88edt: Difference between revisions
Created page with "'''88EDT''' is the equal division of the third harmonic into 88 parts of 21.6131 cents each, corresponding to 55.5218 edo (similar to every second step of..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
'''88EDT''' is the [[Edt|equal division of the third harmonic]] into 88 parts of 21.6131 [[cent|cents]] each, corresponding to 55.5218 [[edo]] (similar to every second step of [[111edo]]). It is consistent to the no-twos 11-limit, tempering out 1331/1323, 16875/16807, and 216513/214375. In the 3.4.5.7.11 subgroup, it tempers out 176/175, 540/539, 1331/1323, and 5120/5103. | '''88EDT''' is the [[Edt|equal division of the third harmonic]] into 88 parts of 21.6131 [[cent|cents]] each, corresponding to 55.5218 [[edo]] (similar to every second step of [[111edo]]). It is consistent to the no-twos 11-limit, tempering out 1331/1323, 16875/16807, and 216513/214375. In the 3.4.5.7.11 subgroup, it tempers out 176/175, 540/539, 1331/1323, and 5120/5103. | ||
88EDT is the | 88EDT is the largest EDT to not correspond to a [[val]] of some [[EDO]] that has a [[5L 2s|diatonic]] fifth, instead corresponding to both the [[55edo|55b]] val, with [[5edo]]'s fifth, and the [[56edo|56b]] val, with [[7edo]]'s fifth. It is also a [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak EDT]]. | ||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 88 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 88 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} | |||
== Intervals == | |||
{{Interval table}} |