18edf: Difference between revisions
Wikispaces>FREEZE No edit summary |
Add comparison with 20edf |
||
(27 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
18edf corresponds to [[31edo]] with an [[octave stretching]] of about 9 [[cent]]s. Consequently, it does not provide 31edo's good approximations of most low harmonics, but it provides good approximations to many simple ratios in the thirds region: subminor [[7/6]] (+6{{cent}}), minor [[6/5]] (-3{{cent}}), neutral [[11/9]] (+4{{cent}}), major [[5/4]] (+4{{cent}}), and supermajor [[9/7]] (-6{{cent}}). These intervals may be used to form a variety of [[triad]]s and [[tetrad]]s in close harmony along with the tuning's pure fifth. | |||
In comparison, [[20edf]] (and [[Carlos Gamma]]) offers more accurate pental (minor and major) and undecimal (neutral) thirds, but less accurate septimal (subminor and supermajor) thirds. | |||
=== Regular temperaments === | |||
18edf is related to the [[regular temperament]] which [[tempering out|tempers out]] 2401/2400 and 8589934592/8544921875 in the [[7-limit]]; with 5632/5625, 46656/46585, and 166698/166375 in the [[11-limit]], which is supported by [[31edo]], [[369edo]], [[400edo]], [[431edo]], and [[462edo]]. | |||
3 | === Harmonics === | ||
{{Harmonics in equal|18|3|2|intervals=integer|columns=11}} | |||
{{Harmonics in equal|18|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 18edf (continued)}} | |||
=== Subsets and supersets === | |||
Since 18 factors into primes as {{nowrap| 2 × 3<sup>2</sup> }}, 18edf has subset edfs {{EDs|equave=f| 2, 3, 6, and 9 }}. | |||
5 | == Intervals == | ||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
|- | |||
! # | |||
! Cents | |||
! Approximate ratios | |||
|- | |||
| 0 | |||
| 0.0 | |||
| [[1/1]] | |||
|- | |||
| 1 | |||
| 39.0 | |||
| [[33/32]], [[36/35]], [[49/48]], [[50/49]], [[64/63]] | |||
|- | |||
| 2 | |||
| 78.0 | |||
| [[21/20]], [[22/21]], [[25/24]], [[28/27]] | |||
|- | |||
| 3 | |||
| 117.0 | |||
| [[15/14]], [[16/15]] | |||
|- | |||
| 4 | |||
| 156.0 | |||
| [[11/10]], [[12/11]] | |||
|- | |||
| 5 | |||
| 195.0 | |||
| [[9/8]], [[10/9]] | |||
|- | |||
| 6 | |||
| 234.0 | |||
| [[8/7]] | |||
|- | |||
| 7 | |||
| 273.0 | |||
| [[7/6]] | |||
|- | |||
| 8 | |||
| 312.0 | |||
| [[6/5]] | |||
|- | |||
| 9 | |||
| 351.0 | |||
| [[11/9]], [[16/13]] | |||
|- | |||
| 10 | |||
| 390.0 | |||
| [[5/4]] | |||
|- | |||
| 11 | |||
| 429.0 | |||
| [[9/7]], [[14/11]] | |||
|- | |||
| 12 | |||
| 468.0 | |||
| [[13/10]], [[21/16]] | |||
|- | |||
| 13 | |||
| 507.0 | |||
| [[4/3]] | |||
|- | |||
| 14 | |||
| 546.0 | |||
| [[11/8]], [[15/11]] | |||
|- | |||
| 15 | |||
| 585.0 | |||
| [[7/5]] | |||
|- | |||
| 16 | |||
| 624.0 | |||
| [[10/7]] | |||
|- | |||
| 17 | |||
| 663.0 | |||
| [[16/11]], [[22/15]] | |||
|- | |||
| 18 | |||
| 702.0 | |||
| [[3/2]] | |||
|- | |||
| 19 | |||
| 741.0 | |||
| [[20/13]], [[32/21]] | |||
|- | |||
| 20 | |||
| 780.0 | |||
| [[11/7]], [[14/9]] | |||
|- | |||
| 21 | |||
| 818.9 | |||
| [[8/5]] | |||
|- | |||
| 22 | |||
| 857.9 | |||
| [[18/11]] | |||
|- | |||
| 23 | |||
| 896.9 | |||
| [[5/3]] | |||
|- | |||
| 24 | |||
| 935.9 | |||
| [[12/7]] | |||
|- | |||
| 25 | |||
| 974.9 | |||
| [[7/4]] | |||
|- | |||
| 26 | |||
| 1013.9 | |||
| [[9/5]] | |||
|- | |||
| 27 | |||
| 1052.9 | |||
| [[11/6]] | |||
|- | |||
| 28 | |||
| 1091.9 | |||
| [[15/8]] | |||
|- | |||
| 29 | |||
| 1130.9 | |||
| [[27/14]] | |||
|- | |||
| 30 | |||
| 1169.9 | |||
| [[35/18]], [[49/25]], [[63/32]] | |||
|- | |||
| 31 | |||
| 1208.9 | |||
| [[2/1]] | |||
|- | |||
| 32 | |||
| 1247.9 | |||
| [[33/16]], [[45/22]], [[49/24]], [[55/27]] | |||
|- | |||
| 33 | |||
| 1286.9 | |||
| [[21/10]], [[25/12]] | |||
|- | |||
| 34 | |||
| 1325.9 | |||
| [[15/7]] | |||
|- | |||
| 35 | |||
| 1364.9 | |||
| [[11/5]] | |||
|- | |||
| 36 | |||
| 1403.9 | |||
| [[9/4]] | |||
|} | |||
== Related regular temperaments == | |||
The rank-two regular temperament supported by 31edo and 369edo has three equal divisions of the interval which equals an octave minus the step interval of 18EDF as a generator. | |||
7: | === 7-limit 31 & 369 === | ||
Commas: 2401/2400, 8589934592/8544921875 | |||
POTE generator: ~5/4 = 386.997 | |||
Mapping: [{{map| 1 19 2 7 }}, {{map| 0 -54 1 -13 }}] | |||
EDOs: {{EDOs|31, 369, 400, 431, 462}} | |||
11: | === 11-limit 31 & 369 === | ||
Commas: 2401/2400, 5632/5625, 46656/46585 | |||
POTE generator: ~5/4 = 386.999 | |||
13 | Mapping: [{{map| 1 19 2 7 37 }}, {{map| 0 -54 1 -13 -104 }}] | ||
EDOs: 31, 369, 400, 431, 462 | |||
=== 13-limit 31 & 369 === | |||
Commas: 1001/1000, 1716/1715, 4096/4095, 46656/46585 | |||
POTE generator: ~5/4 = 387.003 | |||
Mapping: [{{map| 1 19 2 7 37 -35 }}, {{map| 0 -54 1 -13 -104 120 }}] | |||
EDOs: 31, 369, 400, 431, 462 | |||
{{Todo|cleanup|expand|inline=1|comment=say what the temperaments are like and why one would want to use them, and for what}} | |||
== See also == | |||
* [[31edo]] – relative edo | |||
* [[49edt]] – relative edt | |||
* [[72ed5]] – relative ed5 | |||
* [[80ed6]] – relative ed6 | |||
* [[87ed7]] – relative ed7 | |||
* [[107ed11]] – relative ed11 | |||
* [[111ed12]] – relative ed12 | |||
* [[138ed22]] – relative ed22 | |||
* [[204ed96]] – close to the zeta-optimized tuning for 31edo | |||
* [[39cET]] | |||
[[Category:31edo]] |