Porcupine family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 277238008 - Original comment: **
Porcupine: base the sharpness on 4/3 rather than 3/2 (see talk). Hystrix isn't actually flat of 8d
 
(105 intermediate revisions by 24 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{interwiki
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| de = Porcupine
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-19 14:27:34 UTC</tt>.<br>
| en = Porcupine family
: The original revision id was <tt>277238008</tt>.<br>
| es =
: The revision comment was: <tt></tt><br>
| ja =
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
}}
<h4>Original Wikitext content:</h4>
{{Technical data page}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
The '''porcupine family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[porcupine comma]], [[250/243]], also called the maximal diesis.  
----
The 5-limit parent comma for the porcupine family is 250/243, the maximal [[diesis]] or porcupine comma. Its [[monzo]] is |1 -5 3&gt;, and flipping that yields &lt;&lt;3 5 1|| for the [[wedgie]]. This tells us the [[generator]] is a minor whole tone, the [[10_9|10/9]] interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.


[[POTE tuning|POTE generator]]: 163.950
== Porcupine ==
{{Main| Porcupine }}


Map: [&lt;1 2 3|, &lt;0 -3 -5|]
The [[generator]] of porcupine is a minor whole tone, the [[10/9]] interval, and three of these add up to a perfect fourth ([[4/3]]), with two more giving the minor sixth ([[8/5]]). In fact, {{nowrap| (10/9)<sup>3</sup> {{=}} (4/3)⋅(250/243) }}, and {{nowrap| (10/9)<sup>5</sup> {{=}} (8/5)⋅(250/243)<sup>2</sup> }}. Its [[ploidacot]] is omega-tricot. [[22edo|3\22]] is a very recommendable generator, and [[mos scale]]s of 7, 8 and 15 notes make for some nice scale possibilities.


EDOs: [[15edo|15]], [[22edo|22]], [[95edo|95c]], [[117edo|117bc]], [[139edo|139bc]], [[161edo|161bc]], [[183edo|183bc]]
[[Subgroup]]: 2.3.5


==Seven limit children==
[[Comma list]]: 250/243
The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. That means [[64_63|64/63]], the [[Archyta's comma]], for [[Porcupine family#Porcupine|porcupine]], [[36_35|36/35]], the [[septimal quarter tone]], for [[Porcupine family#Hystrix|hystrix]], [[50_49|50/49]], the [[jubilisma]], for [[Porcupine family#Hedgehog|hedgehog]], and [[49_48|49/48]], the [[slendro diesis]], for [[Porcupine family#Nautilus|nautilus]].


=Porcupine=
{{Mapping|legend=1| 1 2 3 | 0 -3 -5 }}
Porcupine, with wedgie &lt;&lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to [[7_4|7/4]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.


Commas: 250/243, 64/63
: mapping generators: ~2, ~10/9


[[POTE tuning|POTE generator]]: ~10/9 = 162.880
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~10/9 = 164.166
: [[error map]]: {{val| 0.000 +5.547 -7.143 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 163.950
: error map: {{val| 0.000 +6.194 -6.065 }}


Map: [&lt;1 2 3 2|, &lt;0 -3 -5 6|]
[[Tuning ranges]]:  
EDOs: 22, [[59edo|59]], [[81edo|81bd]], [[140edo|140bd]]
* [[5-odd-limit]] [[diamond monotone]]: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
* 5-odd-limit [[diamond tradeoff]]: ~10/9 = [157.821, 166.015]


==11-limit==
{{Optimal ET sequence|legend=1| 7, 15, 22, 95c }}
Commas: 55/54, 64/63, 100/99


POTE generator: ~10/9 = 162.747
[[Badness]] (Smith): 0.030778


Map: [&lt;1 2 3 2 4|, &lt;0 -3 -5 6 -4|]
=== Overview to extensions ===
EDOs: [[7edo|7]], 15, 22, [[37edo|37]], [[59edo|59]]
==== 7-limit extensions ====
Badness: 0.0217
The second comma defines which [[7-limit]] family member we are looking at.
* [[#Hystrix|Hystrix]] adds [[36/35]], the mint comma, for an exotemperament tuning around 8d-edo;  
* [[#Opossum|Opossum]] adds [[28/27]], the trienstonic comma, for a tuning between 8d-edo and 15edo;
* [[#Septimal porcupine|Septimal porcupine]] adds [[64/63]], the archytas comma, for a tuning between 15edo and 22edo;
* [[#Porky|Porky]] adds [[225/224]], the marvel comma, for a tuning between 22edo and 29edo;
* [[#Coendou|Coendou]] adds [[525/512]], the avicennma, for a tuning sharp of 29edo.  


=Hystrix=
Those all share the same generator with porcupine.  
Hystrix, with wedgie &lt;&lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.


Commas: 36/35, 160/147
[[#Nautilus|nautilus]] tempers out [[49/48]] and splits the generator in two. [[#Hedgehog|hedgehog]] tempers out [[50/49]] with a semi-octave period. Finally, [[#Ammonite|ammonite]] tempers out [[686/675]] and [[#Ceratitid|ceratitid]] tempers out [[1728/1715]]. Those split the generator in three.


[[POTE tuning|POTE generator]]: 158.868
Temperaments discussed elsewhere include:
* [[Oxygen]] → [[Very low accuracy temperaments #Oxygen|Very low accuracy temperaments]].
* [[Jamesbond]] → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]].


Map: [&lt;1 2 3 3|, &lt;0 -3 -5 -1|]
==== Subgroup extensions ====
Noting that {{nowrap| 250/243 {{=}} ([[55/54]])⋅([[100/99]]) {{=}} S10<sup>2</sup>⋅[[121/120|S11]] }}, the temperament thus extends naturally to the 2.3.5.11 [[subgroup]], sometimes known as ''porkypine'', given right below.


EDOs: 10d, 12, 13d, 15
=== 2.3.5.11 subgroup (porkypine) ===
Subgroup: 2.3.5.11


=Hedgehog=
Comma list: 55/54, 100/99


See //[[Hedgehog]]//
Sval mapping: {{mapping| 1 2 3 4 | 0 -3 -5 -4 }}


=Nautilus=
Gencom mapping: {{mapping| 1 2 3 0 4 | 0 -3 -5 0 -4 }}
Commas: 49/48, 250/243


Pote generator: ~21/20 = 82.505
: gencom: [2 10/9; 55/54, 100/99]


Map: [&lt;1 2 3 3|, &lt;0 -6 -10 -3|]
Optimal tunings:  
Wedgie: &lt;&lt;6 10 3 2 -12 -21||
* CTE: ~2 = 1200.000, ~11/10 = 163.887
EDOs: 10, 15, 19, [[29edo|29]], [[102edo|102cd]]
* POTE: ~2 = 1200.000, ~11/10 = 164.078


==11-limit==
{{Optimal ET sequence|legend=0| 7, 15, 22, 73ce, 95ce }}
Commas: 49/48, 55/54, 245/242


POTE generator: ~21/20 = 82.504
Badness (Smith): 0.0097


Map: [&lt;1 2 3 3 4|, &lt;0 -6 -10 -3 -8|]
==== Undecimation ====
EDOs: 10e, 14c, 15, 19, 22d, 29, 102cde
Subgroup: 2.3.5.11.13


==13-limit==
Comma list: 55/54, 100/99, 512/507
Commas: 49/48, 55/54, 91/90, 100/99


POTE generator: ~21/20 = 62.530
Sval mapping: {{mapping| 1 5 8 8 2 | 0 -6 -10 -8 3 }}


Map: [&lt;1 2 3 3 4 5|, &lt;0 -6 -10 -3 -8 -19|]
: sval mapping generators: ~2, ~65/44
EDOs: 10e, 15f, 17d, 19, 22d, 29, 102cde


[[http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3|Nautilus Reverie]] by [[IgliashonJones|Igliashon Calvin Jones-Coolidge]]
Optimal tunings:  
=Ammonite=
* CTE: ~2 = 1200.000, ~88/65 = 518.086
Commas: 250/243, 686/675
* POTE: ~2 = 1200.000, ~88/65 = 518.209


POTE generator: ~9/7 = 454.448
{{Optimal ET sequence|legend=0| 7, 23bc, 30, 37, 44 }}


Map: [&lt;1 5 8 10|, &lt;0 -9 -15 -19|]
Badness (Smith): 0.0305
Wedgie: &lt;&lt;9 15 19 3 5 2||
EDOs: 29, 37, 66
Badness: 0.1077


==11-limit==
== Septimal porcupine ==
Commas: 55/54, 100/99, 686/675
{{Main| Porcupine }}


POTE generator: ~9/7 = 454.512
Septimal porcupine uses six of its minor tone generator steps to get to [[7/4]]. Here, we share the same mapping of 7/4 in terms of fifths as [[archy]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.  


Map: [&lt;1 5 8 10 8|, &lt;0 -9 -15 -19 -12|]
[[Subgroup]]: 2.3.5.7
EDOs: 29, 37, 66
Badness: 0.0457


==13-limit==
[[Comma list]]: 64/63, 250/243
Commas: 55/54, 91/90, 100/99, 169/168


POTE generator: ~13/10 = 454.429
{{Mapping|legend=1| 1 2 3 2 | 0 -3 -5 6 }}


Map: [&lt;1 5 8 10 8 9|, &lt;0 -9 -15 -19 -12 -14|]
[[Optimal tuning]]s:  
EDOs: 29, 37, 66
* [[CTE]]: ~2 = 1200.000, ~10/9 = 163.203
Badness: 0.0272
: [[error map]]: {{val| 0.000 +8.435 -2.330 +10.394 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 162.880
: error map: {{val| 0.000 +9.405 -0.714 +8.455 }}


=Porky=
[[Minimax tuning]]:
Commas: 225/224, 250/243
* [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7


POTE generator: ~10/9 = 164.412
[[Tuning ranges]]:
* 7- and 9-odd-limit [[diamond monotone]]: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
* 7-odd-limit [[diamond tradeoff]]: ~10/9 = [157.821, 166.015]
* 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]


Map: [&lt;1 2 3 5|, &lt;0 -3 -5 -16|]
{{Optimal ET sequence|legend=1| 7, 15, 22, 37, 59, 81bd }}
Wedgie: &lt;&lt;3 5 16 1 17 23||
EDOS: 7, 8, 15, 22, 29, 51, 73
Badness: 0.0544


==11-limit==
[[Badness]] (Smith): 0.041057
Commas: 55/54, 100/99, 225/224


POTE generator: ~10/9 = 164.552
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;1 2 3 5 4|, &lt;0 -3 -5 -16 -4|]
Comma list: 55/54, 64/63, 100/99
EDOs: 7, 8, 15, 22, 29, 51, 73
 
Badness: 0.0273
Mapping: {{mapping| 1 2 3 2 4 | 0 -3 -5 6 -4 }}
</pre></div>
 
<h4>Original HTML content:</h4>
Optimal tunings:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Porcupine family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:26:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt; | &lt;a href="#Porcupine"&gt;Porcupine&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;!-- ws:start:WikiTextTocRule:29: --&gt;&lt;!-- ws:end:WikiTextTocRule:29 --&gt;&lt;!-- ws:start:WikiTextTocRule:30: --&gt; | &lt;a href="#Hystrix"&gt;Hystrix&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt; | &lt;a href="#Hedgehog"&gt;Hedgehog&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt; | &lt;a href="#Nautilus"&gt;Nautilus&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt; | &lt;a href="#Ammonite"&gt;Ammonite&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt; | &lt;a href="#Porky"&gt;Porky&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;
* CTE: ~2 = 1200.000, ~11/10 = 163.105
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;hr /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 162.747
The 5-limit parent comma for the porcupine family is 250/243, the maximal &lt;a class="wiki_link" href="/diesis"&gt;diesis&lt;/a&gt; or porcupine comma. Its &lt;a class="wiki_link" href="/monzo"&gt;monzo&lt;/a&gt; is |1 -5 3&amp;gt;, and flipping that yields &amp;lt;&amp;lt;3 5 1|| for the &lt;a class="wiki_link" href="/wedgie"&gt;wedgie&lt;/a&gt;. This tells us the &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; is a minor whole tone, the &lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt; interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.&lt;br /&gt;
 
&lt;br /&gt;
Minimax tuning:  
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 163.950&lt;br /&gt;
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
&lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.9/7
Map: [&amp;lt;1 2 3|, &amp;lt;0 -3 -5|]&lt;br /&gt;
 
&lt;br /&gt;
Tuning ranges:
EDOs: &lt;a class="wiki_link" href="/15edo"&gt;15&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/95edo"&gt;95c&lt;/a&gt;, &lt;a class="wiki_link" href="/117edo"&gt;117bc&lt;/a&gt;, &lt;a class="wiki_link" href="/139edo"&gt;139bc&lt;/a&gt;, &lt;a class="wiki_link" href="/161edo"&gt;161bc&lt;/a&gt;, &lt;a class="wiki_link" href="/183edo"&gt;183bc&lt;/a&gt;&lt;br /&gt;
* 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
&lt;br /&gt;
* 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
 
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; family member we are looking at. That means &lt;a class="wiki_link" href="/64_63"&gt;64/63&lt;/a&gt;, the &lt;a class="wiki_link" href="/Archyta%27s%20comma"&gt;Archyta's comma&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Porcupine"&gt;porcupine&lt;/a&gt;, &lt;a class="wiki_link" href="/36_35"&gt;36/35&lt;/a&gt;, the &lt;a class="wiki_link" href="/septimal%20quarter%20tone"&gt;septimal quarter tone&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Hystrix"&gt;hystrix&lt;/a&gt;, &lt;a class="wiki_link" href="/50_49"&gt;50/49&lt;/a&gt;, the &lt;a class="wiki_link" href="/jubilisma"&gt;jubilisma&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Hedgehog"&gt;hedgehog&lt;/a&gt;, and &lt;a class="wiki_link" href="/49_48"&gt;49/48&lt;/a&gt;, the &lt;a class="wiki_link" href="/slendro%20diesis"&gt;slendro diesis&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Nautilus"&gt;nautilus&lt;/a&gt;.&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7, 15, 22, 37, 59 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Porcupine"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Porcupine&lt;/h1&gt;
Badness (Smith): 0.021562
Porcupine, with wedgie &amp;lt;&amp;lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;. For this to work you need a small minor tone such as &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.&lt;br /&gt;
 
&lt;br /&gt;
==== Porcupinefowl ====
Commas: 250/243, 64/63&lt;br /&gt;
This extension used to be ''tridecimal porcupine''.
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~10/9 = 162.880&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 2|, &amp;lt;0 -3 -5 6|]&lt;br /&gt;
Comma list: 40/39, 55/54, 64/63, 66/65
EDOs: 22, &lt;a class="wiki_link" href="/59edo"&gt;59&lt;/a&gt;, &lt;a class="wiki_link" href="/81edo"&gt;81bd&lt;/a&gt;, &lt;a class="wiki_link" href="/140edo"&gt;140bd&lt;/a&gt;&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 2 4 4 | 0 -3 -5 6 -4 -2 }}
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Porcupine-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;11-limit&lt;/h2&gt;
 
Commas: 55/54, 64/63, 100/99&lt;br /&gt;
Optimal tunings:  
&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 163.442
POTE generator: ~10/9 = 162.747&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 162.708
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 2 4|, &amp;lt;0 -3 -5 6 -4|]&lt;br /&gt;
Minimax tuning:  
EDOs: &lt;a class="wiki_link" href="/7edo"&gt;7&lt;/a&gt;, 15, 22, &lt;a class="wiki_link" href="/37edo"&gt;37&lt;/a&gt;, &lt;a class="wiki_link" href="/59edo"&gt;59&lt;/a&gt;&lt;br /&gt;
* 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }}
Badness: 0.0217&lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.11
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Hystrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Hystrix&lt;/h1&gt;
Tuning ranges:  
Hystrix, with wedgie &amp;lt;&amp;lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;. They can try the even sharper fifth of hystrix in &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt; and see how that suits.&lt;br /&gt;
* 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
&lt;br /&gt;
* 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
Commas: 36/35, 160/147&lt;br /&gt;
* 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 158.868&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7, 15, 22f, 37f }}
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 3|, &amp;lt;0 -3 -5 -1|]&lt;br /&gt;
Badness (Smith): 0.021276
&lt;br /&gt;
 
EDOs: 10d, 12, 13d, 15&lt;br /&gt;
==== Porcupinefish ====
&lt;br /&gt;
{{See also| The Biosphere }}
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Hedgehog"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Hedgehog&lt;/h1&gt;
 
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
See &lt;em&gt;&lt;a class="wiki_link" href="/Hedgehog"&gt;Hedgehog&lt;/a&gt;&lt;/em&gt;&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 55/54, 64/63, 91/90, 100/99
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Nautilus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Nautilus&lt;/h1&gt;
 
Commas: 49/48, 250/243&lt;br /&gt;
Mapping: {{mapping| 1 2 3 2 4 6 | 0 -3 -5 6 -4 -17 }}
&lt;br /&gt;
 
Pote generator: ~21/20 = 82.505&lt;br /&gt;
Optimal tunings:  
&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 162.636
Map: [&amp;lt;1 2 3 3|, &amp;lt;0 -6 -10 -3|]&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 162.277
Wedgie: &amp;lt;&amp;lt;6 10 3 2 -12 -21||&lt;br /&gt;
 
EDOs: 10, 15, 19, &lt;a class="wiki_link" href="/29edo"&gt;29&lt;/a&gt;, &lt;a class="wiki_link" href="/102edo"&gt;102cd&lt;/a&gt;&lt;br /&gt;
Minimax tuning:  
&lt;br /&gt;
* 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }}
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Nautilus-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;11-limit&lt;/h2&gt;
: unchanged-interval (eigenmonzo) basis: 2.13/11
Commas: 49/48, 55/54, 245/242&lt;br /&gt;
 
&lt;br /&gt;
Tuning ranges:  
POTE generator: ~21/20 = 82.504&lt;br /&gt;
* 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
&lt;br /&gt;
* 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
Map: [&amp;lt;1 2 3 3 4|, &amp;lt;0 -6 -10 -3 -8|]&lt;br /&gt;
* 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
EDOs: 10e, 14c, 15, 19, 22d, 29, 102cde&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 15, 22, 37 }}
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Nautilus-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;13-limit&lt;/h2&gt;
 
Commas: 49/48, 55/54, 91/90, 100/99&lt;br /&gt;
Badness (Smith): 0.025314
&lt;br /&gt;
 
POTE generator: ~21/20 = 62.530&lt;br /&gt;
==== Pourcup ====
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
Map: [&amp;lt;1 2 3 3 4 5|, &amp;lt;0 -6 -10 -3 -8 -19|]&lt;br /&gt;
 
EDOs: 10e, 15f, 17d, 19, 22d, 29, 102cde&lt;br /&gt;
Comma list: 55/54, 64/63, 100/99, 196/195
&lt;br /&gt;
 
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3" rel="nofollow"&gt;Nautilus Reverie&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;Igliashon Calvin Jones-Coolidge&lt;/a&gt;&lt;br /&gt;
Mapping: {{mapping| 1 2 3 2 4 1 | 0 -3 -5 6 -4 20 }}
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Ammonite"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Ammonite&lt;/h1&gt;
 
Commas: 250/243, 686/675&lt;br /&gt;
Optimal tunings:  
&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 163.378
POTE generator: ~9/7 = 454.448&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 162.482
&lt;br /&gt;
 
Map: [&amp;lt;1 5 8 10|, &amp;lt;0 -9 -15 -19|]&lt;br /&gt;
Minimax tuning:  
Wedgie: &amp;lt;&amp;lt;9 15 19 3 5 2||&lt;br /&gt;
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/14 0 0 -1/14 0 1/14 }}
EDOs: 29, 37, 66&lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.13/7
Badness: 0.1077&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 15f, 22f, 37, 59f }}
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Ammonite-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;11-limit&lt;/h2&gt;
 
Commas: 55/54, 100/99, 686/675&lt;br /&gt;
Badness (Smith): 0.035130
&lt;br /&gt;
 
POTE generator: ~9/7 = 454.512&lt;br /&gt;
==== Porkpie ====
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
Map: [&amp;lt;1 5 8 10 8|, &amp;lt;0 -9 -15 -19 -12|]&lt;br /&gt;
 
EDOs: 29, 37, 66&lt;br /&gt;
Comma list: 55/54, 64/63, 65/63, 100/99
Badness: 0.0457&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 2 4 3 | 0 -3 -5 6 -4 5 }}
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Ammonite-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;13-limit&lt;/h2&gt;
 
Commas: 55/54, 91/90, 100/99, 169/168&lt;br /&gt;
Optimal tunings:  
&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 163.678
POTE generator: ~13/10 = 454.429&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 163.688
&lt;br /&gt;
 
Map: [&amp;lt;1 5 8 10 8 9|, &amp;lt;0 -9 -15 -19 -12 -14|]&lt;br /&gt;
Minimax tuning:  
EDOs: 29, 37, 66&lt;br /&gt;
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
Badness: 0.0272 &lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.9/7
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Porky"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Porky&lt;/h1&gt;
{{Optimal ET sequence|legend=0| 7, 15f, 22 }}
Commas: 225/224, 250/243&lt;br /&gt;
 
&lt;br /&gt;
Badness (Smith): 0.026043
POTE generator: ~10/9 = 164.412&lt;br /&gt;
 
&lt;br /&gt;
== Opossum ==
Map: [&amp;lt;1 2 3 5|, &amp;lt;0 -3 -5 -16|]&lt;br /&gt;
Opossum can be described as {{nowrap| 8d & 15 }}. Tempering out [[28/27]], the perfect fifth of three generator steps is conflated with not [[32/21]] as in porcupine but [[14/9]]. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.
Wedgie: &amp;lt;&amp;lt;3 5 16 1 17 23||&lt;br /&gt;
 
EDOS: 7, 8, 15, 22, 29, 51, 73&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
Badness: 0.0544&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 28/27, 126/125
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Porky-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;11-limit&lt;/h2&gt;
 
Commas: 55/54, 100/99, 225/224&lt;br /&gt;
{{Mapping|legend=1| 1 2 3 4 | 0 -3 -5 -9 }}
&lt;br /&gt;
 
POTE generator: ~10/9 = 164.552&lt;br /&gt;
[[Optimal tuning]]s:
&lt;br /&gt;
* [[CTE]]: ~2 = 1200.000, ~10/9 = 161.306
Map: [&amp;lt;1 2 3 5 4|, &amp;lt;0 -3 -5 -16 -4|]&lt;br /&gt;
: [[error map]]: {{val| 0.000 +14.126 +7.155 -20.583 }}
EDOs: 7, 8, 15, 22, 29, 51, 73&lt;br /&gt;
* [[POTE]]: ~2 = 1200.000, ~10/9 = 159.691
Badness: 0.0273&lt;/body&gt;&lt;/html&gt;</pre></div>
: error map: {{val| 0.000 +18.971 +15.229 -6.048 }}
 
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7
 
{{Optimal ET sequence|legend=1| 7d, 8d, 15 }}
 
[[Badness]] (Smith): 0.040650
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 28/27, 55/54, 77/75
 
Mapping: {{mapping| 1 2 3 4 4 | 0 -3 -5 -9 -4 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 161.365
* POTE: ~2 = 1200.000, ~11/10 = 159.807
 
Minimax tuning:
* 11-odd-limit unchanged-interval (eigenmonzo) basis: 2.7
 
{{Optimal ET sequence|legend=0| 7d, 8d, 15 }}
 
Badness (Smith): 0.022325
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 28/27, 40/39, 55/54, 66/65
 
Mapping: {{mapping| 1 2 3 4 4 4 | 0 -3 -5 -9 -4 -2 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 161.631
* POTE: ~2 = 1200.000, ~11/10 = 158.805
 
Minimax tuning:
* 13- and 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.7
 
{{Optimal ET sequence|legend=0| 7d, 8d, 15, 38bceff }}
 
Badness (Smith): 0.019389
 
== Porky ==
Porky can be described as {{nowrap| 22 & 29 }}, suggesting a less sharp perfect fifth. 7\51 is a good generator.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 225/224, 250/243
 
{{Mapping|legend=1| 1 2 3 5 | 0 -3 -5 -16 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~10/9 = 164.391
: [[error map]]: {{val| 0.000 +4.871 -8.270 +0.913 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 164.412
: error map: {{val| 0.000 +4.809 -8.375 +0.580 }}
 
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5
 
{{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }}
 
[[Badness]] (Smith): 0.054389
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 100/99, 225/224
 
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 164.321
* POTE: ~2 = 1200.000, ~11/10 = 164.552
 
Minimax tuning:
* 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }}
: unchanged-interval (eigenmonzo) basis: 2.7/5
 
{{Optimal ET sequence|legend=0| 7d, 15d, 22, 51 }}
 
Badness (Smith): 0.027268
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 65/64, 91/90, 100/99
 
Mapping: {{mapping| 1 2 3 5 4 3 | 0 -3 -5 -16 -4 5 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 164.478
* POTE: ~2 = 1200.000, ~11/10 = 164.953
 
{{Optimal ET sequence|legend=0| 7d, 22, 29, 51f, 80cdeff }}
 
Badness (Smith): 0.026543
 
; Music
* [https://www.youtube.com/watch?v=CN4cLOyaVGE ''Improvisation in 29edo''] (2024) by [[Budjarn Lambeth]] – in Palace scale, 29edo tuning
 
== Coendou ==
Coendou can be described as {{nowrap| 29 & 36c }}, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 250/243, 525/512
 
{{Mapping|legend=1| 1 2 3 1 | 0 -3 -5 13 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~10/9 = 166.094
: [[error map]]: {{val| 0.000 -0.236 -16.783 -9.607 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 166.041
: error map: {{val| 0.000 -0.077 -16.516 -10.299 }}
 
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3
 
{{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }}
 
[[Badness]] (Smith): 0.118344
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 100/99, 525/512
 
Mapping: {{mapping| 1 2 3 1 4 | 0 -3 -5 13 -4 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 165.925
* POTE: ~2 = 1200.000, ~11/10 = 165.981
 
Minimax tuning:  
* 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
: unchanged-interval (eigenmonzo) basis: 2.3
 
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65ce }}
 
Badness (Smith): 0.049669
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 65/64, 100/99, 105/104
 
Mapping: {{mapping| 1 2 3 1 4 3 | 0 -3 -5 13 -4 5 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 166.046
* POTE: ~2 = 1200.000, ~11/10 = 165.974
 
Minimax tuning:
* 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
: unchanged-interval (eigenmonzo) basis: 2.3
 
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65cef }}
 
Badness (Smith): 0.030233
 
== Hystrix ==
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix is very high in [[error]] due to the large disparity between typical porcupine generators and a justly-tuned 8/7, and is usually considered an [[exotemperament]]. A generator of 2\15 or 9\68 can be used for hystrix.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 36/35, 160/147
 
{{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -1 }}
 
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~10/9 = 165.185
: [[error map]]: {{val| 0.000 +2.491 -12.236 +65.990 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 158.868
: error map: {{val| 0.000 +21.442 +19.348 +72.306 }}
 
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
 
{{Optimal ET sequence|legend=1| 7, 8d, 15d }}
 
[[Badness]] (Smith): 0.044944
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 22/21, 36/35, 80/77
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -3 -5 -1 -4 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 164.768
* POTE: ~2 = 1200.000, ~11/10 = 158.750
 
{{Optimal ET sequence|legend=0| 7, 8d, 15d }}
 
Badness (Smith): 0.026790
 
== Hedgehog ==
{{See also| Sensamagic clan | Stearnsmic clan }}
 
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). Its ploidacot is diploid omega-tricot.
 
22edo provides an obvious tuning, which happens to be the only [[patent val|patent-val]] tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers much more accuracy. They merge on 22edo.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 245/243
 
{{Mapping|legend=1| 2 1 1 2 | 0 3 5 5 }}
 
: mapping generators: ~7/5, ~9/7
 
[[Optimal tuning]]s:
* [[CTE]]: ~7/5 = 600.000, ~9/7 = 435.258
: [[error map]]: {{val| 0.000 +3.819 -10.024 +7.464 }}
* [[POTE]]: ~7/5 = 600.000, ~9/7 = 435.648
: error map: {{val| 0.000 +4.989 -8.074 +9.414 }}
 
{{Optimal ET sequence|legend=1| 8d, 14c, 22 }}
 
[[Badness]] (Smith): 0.043983
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 55/54, 99/98
 
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }}
 
Optimal tunings:
* CTE: ~7/5 = 600.000, ~9/7 = 435.528
* POTE: ~7/5 = 600.000, ~9/7 = 435.386
 
{{Optimal ET sequence|legend=0| 8d, 14c, 22, 58ce }}
 
Badness (Smith): 0.023095
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 55/54, 65/63, 99/98
 
Mapping: {{mapping| 2 1 1 2 4 3 | 0 3 5 5 4 6 }}
 
Optimal tunings:  
* CTE: ~7/5 = 600.000, ~9/7 = 436.309
* POTE: ~7/5 = 600.000, ~9/7 = 435.861
 
{{Optimal ET sequence|legend=0| 8d, 14cf, 22 }}
 
Badness (Smith): 0.021516
 
==== Urchin ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 40/39, 50/49, 55/54, 66/65
 
Mapping: {{mapping| 2 1 1 2 4 6 | 0 3 5 5 4 2 }}
 
Optimal tunings:
* CTE: ~7/5 = 600.000, ~9/7 = 435.186
* POTE: ~7/5 = 600.000, ~9/7 = 437.078
 
{{Optimal ET sequence|legend=0| 14c, 22f }}
 
Badness (Smith): 0.025233
 
=== Hedgepig ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 245/243, 385/384
 
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }}
 
Optimal tunings:
* CTE: ~7/5 = 600.000, ~9/7 = 435.329
* POTE: ~7/5 = 600.000, ~9/7 = 435.425
 
{{Optimal ET sequence|legend=0| 22 }}
 
Badness (Smith): 0.068406
 
; Music
* [http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 ''Phobos Light''] by [[Chris Vaisvil]] – in [[hedgehog14|hedgehog[14]]], 22edo tuning.
 
== Nautilus ==
Nautilus tempers out 49/48 and may be described as the {{nowrap| 14c & 15 }} temperament. Its ploidacot is omega-hexacot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 49/48, 250/243
 
{{Mapping|legend=1| 1 2 3 3 | 0 -6 -10 -3 }}
 
: mapping generators: ~2, ~21/20
 
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~21/20 = 81.914
: [[error map]]: {{val| 0.000 +6.559 -5.457 -14.569 }}
* [[POTE]]: ~2 = 1200.000, ~21/20 = 82.505
: error map: {{val| 0.000 +3.012 -11.368 -16.342 }}
 
{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }}
 
[[Badness]] (Smith): 0.057420
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 49/48, 55/54, 245/242
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~21/20 = 81.802
* POTE: ~2 = 1200.000, ~21/20 = 82.504
 
{{Optimal ET sequence|legend=0| 14c, 15, 29, 44d }}
 
Badness (Smith): 0.026023
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 49/48, 55/54, 91/90, 100/99
 
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -6 -10 -3 -8 -19 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~21/20 = 81.912
* POTE: ~2 = 1200.000, ~21/20 = 82.530
 
{{Optimal ET sequence|legend=0| 14cf, 15, 29, 44d }}
 
Badness (Smith): 0.022285
 
==== Belauensis ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 40/39, 49/48, 55/54, 66/65
 
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -6 -10 -3 -8 -4 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~21/20 = 82.034
* POTE: ~2 = 1200.000, ~21/20 = 81.759
 
{{Optimal ET sequence|legend=0| 14c, 15, 29f, 44dff }}
 
Badness (Smith): 0.029816
 
; Music
* [http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3 ''Nautilus Reverie''] by [[Igliashon Jones|Igliashon Calvin Jones-Coolidge]]
 
== Ammonite ==
Ammonite adds 686/675 to the comma list and may be described as the {{nowrap| 8d & 29 }} temperament. Its ploidacot is epsilon-enneacot. [[37edo]] provides an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 250/243, 686/675
 
{{Mapping|legend=1| 1 5 8 10 | 0 -9 -15 -19 }}
 
: mapping generators: ~2, ~9/7
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~9/7 = 454.550
: [[error map]]: {{val| 0.000 +7.095 -4.564 -5.276 }}
* [[POTE]]: ~2 = 1200.000, ~9/7 = 454.448
: error map: {{val| 0.000 +8.009 -3.040 -3.346 }}
 
{{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }}
 
[[Badness]] (Smith): 0.107686
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 100/99, 686/675
 
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~9/7 = 454.505
* POTE: ~2 = 1200.000, ~9/7 = 454.512
 
{{Optimal ET sequence|legend=0| 8d, 21cde, 29, 37, 66 }}
 
Badness (Smith): 0.045694
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 91/90, 100/99, 169/168
 
Mapping: {{mapping| 1 5 8 10 8 9 | 0 -9 -15 -19 -12 -14 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~13/10 = 454.480
* POTE: ~2 = 1200.000, ~13/10 = 454.529
 
{{Optimal ET sequence|legend=0| 8d, 21cdef, 29, 37, 66 }}
 
Badness (Smith): 0.027168
 
== Ceratitid ==
Ceratitid adds 1728/1715 to the comma list and may be described as the {{nowrap| 21c & 22 }} temperament. Its ploidacot is omega-enneacot. [[22edo]] provides an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 250/243, 1728/1715
 
{{Mapping|legend=1| 1 2 3 3 | 0 -9 -15 -4 }}
 
: mapping generators: ~2, ~36/35
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~36/35 = 54.804
: [[error map]]: {{val| 0.000 +4.809 -8.374 +11.958 }}
* [[POTE]]: ~2 = 1200.000, ~36/35 = 54.384
: error map: {{val| 0.000 +8.585 -2.081 +13.636 }}
 
{{Optimal ET sequence|legend=1| 1c, 21c, 22 }}
 
[[Badness]] (Smith): 0.115304
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 100/99, 352/343
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -9 -15 -4 -12 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~36/35 = 54.702
* POTE: ~2 = 1200.000, ~36/35 = 54.376
 
{{Optimal ET sequence|legend=0| 1ce, 21ce, 22 }}
 
Badness (Smith): 0.051319
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 65/63, 100/99, 352/343
 
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -9 -15 -4 -12 -7 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~36/35 = 54.575
* POTE: ~2 = 1200.000, ~36/35 = 54.665
 
{{Optimal ET sequence|legend=0| 1ce, 21cef, 22 }}
 
Badness (Smith): 0.044739
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Porcupine family| ]] <!-- main article -->
[[Category:Porcupine| ]] <!-- key article -->
[[Category:Rank 2]]