1 }}


Map: [&lt;38 0 28 -74 11 502|, &lt;0 1 1 3 2 -6|]
: mapping generators: ~83349/81920, ~3


EDOs: 152, 342, 494, 836
[[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074


Badness: 0.0304
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874d }}


=Deca=
[[Badness]]: 0.308505
Commas: 4375/4374, 165288374272/164794921875


POTE generator: ~460992/390625 = 284.423
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;10 4 2 9|, &lt;0 5 6 11|]
Comma list: 3025/3024, 4375/4374, 134775333/134217728


EDOs: 80, 190, 270, 1270, 1540, 1810, 2080
Mapping: {{mapping| 46 0 -39 202 232 | 0 1 2 -1 -1 }}


Badness: 0.0806
Optimal tuning (POTE): ~8192/8085 = 1\46, ~3/2 = 701.5951


==11-limit==
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de }}
Commas: 3025/3024, 4375/4374, 422576/421875


POTE generator: ~33/28 = 284.418
Badness: 0.073783


Map: [&lt;10 4 2 9 18|, &lt;0 5 6 11 7|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


EDOs: 80, 190, 270, 1000, 1270
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364


Badness: 0.0243
Mapping: {{mapping| 46 0 -39 202 232 316 | 0 1 2 -1 -1 -2 }}


==13-limit==
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6419
Commas: 1001/1000, 3025/3024, 4225/4224, 4375/4374


POTE generator: ~33/28 = 284.398
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334de }}


Map: [&lt;10 4 2 9 18 37|, &lt;0 5 6 11 7 0|]
Badness: 0.040751


EDOs: 80, 190, 270, 730, 1000
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Badness: 0.0168
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224


=Mitonic=
Mapping: {{mapping| 46 0 -39 202 232 316 188 | 0 1 2 -1 -1 -2 0 }}
Commas: 4375/4374, 2100875/2097152


POTE generator: ~10/9 = 182.458
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6425


Map: [&lt;1 16 32 -15|, &lt;0 -17 -35 21|]
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334deg }}


EDOs: 46, 125, 171
Badness: 0.022441


Badness: 0.0252
== Oviminor ==
{{See also| Syntonic–kleismic equivalence continuum }}


=Abigail=
Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate.
Commas: 4375/4374, 2147483648/2144153025


[[POTE_tuning|POTE generator]]: 208.899
[[Subgroup]]: 2.3.5.7


Map: [&lt;2 7 13 -1|, &lt;0 -11 -24 19|]
[[Comma list]]: 4375/4374, {{monzo| -100 53 48 -34 }}


Wedgie: &lt;&lt;22 48 -38 25 -122 -223||
{{Mapping|legend=1| 1 50 51 147 | 0 -184 -185 -548 }}


EDOs: 46, 132, 178, 224, 270, 494, 764, 1034, 1798
: mapping generators: ~2, ~6/5


Badness: 0.0370
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6/5 = 315.7501


==11-limit==
{{Optimal ET sequence|legend=1| 19, …, 1600, 1619, 4838, 6457c }}
Comma: 3025/3024, 4375/4374, 20614528/20588575


[[POTE_tuning|POTE generator]]: 208.901
[[Badness]]: 0.582


Map: [&lt;2 7 13 -1 1|, &lt;0 -11 -24 19 17|]
== Octoid ==
''For the 5-limit temperament, see [[8th-octave temperaments#Octoid (5-limit)]].''


EDOs: 46, 132, 178, 224, 270, 494, 764
The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.


Badness: 0.0129
[[Subgroup]]: 2.3.5.7


==13-limit==
[[Comma list]]: 4375/4374, 16875/16807
Commas: 1716/1715, 2080/2079, 3025/3024, 4096/4095


[[POTE_tuning|POTE generator]]: 208.903
{{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }}


Map: [&lt;2 7 13 -1 1 -2|, &lt;0 -11 -24 19 17 27|]
: mapping generators: ~49/45, ~7/5


EDOs: 46, 178, 224, 270, 494, 764, 1258
[[Optimal tuning]] ([[POTE]]): ~49/45 = 1\8, ~7/5 = 583.940


Badness: 0.00886
[[Tuning ranges]]:  
* 7-odd-limit [[diamond monotone]]: ~7/5 = [578.571, 600.000] (27\56 to 4\8)
* 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88)
* 7-odd-limit [[diamond tradeoff]]: ~7/5 = [582.512, 584.359]
* 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]


=Semidimi=
{{Optimal ET sequence|legend=1| 8d, 72, 152, 224 }}
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit |-12 -73 55&gt; and 7-limit 3955078125/3954653486, as well as 4375/4374.


==5-limit (semidimipent)==
[[Badness]]: 0.042670
Comma: |-12 -73 55&gt;


POTE generator: ~162/125 = 449.127
Scales: [[octoid72]], [[octoid80]]


Map: [&lt;1 36 48|, &lt;0 -55 -73|]
=== 11-limit ===
The [[11-limit]] is the last place where all the extensions of octoid shown here agree in the mappings of primes. [[80edo]] is an alternative tuning for octoid in the 11-limit; though [[72edo]] does better for minimaxing the damage on the [[11-odd-limit]], 80edo damages prime 7 in favor of practically-just [[17/16]]'s, [[11/10]]'s and [[9/7]]'s. In higher limits, if one wants to use 80edo as the tuning, one must use octopus — not octoid — as 80edo doesn't temper 324/323, 375/374, 495/494, 625/624, 715/714 or 729/728.


Wedgie: &lt;&lt;55 73 -12||
Subgroup: 2.3.5.7.11


EDOs: 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419
Comma list: 540/539, 1375/1372, 4000/3993


Badness: 0.7549
Mapping: {{mapping| 8 1 3 3 16 | 0 3 4 5 3 }}


==7-limit==
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.962
Commas: 4375/4374, 3955078125/3954653486


POTE generator: ~35/27 = 449.127
Tuning ranges:
* 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
* 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]


Map: [&lt;1 36 48 61|, &lt;0 -55 -73 -93|]
{{Optimal ET sequence|legend=1| 72, 152, 224 }}


Wedgie: &lt;&lt;55 73 93 -12 -7 11||
Badness: 0.014097


EDOs: 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419
Scales: [[octoid72]], [[octoid80]]


Badness: 0.0151
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


=Brahmagupta=
Comma list: 540/539, 625/624, 729/728, 1375/1372
Commas: 4375/4374, 70368744177664/70338939985125


POTE generator: ~27/20 = 519.716
Mapping: {{mapping| 8 1 3 3 16 -21 | 0 3 4 5 3 13 }}


Map: [&lt;7 2 -8 53|, &lt;0 3 8 -11|]
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.905


Wedgie: &lt;&lt;21 56 -77 40 -181 -336||
{{Optimal ET sequence|legend=1| 72, 152f, 224 }}


EDOs: 217, 224, 441, 1106, 1547
Badness: 0.015274


Badness: 0.0291
Scales: [[octoid72]], [[octoid80]]


==11-limit==
; Music
Commas: 4000/3993, 4375/4374, 131072/130977
* ''Dreyfus'' (archived 2010) by [[Gene Ward Smith]] – [https://soundcloud.com/genewardsmith/genewardsmith-dreyfus SoundCloud] | [https://www.archive.org/details/Dreyfus details] | [https://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play] – octoid[72] in 224edo tuning


POTE generator: ~27/20 = 519.704
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Map: [&lt;7 2 -8 53 3|, &lt;0 3 8 -11 7|]
Comma list: 375/374, 540/539, 625/624, 715/714, 729/728


EDOs: 217, 224, 441, 665, 1771e
Mapping: {{mapping| 8 1 3 3 16 -21 -14 | 0 3 4 5 3 13 12 }}


Badness: 0.0522
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.842


=Neusec=
{{Optimal ET sequence|legend=1| 72, 152fg, 224, 296, 520g }}
Commas: 3025/3024, 4375/4374, 235298/234375


POTE generator: ~12/11 = 151.547
Badness: 0.014304


Map: [&lt;2 11 15 19 15|, &lt;0 -31 -41 -53 -32|]
Scales: [[octoid72]], [[octoid80]]


EDOs: 190, 388
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


Badness: 0.0591
Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714


==13-limit==
Mapping: {{mapping| 8 1 3 3 16 -21 -14 34 | 0 3 4 5 3 13 12 0 }}
Commas: 847/845, 1001/1000, 3025/3024, 4375/4374


POTE generator: ~12/11 = 151.545
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.932


Map: [&lt;2 11 15 19 15 17|, &lt;0 -31 -41 -53 -32 -38|]
{{Optimal ET sequence|legend=1| 72, 152fg, 224 }}


EDOs: 190, 198, 388
Badness: 0.016036


Badness: 0.0309
Scales: [[octoid72]], [[octoid80]]


=Quasithird=
==== Octopus ====
==5-limit==
A reasonable alternative tuning of octopus not shown here which works well for 23-limit harmony (and beyond) is [[80edo]], which has a strong sharp tendency that can be thought of as matching the sharpness of mapping [[19/16]] to 1\4 = 300{{cent}}.
Comma: |55 -64 20&gt;


POTE generator: ~1594323/1280000 = 380.395
Subgroup: 2.3.5.7.11.13


Map: [&lt;4 0 -11|, &lt;0 5 16|]
Comma list: 169/168, 325/324, 364/363, 540/539


Wedgie: &lt;&lt;20 64 55||
Mapping: {{mapping| 8 1 3 3 16 14 | 0 3 4 5 3 4 }}


EDOs: 164, 224, 388, 612, 836, 1000, 1448, 1612, 2224, 2836
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.892


Badness: 0.0995
{{Optimal ET sequence|legend=1| 72, 152, 224f }}


==7-limit==
Badness: 0.021679
Commas: 4375/4374, 1153470752371588581/1152921504606846976


POTE generator: ~5103/4096 = 380.388
Scales: [[octoid72]], [[octoid80]]


Map: [&lt;4 0 -11 48|, &lt;0 5 16 -29|]
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Wedgie: &lt;&lt;20 64 -116 55 -240 -449||
Comma list: 169/168, 221/220, 289/288, 325/324, 540/539


EDOs: 164, 224, 388, 612, 1448, 2060
Mapping: {{mapping| 8 1 3 3 16 14 21 | 0 3 4 5 3 4 3 }}


Badness: 0.0618
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.811


==11-limit==
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 296ffg }}
Commas: 3025/3024, 4375/4374, 4296700485/4294967296


POTE generator: ~5103/4096 = 380.387
Badness: 0.015614


Map: [&lt;4 0 -11 48 43|, &lt;0 5 16 -29 -23|]
Scales: [[Octoid72]], [[Octoid80]]


EDOs: 164, 224, 388, 612, 836, 1448
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


Badness: 0.0211
Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399


==13-limit==
Mapping: {{mapping| 8 1 3 3 16 14 21 34 | 0 3 4 5 3 4 3 0 }}
Commas: 2200/2197, 3025/3024, 4375/4374, 468512/468195


POTE generator: ~5103/4096 = 380.385
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 584.064


Map: [&lt;4 0 -11 48 43 11|, &lt;0 5 16 -29 -23 3|]
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 376ffgh }}


EDOs: 164, 224, 388, 612, 836, 1448f, 2284f
Badness: 0.016321


Badness: 0.0295
Scales: [[Octoid72]], [[Octoid80]]


=Semidimfourth=
==== Hexadecoid ====
==5-limit==
{{ See also | 16th-octave temperaments }}
Comma: |7 41 -31&gt;


POTE generator: ~162/125 = 448.449
Hexadecoid (80 &amp; 144) has a period of 1/16 octave and tempers out 4225/4224.


Map: [&lt;1 21 28|, &lt;0 -31 -41|]
Subgroup: 2.3.5.7.11.13


Wedgie: &lt;&lt;31 41 -7||
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224


EDOs: 91, 99, 190, 289, 388, 487, 677, 875, 966
Mapping: {{mapping| 16 2 6 6 32 67 | 0 3 4 5 3 -1 }}


Badness: 0.1930
: mapping generators: ~448/429, ~7/5


==7-limit==
Optimal tuning (POTE): ~448/429 = 1\16, ~13/8 = 841.015
Commas: 4375/4374, 235298/234375


POTE generator: ~35/27 = 448.457
{{Optimal ET sequence|legend=1| 80, 144, 224 }}


Map: [&lt;1 21 28 36|, &lt;0 -31 -41 -53|]
Badness: 0.030818


Wedgie: &lt;&lt;31 41 53 -7 -3 8||
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


EDOs: 91, 99, 289, 388, 875, 1263d, 1651d
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224


Badness: 0.0552
Mapping: {{mapping| 16 2 6 6 32 67 81 | 0 3 4 5 3 -1 -2 }}


=Acrokleismic=
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.932
Commas: 4375/4374, 2202927104/2197265625


POTE generator: ~6/5 = 315.557
{{Optimal ET sequence|legend=1| 80, 144, 224, 528dg }}


Map: [&lt;1 10 11 27|, &lt;0 -32 -33 -92|]
Badness: 0.028611


Wedgie: &lt;&lt;32 33 92 -22 56 121||
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


EDOs: 19, 251, 270
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444


Badness: 0.0562
Mapping: {{mapping| 16 2 6 6 32 67 81 68 | 0 -3 -4 -5 -3 1 2 0 }}


==11-limit==
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.896
Commas: 4375/4374, 41503/41472, 172032/171875


POTE generator: ~6/5 = 315.558
{{Optimal ET sequence|legend=1| 80, 144, 224, 304dh, 528dghh }}


Map: [&lt;1 10 11 27 -16|, &lt;0 -32 -33 -92 74|]
Badness: 0.023731


EDOs: 19, 251, 270, 829, 1099, 1369, 1639
== Parakleismic ==
{{Main| Parakleismic }}


Badness: 0.0369
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension adding 3136/3125 and 4375/4374, and 11-limit adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118.


==13-limit==
[[Subgroup]]: 2.3.5
Commas: 676/675, 1001/1000, 4375/4374, 10985/10976


POTE generator: ~6/5 = 315.557
[[Comma list]]: 1224440064/1220703125


Map: [&lt;1 10 11 27 -16 25|, &lt;0 -32 -33 -92 74 -81|]
{{Mapping|legend=1| 1 5 6 | 0 -13 -14 }}


EDOs: 19, 251, 270
: mapping generators: ~2, ~6/5


Badness: 0.0268
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.240


==Counteracro==
{{Optimal ET sequence|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }}
Commas: 4375/4374, 5632/5625, 117649/117612


POTE generator: ~6/5 = 315.553
[[Badness]]: 0.043279


Map: [&lt;1 10 11 27 55|, &lt;0 -32 -33 -92 -196|]
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


EDOs: 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde
[[Comma list]]: 3136/3125, 4375/4374


Badness: 0.0426
{{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }}


===13-limit===
Commas: 676/675, 1716/1715, 4225/4224, 4375/4374


POTE generator: ~6/5 = 315.554
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181


Map: [&lt;1 10 11 27 55 25|, &lt;0 -32 -33 -92 -196 -81|]
{{Optimal ET sequence|legend=1| 19, 80, 99, 217, 316, 415 }}


EDOs: 270, 1331c, 1601c, 1871bcf, 2141bcf
[[Badness]]: 0.027431


Badness: 0.0260
=== 11-limit ===
Subgroup: 2.3.5.7.11


=Seniority=
Comma list: 385/384, 3136/3125, 4375/4374
Commas: 4375/4374, 201768035/201326592


POTE generator: ~3087/2560 = 322.804
Mapping: {{mapping| 1 5 6 12 -6 | 0 -13 -14 -35 36 }}


Map: [&lt;1 11 19 2|, &lt;0 -35 -62 3|]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.251


Wedgie: &lt;&lt;35 62 -3 17 -103 -181||
{{Optimal ET sequence|legend=1| 19, 99, 118 }}


EDOs: 26, 145, 171, 2710d
Badness: 0.049711


Badness: 0.0449
=== Paralytic ===
The ''paralytic'' temperament (118&amp;217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118 &amp; 217 tempers out 1001/1000, 1575/1573, and 3584/3575.


=Orga=
Subgroup: 2.3.5.7.11
Commas: 4375/4374 54975581388800/54936068900769


POTE generator: ~8/7 = 231.104
Comma list: 441/440, 3136/3125, 4375/4374


Map: [&lt;2 21 36 5|, &lt;0 -29 -51 1|]
Mapping: {{mapping| 1 5 6 12 25 | 0 -13 -14 -35 -82 }}


Wedgie: &lt;&lt;58 102 -2 27 -166 -291||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.220


EDOs: 26, 244, 270, 836, 1106, 1376, 2482, 19856bd, 23714bd
{{Optimal ET sequence|legend=1| 19e, 99e, 118, 217, 335, 552d, 887dd }}


Badness: 0.0402
Badness: 0.036027


==11-limit==
==== 13-limit ====
Commas: 3025/3024 4375/4374 5767168/5764801
Subgroup: 2.3.5.7.11.13


POTE generator: ~8/7 = 231.103
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374


Map: [&lt;2 21 36 5 2|, &lt;0 -29 -51 1 8|]
Mapping: {{mapping| 1 5 6 12 25 -16 | 0 -13 -14 -35 -82 75 }}


EDOs: 26, 244, 270, 566, 836, 1106, 7472e, 8578de, 9684cde, 10790cde, 11896cde
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.214


Badness: 0.0162
{{Optimal ET sequence|legend=1| 99e, 118, 217, 552d, 769de }}


=Quatracot=
Badness: 0.044710
Commas: 4375/4374, 1483154296875/1473173782528


POTE generator: ~448/405 = 176.805
==== Paraklein ====
The ''paraklein'' temperament (19e &amp; 118) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]].


Map: [&lt;2 7 7 23|, &lt;0 -13 -8 -59|]
Subgroup: 2.3.5.7.11.13


Wedgie: &lt;&lt;26 16 118 -35 114 229||
Comma list: 196/195, 352/351, 625/624, 729/728


EDOs: 190, 224, 414, 638, 1052c, 1690bc
Mapping: {{mapping| 1 5 6 12 25 15 | 0 -13 -14 -35 -82 -43 }}


Badness: 0.1760
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.225


==11-limit==
{{Optimal ET sequence|legend=1| 19e, 99ef, 118, 217ff, 335ff }}
Commas: 3025/3024, 4375/4374, 1265625/1261568


POTE generator: ~448/405 = 176.806
Badness: 0.037618


Map: [&lt;2 7 7 23 19|, &lt;0 -13 -8 -59 -41|]
=== Parkleismic ===
Subgroup: 2.3.5.7.11


EDOs: 190, 224, 414, 638, 1052c
Comma list: 176/175, 1375/1372, 2200/2187


Badness: 0.0410
Mapping: {{mapping| 1 5 6 12 20 | 0 -13 -14 -35 -63 }}


==13-limit==
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.060
Commas: 625/624, 729/728, 1575/1573, 2200/2197


POTE generator: ~448/405 = 176.804
{{Optimal ET sequence|legend=1| 19e, 80, 179, 259cd }}


Map: [&lt;2 7 7 23 19 13|, &lt;0 -13 -8 -59 -41 -19|]
Badness: 0.055884


EDOs: 190, 224, 414, 638, 1690bc, 2328bcde
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Badness: 0.0226
Comma list: 169/168, 176/175, 325/324, 1375/1372


=Octoid=
Mapping: {{mapping| 1 5 6 12 20 10 | 0 -13 -14 -35 -63 -24 }}
Commas: 4375/4374, 16875/16807


valid range: [578.571, 600.000] (56bcd to 8d)
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.075


nice range: [582.512, 584.359]
{{Optimal ET sequence|legend=1| 19e, 80, 179 }}


strict range: [582.512, 584.359]
Badness: 0.036559


POTE generator: ~7/5 = 583.940
=== Paradigmic ===
Subgroup: 2.3.5.7.11


Map: [&lt;8 1 3 3|, &lt;0 3 4 5|]
Comma list: 540/539, 896/891, 3136/3125


Generators: 49/45, 7/5
Mapping: {{mapping| 1 5 6 12 -1 | 0 -13 -14 -35 17 }}


EDOs: 72, 152, 224
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.096


Badness: 0.0427
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}


==11-limit==
Badness: 0.041720
Commas: 540/539, 1375/1372, 4000/3993


valid range: [581.250, 586.364] (64cd, 88bcde)
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


nice range: [582.512, 585.084]
Comma list: 169/168, 325/324, 540/539, 832/825


strict range: [582.512, 585.084]
Mapping: {{mapping| 1 5 6 12 -1 10 | 0 -13 -14 -35 17 -24 }}


POTE generator: ~7/5 = 583.692
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.080


Map: [&lt;8 1 3 3 16|, &lt;0 3 4 5 3|]
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}


EDOs: 72, 152, 224
Badness: 0.035781


Badness: 0.0141
=== Semiparakleismic ===
Subgroup: 2.3.5.7.11


==13-limit==
Comma list: 3025/3024, 3136/3125, 4375/4374
Commas: 540/539, 1375/1372, 4000/3993, 625/624


POTE generator: ~7/5 = 583.905
Mapping: {{mapping| 2 10 12 24 19 | 0 -13 -14 -35 -23 }}


Map: [&lt;8 1 3 3 16 -21|, &lt;0 3 4 5 3 13|]
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.181


EDOs: 72, 224
{{Optimal ET sequence|legend=1| 80, 118, 198, 316, 514c, 830c }}


Badness: 0.0153
Badness: 0.034208


==Music==
==== Semiparamint ====
[http://www.archive.org/details/Dreyfus http://www.archive.org/details/Dreyfus]
This extension was named ''semiparakleismic'' in the earlier materials.  


[http://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play]
Subgroup: 2.3.5.7.11.13


==Octopus==
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374
Commas: 169/168, 325/324, 364/363, 540/539


POTE generator: ~7/5 = 583.892
Mapping: {{mapping| 2 10 12 24 19 -1 | 0 -13 -14 -35 -23 16 }}


Map: [&lt;8 1 3 3 16 14|, &lt;0 3 4 5 3 4|]
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.156


EDOs: 72, 152, 224f
{{Optimal ET sequence|legend=1| 80, 118, 198 }}


Badness: 0.0217
Badness: 0.033775


=Amity=
==== Semiparawolf ====
The generator for amity temperament is the acute minor third, which means an ordinary 6/5 minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&amp;53 temperament, or by its wedgie, &lt;&lt;5 13 -17 9 -41 -76||. [[99edo]] is a good tuning for amity, with generator 28/99, and MOS of 11, 18, 25, 32, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.
This extension was named ''gentsemiparakleismic'' in the earlier materials.  


In the 5-limit amity is a genuine microtemperament, with 58/205 being a possible tuning. Another good choice is (64/5)^(1/13), which gives pure major thirds.
Subgroup: 2.3.5.7.11.13


==5-limit==
Comma list: 169/168, 325/324, 364/363, 3136/3125
Comma: 1600000/1594323


POTE generator: ~243/200 = 339.519
Mapping: {{mapping| 2 10 12 24 19 20 | 0 -13 -14 -35 -23 -24 }}


Map: [&lt;1 3 6|, &lt;0 -5 -13|]
Optimal tuning (POTE): ~55/39 = 1\2, ~6/5 = 315.184


EDOs: 7, 39, 46, 53, 152, 205, 463, 668, 873
{{Optimal ET sequence|legend=1| 80, 118f, 198f }}


Badness: 0.0220
Badness: 0.040467


==7-limit==
== Counterkleismic ==
Commas: 4375/4374, 5120/5103
{{See also| High badness temperaments #Counterhanson}}


POTE generator: ~243/200 = 339.432
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo| -20 -24 25 }}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19 &amp; 224 temperament (''counterkleismic'', named by analogy to [[catakleismic]] and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).


Map: [&lt;1 3 6 -2|, &lt;0 -5 -13 17|]
[[Subgroup]]: 2.3.5.7


Wedgie: &lt;&lt;5 13 -17 9 -41 -76||
[[Comma list]]: 4375/4374, 158203125/157351936


EDOs: 7, 39, 46, 53, 99, 251, 350
{{Mapping|legend=1| 1 20 20 61 | 0 -25 -24 -79 }}


Badness: 0.0236
: mapping generators: ~2, ~5/3


==11-limit==
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060
Commas: 540/539, 4375/4374, 5120/5103


POTE generator: ~243/200 = 339.464
{{Optimal ET sequence|legend=1| 19, 205, 224, 243, 467 }}


Map: [&lt;1 3 6 -2 21|, &lt;0 -5 -13 17 -62|]
[[Badness]]: 0.090553


EDOs: 53, 99e, 152, 555de, 707de, 859bde
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.0315
Comma list: 540/539, 4375/4374, 2097152/2096325


==13-limit==
Mapping: {{mapping| 1 20 20 61 -40 | 0 -25 -24 -79 59 }}
Commas: 352/351, 540/539, 625/624, 847/845


POTE generator: ~243/200 = 339.481
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.071


Map: [&lt;1 3 6 -2 21 17|, &lt;0 -5 -13 17 -62 -47|]
{{Optimal ET sequence|legend=1| 19, 205, 224 }}


EDOS: 53, 99ef, 152f, 205
Badness: 0.070952


Badness: 0.0280
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


==Accord==
Comma list: 540/539, 625/624, 729/728, 10985/10976
Commas: 126/125, 100352/98415


POTE generator: ~243/200 = 338.993
Mapping: {{mapping| 1 20 20 61 -40 56 | 0 -25 -24 -79 59 -71 }}


Map: [&lt;1 3 6 11|, &lt;0 -5 -13 -29|]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.070


Wedgie: &lt;&lt;5 13 29 9 32 31||
{{Optimal ET sequence|legend=1| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}


EDOs: 46, 131c, 177c
Badness: 0.033874


Badness: 0.0956
=== Counterlytic ===
Subgroup: 2.3.5.7.11


===11-limit===
Comma list: 1375/1372, 4375/4374, 496125/495616
Commas: 121/120, 126/125, 896/891


POTE generator: ~11/9 = 339.047
Mapping: {{mapping| 1 20 20 61 125 | 0 -25 -24 -79 -165 }}


Map: [&lt;1 3 6 11 6|, &lt;0 -5 -13 -29 -9|]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065


EDOs: 46, 177c, 223bc, 269bce
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}


Badness: 0.0425
Badness: 0.065400


==Hitchcock==
==== 13-limit ====
Commas: 121/120, 176/175, 2200/2187
Subgroup: 2.3.5.7.11.13


POTE generator: ~11/9 = 339.340
Comma list: 625/624, 729/728, 1375/1372, 10985/10976


Map: [&lt;1 3 6 -2 6|, &lt;0 -5 -13 17 -9|]
Mapping: {{mapping| 1 20 20 61 125 56 | 0 -25 -24 -79 -165 -71 }}


EDOs: 7, 39, 46, 53, 99
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065


Badness: 0.0352
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}


===13-limit===
Badness: 0.029782
Commas: 121/120, 169/168, 176/175, 325/324


POTE generator: ~11/9 = 339.419
== Quincy ==
[[Subgroup]]: 2.3.5.7


Map: [&lt;1 3 6 -2 6 2|, &lt;0 -5 -13 17 -9 6|]
[[Comma list]]: 4375/4374, 823543/819200


EDOs: 7, 39, 46, 53, 99
{{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }}


Badness: 0.0224
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613


==Hemiamity==
{{Optimal ET sequence|legend=1| 72, 217, 289 }}
Commas: 4375/4374, 5120/5103, 3025/3024


POTE generator: ~ 243/200 = 339.493
[[Badness]]: 0.079657


Map: [&lt;2 1 -1 13 13|, &lt;0 5 13 -17 -14|]
=== 11-limit ===
Subgroup: 2.3.5.7.11


EDOs: 14, 46, 106, 152, 350
Comma list: 441/440, 4000/3993, 4375/4374


=Parakleismic=
Mapping: {{mapping| 1 2 3 3 4 | 0 -30 -49 -14 -39 }}
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, |8 14 -13&gt;, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being &lt;&lt;13 14 35 -8 19 42|| and adding 3136/3125 and 4375/4374, and the 11-limit wedgie &lt;&lt;13 14 35 -36 ...|| adding 385/384. For the 7-limit [[99edo|99edo]] may be preferred, but in the 11-limit it is best to stick with 118.


Comma: 124440064/1220703125
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.613


POTE generator: ~6/5 = 315.240
{{Optimal ET sequence|legend=1| 72, 217, 289 }}


Map: [&lt;1 5 6|, &lt;0 -13 -14|]
Badness: 0.030875


EDOs: 19, 61, 80, 99, 118, 453, 571, 689, 1496
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.0433
Comma list: 364/363, 441/440, 676/675, 4375/4374


==7-limit==
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -30 -49 -14 -39 -94 }}
Commas: 3136/3125, 4375/4374


POTE generator: ~6/5 = 315.181
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602


Map: [&lt;1 5 6 12|, &lt;0 -13 -14 -35|]
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}


EDOs: 19, 80, 99, 217, 316, 415
Badness: 0.023862


Badness: 0.0274
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


==11-limit==
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155
Commas: 385/384, 3136/3125, 4375/4374


POTE generator: ~6/5 = 315.251
Mapping: {{mapping| 1 2 3 3 4 5 5 | 0 -30 -49 -14 -39 -94 -66 }}


Map: [&lt;1 5 6 12 -6|, &lt;0 -13 -14 -35 36|]
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602


EDOs: 19, 99, 118
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}


Badness: 0.0497
Badness: 0.014741


==Parkleismic==
=== 19-limit ===
Commas: 176/175, 1375/1372, 2200/2187
Subgroup: 2.3.5.7.11.13.17.19


POTE generator: ~6/5 = 315.060
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675


Map: [&lt;1 5 6 12 20|, &lt;0 -13 -14 -35 -63|]
Mapping: {{mapping| 1 2 3 3 4 5 5 4 | 0 -30 -49 -14 -39 -94 -66 18 }}


EDOs: 80, 179, 259cd
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.594


Badness: 0.0559
{{Optimal ET sequence|legend=1| 72, 145, 217 }}


===13-limit===
Badness: 0.015197
Commas: 169/168, 176/175, 325/324, 1375/1372


POTE generator: ~6/5 = 315.075
== Sfourth ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Sfourth]].''


Map: [&lt;1 5 6 12 20 10|, &lt;0 -13 -14 -35 -63 -24|]
[[Subgroup]]: 2.3.5.7


EDOs: 15, 19, 80, 179
[[Comma list]]: 4375/4374, 64827/64000


Badness: 0.0366
{{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287
 
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}
 
[[Badness]]: 0.123291
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 121/120, 441/440, 4375/4374
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -19 -31 -9 -25 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.286
 
{{Optimal ET sequence|legend=1| 45e, 46, 91e, 137de }}
 
Badness: 0.054098
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 121/120, 169/168, 325/324, 441/440
 
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -19 -31 -9 -25 -14 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.310
 
{{Optimal ET sequence|legend=1| 45ef, 46, 91ef, 137def }}
 
Badness: 0.033067


==Paradigmic==
=== Sfour ===
Commas: 540/539, 896/891, 3136/3125
Subgroup: 2.3.5.7.11


POTE generator: ~6/5 = 315.096
Comma list: 385/384, 2401/2376, 4375/4374


Map: [&lt;1 5 6 12 -1|, &lt;0 -13 -14 -35 17|]
Mapping: {{mapping| 1 2 3 3 3 | 0 -19 -31 -9 21 }}


EDOs: 19, 80, 99e, 179e
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.246


Badness: 0.0417
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


===13-limit===
Badness: 0.076567
Commas: 169/168, 325/324, 540/539, 832/825


POTE generator: ~6/5 = 315.080
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 5 6 12 -1 10|, &lt;0 -13 -14 -35 17 -24|]
Comma list: 196/195, 364/363, 385/384, 4375/4374


EDOs: 19, 80, 99e, 179e
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -19 -31 -9 21 32 }}


Badness: 0.0358
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.239


=Semiparakleismic=
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}
Commas: 3025/3024, 3136/3125, 4375/4374


POTE generator: 315.181
Badness: 0.051893


Map: [&lt;2 10 12 24 19|, &lt;0 -13 -14 -35 -23|]
== Trideci ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Tridecatonic]].''


EDOs: 80, 118, 198, 316, 514c, 830c
The trideci temperament (26 &amp; 65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the [[Octagar temperaments #Tridecatonic|tridecatonic temperament]], but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name ''trideci'' comes from "tridecim" (Latin for "[[wikipedia:13|thirteen]]").


Badness: 0.0342
[[Subgroup]]: 2.3.5.7


=Quincy=
[[Comma list]]: 4375/4374, 83349/81920
Commas: 4375/4374, 823543/819200


POTE generator: ~1728/1715 = 16.613
{{Mapping|legend=1| 13 0 -11 57 | 0 1 2 -1 }}


Map: [&lt;1 2 2 3|, &lt;0 -30 -49 -14|]
[[Optimal tuning]] ([[POTE]]): ~256/245 = 1\13, ~3/2 = 699.1410


EDOs: 72, 217, 289
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdd }}


Badness: 0.0797
[[Badness]]: 0.184585


==11-limit==
=== 11-limit ===
Commas: 441/440, 4000/3993, 41503/41472
Subgroup: 2.3.5.7.11


POTE generator: ~100/99 = 16.613
Comma list: 245/242, 385/384, 4375/4374


Map: [&lt;1 2 2 3 4|, &lt;0 -30 -49 -14 -39|]
Mapping: {{mapping| 13 0 -11 57 45 | 0 1 2 -1 0 }}


EDOs: 72, 217, 289
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.6179


Badness: 0.0309
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdde }}


==13-limit==
Badness: 0.084590
Commas: 364/363, 441/440, 676/675, 4375/4374


POTE generator: ~100/99 = 16.602
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 2 2 3 4 5|, &lt;0 -30 -49 -14 -39 -94|]
Comma list: 169/168, 245/242, 325/324, 385/384


EDOs: 72, 145, 217, 289
Mapping: {{mapping| 13 0 -11 57 45 48 | 0 1 2 -1 0 0 }}


Badness: 0.0239
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.2969


==17-limit==
{{Optimal ET sequence|legend=1| 26, 65f, 91f, 156dff }}
Commas: 364/363, 441/440, 595/594, 1001/1000, 1156/1155


POTE generator: ~100/99 = 16.602
Badness: 0.052366


Map: [&lt;1 2 2 3 4 5 5|, &lt;0 -30 -49 -14 -39 -94 -66|]
== Counterorson ==
Counterorson tempers out the {{monzo| 147 -103 7 }} comma in the 5-limit. It uses a generator that reaches the 3rd harmonic in 7 steps, but unlike the [[semicomma family]], 5th harmonic is 103 generators up and not 3 generators down. The two mappings converge on [[53edo]].


EDOs: 72, 145, 217, 289
Subgroup: 2.3.5.7


Badness: 0.0147
Comma list: 4375/4374, {{monzo| 154 -54 -21 -7 }}


==19-limit==
Mapping: {{mapping| 1 0 -21 85 | 0 7 103 -363 }}
Commas: 343/342, 364/363, 441/440, 595/594, 676/675, 2601/2600


POTE generator: ~100/99 = 16.594
Optimal tuning (CTE): ~2 = 1\1, ~{{monzo| 66 -23 -9 -3 }} = 271.7113


Map: [&lt;1 2 2 3 4 5 5 4|, &lt;0 -30 -49 -14 -39 -94 -66 18|]
{{Optimal ET sequence|legend=1| 53, …, 1612, 1665, 1718 }}


EDOs: 72, 145, 217
Badness: 0.312806


Badness: 0.0152
== Notes ==


[[Category:abigail]]
[[Category:Temperament collections]]
[[Category:amity]]
[[Category:Pages with mostly numerical content]]
[[Category:deca]]
[[Category:Ragismic microtemperaments| ]] <!-- main article -->
[[Category:enneadecal]]
[[Category:Ragismic| ]] <!-- key article -->
[[Category:ennealimmal]]
[[Category:Rank 2]]
[[Category:gamera]]
[[Category:Microtemperaments]]
[[Category:mitonic]]
[[Category:Abigail]]
[[Category:octoid]]
[[Category:Deca]]
[[Category:parakleismic]]
[[Category:Enneadecal]]
[[Category:supermajor]]
[[Category:Ennealimmal]]
[[Category:Gamera]]
[[Category:Mitonic]]
[[Category:Octoid]]
[[Category:Parakleismic]]
[[Category:Quincy]]
[[Category:Supermajor]]