Meantone family: Difference between revisions

Switch to Sintel's badness, WE & CWE tunings, per community consensus (4/)
+ intro and ploidacots to certain temps
 
(2 intermediate revisions by the same user not shown)
Line 26: Line 26:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}}
: error map: {{val| 0.000 -5.304 +0.291 }}
: error map: {{val| 0.000 -5.304 +0.291 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 697.214{{c}}
: error map: {{val| 0.000 -4.741 +2.544 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 696.239{{c}}
: error map: {{val| 0.000 -5.716 -1.359 }} -->


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 103: Line 99:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}}
: error map: {{val| 0.000 -5.299 +0.311 -2.264 }}
: error map: {{val| 0.000 -5.299 +0.311 -2.264 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 696.952{{c}}
: [[error map]]: {{val| 0 -5.003 +1.495 +0.695 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 696.495{{c}}
: [[error map]]: {{val| 0 -5.460 -0.334 -3.877 }} -->


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 139: Line 131:
* WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}}
* WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.168{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.967{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 170: Line 160:
* WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}}
* WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.855{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.642{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 193: Line 181:
* WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}}
* WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.649{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.377{{c}} -->


{{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }}
{{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }}
Line 210: Line 196:
* WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}}
* WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.555{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.273{{c}} -->


{{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }}
{{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }}
Line 229: Line 213:
* WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}}
* WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.908{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.003{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}
Line 246: Line 228:
* WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}}
* WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.931{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.140{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}
Line 265: Line 245:
* WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}}
* WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.258{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.264{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 290: Line 268:
* WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}}
* WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.300{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.335{{c}} -->


{{Optimal ET sequence|legend=0| 12, 31, 43, 74g }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74g }}
Line 307: Line 283:
* WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}}
* WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.327{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.380{{c}} -->


{{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }}
Line 326: Line 300:
* WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}}
* WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.516{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.529{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 347: Line 319:
* WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}}
* WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.508{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.514{{c}} -->


{{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }}
{{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }}
Line 364: Line 334:
* WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}}
* WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.485{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.481{{c}} -->


{{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }}
{{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }}
Line 381: Line 349:
* WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}}
* WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.538{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.644{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 43 }}
{{Optimal ET sequence|legend=0| 12f, 43 }}
Line 398: Line 364:
* WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}}
* WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 697.555{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.715{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 43 }}
{{Optimal ET sequence|legend=0| 12f, 43 }}
Line 417: Line 381:
* WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}}
* WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~26/15 = 948.611{{c}}
* POTE: ~2 = 1200.000{{c}}, ~26/15 = 948.465{{c}} -->


{{Optimal ET sequence|legend=0| 19e, 43, 62 }}
{{Optimal ET sequence|legend=0| 19e, 43, 62 }}
Line 434: Line 396:
* WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}}
* WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~26/15 = 948.617{{c}}
* POTE: ~2 = 1200.000{{c}}, ~26/15 = 948.477{{c}} -->


{{Optimal ET sequence|legend=0| 19eg, 43, 62 }}
{{Optimal ET sequence|legend=0| 19eg, 43, 62 }}
Line 451: Line 411:
* WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}}
* WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~19/11 = 948.609{{c}}
* POTE: ~2 = 1200.000{{c}}, ~19/11 = 948.473{{c}} -->


{{Optimal ET sequence|legend=0| 19egh, 43, 62 }}
{{Optimal ET sequence|legend=0| 19egh, 43, 62 }}
Line 470: Line 428:
* WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}}
* WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}}
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}}
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}}
<!-- * CTE: ~55/39 = 600.000{{c}}, ~3/2 = 697.168{{c}}
* POTE: ~55/39 = 600.000{{c}}, ~3/2 = 697.005{{c}} -->


{{Optimal ET sequence|legend=0| 12f, …, 50eff, 62, 136b }}
{{Optimal ET sequence|legend=0| 12f, …, 50eff, 62, 136b }}
Line 487: Line 443:
* WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}}
* WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}}
<!-- * CTE: ~17/12 = 600.000{{c}}, ~3/2 = 697.174{{c}}
* POTE: ~17/12 = 600.000{{c}}, ~3/2 = 696.927{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }}
Line 504: Line 458:
* WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}}
* WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}}
<!-- * CTE: ~17/12 = 600.000{{c}}, ~3/2 = 697.187{{c}}
* POTE: ~17/12 = 600.000{{c}}, ~3/2 = 696.906{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 50eff, 62 }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62 }}
Line 527: Line 479:
* WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}}
* WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.531{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.434{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 559: Line 509:
* WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}}
* WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.356{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.211{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 584: Line 532:
* WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}}
* WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.351{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.194{{c}} -->


{{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }}
{{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }}
Line 601: Line 547:
* WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}}
* WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.347{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.188{{c}} -->


{{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }}
Line 618: Line 562:
* WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}}
* WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.439{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.408{{c}} -->


{{Optimal ET sequence|legend=0| 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}
Line 635: Line 577:
* WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}}
* WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.484{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.499{{c}} -->


{{Optimal ET sequence|legend=0| 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}
Line 652: Line 592:
* WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}}
* WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.283{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.202{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 673: Line 611:
* WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}}
* WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.407{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.414{{c}} -->


{{Optimal ET sequence|legend=0| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}
Line 690: Line 626:
* WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}}
* WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.473{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.497{{c}} -->


{{Optimal ET sequence|legend=0| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}
Line 709: Line 643:
* WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}}
* WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.153{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.250{{c}} -->


Tuning ranges:  
Tuning ranges:  
Line 730: Line 662:
* WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}}
* WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.098{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.146{{c}} -->


{{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }}
Line 747: Line 677:
* WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}}
* WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.216{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.575{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}
Line 764: Line 692:
* WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}}
* WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.277{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.706{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}
Line 781: Line 707:
* WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}}
* WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 695.790{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 695.060{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12, 19 }}
Line 798: Line 722:
* WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}}
* WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.011{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 695.858{{c}} -->


{{Optimal ET sequence|legend=0| 12, 19 }}
{{Optimal ET sequence|legend=0| 12, 19 }}
Line 815: Line 737:
* WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}}
* WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.120{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.131{{c}} -->


{{Optimal ET sequence|legend=0| 12, 19 }}
{{Optimal ET sequence|legend=0| 12, 19 }}
Line 832: Line 752:
* WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}}
* WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 695.620{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.254{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 12f, 19f }}
{{Optimal ET sequence|legend=0| 7d, 12f, 19f }}
Line 849: Line 767:
* WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}}
* WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.279{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.586{{c}} -->


{{Optimal ET sequence|legend=0| 7dg, 12f }}
{{Optimal ET sequence|legend=0| 7dg, 12f }}
Line 866: Line 782:
* WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}}
* WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.849{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 698.118{{c}} -->


{{Optimal ET sequence|legend=0| 7dgh, 12f }}
{{Optimal ET sequence|legend=0| 7dgh, 12f }}
Line 885: Line 799:
* WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}}
* WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.702{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 694.689{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}
Line 902: Line 814:
* WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}}
* WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.241{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 694.764{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}
Line 923: Line 833:
* WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}}
* WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}}
* CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}}
* CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}}
<!-- * CTE: ~63/44 = 600.000{{c}}, ~3/2 = 696.520{{c}}
* POTE: ~63/44 = 600.000{{c}}, ~3/2 = 696.016{{c}} -->


{{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }}
{{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }}
Line 940: Line 848:
* WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}}
* WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}}
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}}
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}}
<!-- * CTE: ~55/39 = 600.000{{c}}, ~3/2 = 696.341{{c}}
* POTE: ~55/39 = 600.000{{c}}, ~3/2 = 695.836{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}
Line 957: Line 863:
* WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}}
* WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}}
<!-- * CTE: ~17/12 = 600.000{{c}}, ~3/2 = 696.353{{c}}
* POTE: ~17/12 = 600.000{{c}}, ~3/2 = 695.783{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 38df, 50 }}
{{Optimal ET sequence|legend=0| 12f, 38df, 50 }}
Line 974: Line 878:
* WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}}
* WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}}
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}}
<!-- * CTE: ~17/12 = 600.000{{c}}, ~3/2 = 696.384{{c}}
* POTE: ~17/12 = 600.000{{c}}, ~3/2 = 695.752{{c}} -->


{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}
Line 995: Line 897:
* WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}}
* WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/10 = 167.707{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/10 = 167.805{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }}
Line 1,012: Line 912:
* WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}}
* WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/10 = 167.712{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/10 = 167.790{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }}
Line 1,029: Line 927:
* WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}}
* WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/10 = 167.705{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/10 = 167.786{{c}} -->


{{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }}
Line 1,052: Line 948:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}}
: error map: {{val| 0.000 -8.222 -11.380 -12.426 }}
: error map: {{val| 0.000 -8.222 -11.380 -12.426 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.552{{c}}
: [[error map]]: {{val| 0.000 -8.403 -12.106 -10.794 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.779{{c}}
: error map: {{val| 0.000 -8.176 -11.197 -12.838 }} -->


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 1,088: Line 980:
* WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}}
* WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 693.251{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 693.126{{c}} -->


Tuning ranges:  
Tuning ranges:  
Line 1,109: Line 999:
* WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}}
* WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 693.029{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 693.058{{c}} -->


Tuning ranges:  
Tuning ranges:  
Line 1,136: Line 1,024:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}}
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }}
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 692.698{{c}}
: [[error map]]: {{val| 0.000 -9.257 -15.520 +7.047 }} -->


{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
Line 1,153: Line 1,039:
* WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}}
* WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 692.642{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 19d, 26 }}
{{Optimal ET sequence|legend=0| 7d, 19d, 26 }}
Line 1,166: Line 1,051:
{{See also| Archytas clan }}
{{See also| Archytas clan }}


The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].
The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh (C–Bb). The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].


Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
Line 1,181: Line 1,066:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}}
: error map: {{val| 0.000 -0.842 +18.136 +28.949 }}
: error map: {{val| 0.000 -0.842 +18.136 +28.949 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 699.622{{c}}
: [[error map]]: {{val| 0.000 -2.333 +12.173 +31.931 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 701.573{{c}}
: error map: {{val| 0.000 -0.382 +19.979 +28.028 }} -->


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 1,209: Line 1,090:
* WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}}
* WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 703.334{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 703.254{{c}} -->


{{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }}
{{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }}
Line 1,226: Line 1,105:
* WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}}
* WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 704.847{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 703.636{{c}} -->


Tuning ranges:  
Tuning ranges:  
Line 1,247: Line 1,124:
* WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}}
* WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 704.034{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 704.905{{c}} -->


{{Optimal ET sequence|legend=0| 5, 12, 17c }}
{{Optimal ET sequence|legend=0| 5, 12, 17c }}
Line 1,264: Line 1,139:
* WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}}
* WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.240{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 698.776{{c}} -->


{{Optimal ET sequence|legend=0| 5e, 7, 12 }}
{{Optimal ET sequence|legend=0| 5e, 7, 12 }}
Line 1,281: Line 1,154:
* WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}}
* WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 695.315{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 695.762{{c}} -->


{{Optimal ET sequence|legend=0| 7, 12 }}
{{Optimal ET sequence|legend=0| 7, 12 }}
Line 1,298: Line 1,169:
* WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}}
* WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 695.894{{c}}
* POTE:  ~2 = 1200.000{{c}}, ~3/2 = 696.115{{c}} -->


{{Optimal ET sequence|legend=0| 7, 12 }}
{{Optimal ET sequence|legend=0| 7, 12 }}
Line 1,315: Line 1,184:
* WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}}
* WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.139{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.217{{c}} -->


{{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }}
Line 1,332: Line 1,199:
* WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}}
* WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 694.840{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 698.544{{c}} -->


{{Optimal ET sequence|legend=0| 5e, 7, 12f }}
{{Optimal ET sequence|legend=0| 5e, 7, 12f }}
Line 1,349: Line 1,214:
* WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}}
* WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 703.268{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 705.004{{c}} -->


{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}
Line 1,366: Line 1,229:
* WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}}
* WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 703.719{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 705.496{{c}} -->


{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}
Line 1,383: Line 1,244:
* WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}}
* WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 698.546{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 698.491{{c}} -->


{{Optimal ET sequence|legend=0| 5, 7, 12e }}
{{Optimal ET sequence|legend=0| 5, 7, 12e }}
Line 1,400: Line 1,259:
* WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}}
* WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 695.929{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.743{{c}} -->


{{Optimal ET sequence|legend=0| 5, 7 }}
{{Optimal ET sequence|legend=0| 5, 7 }}
Line 1,417: Line 1,274:
* WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}}
* WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.683{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.978{{c}} -->


{{Optimal ET sequence|legend=0| 5, 7 }}
{{Optimal ET sequence|legend=0| 5, 7 }}
Line 1,434: Line 1,289:
* WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}}
* WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 696.996{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 697.068{{c}} -->


{{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }}
{{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }}
Line 1,457: Line 1,310:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}}
: error map: {{val| 0.000 -0.462 +19.657 -64.347 }}
: error map: {{val| 0.000 -0.462 +19.657 -64.347 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 703.732{{c}}
: [[error map]]: {{val| 0.000 +1.777 +28.614 -57.630 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 700.140{{c}}
: error map: {{val| 0.000 -1.815 +14.245 -68.407 }} -->


{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
Line 1,476: Line 1,325:
* WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}}
* WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 702.730{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 696.615{{c}} -->


{{Optimal ET sequence|legend=0| 5, 7d, 12de }}
{{Optimal ET sequence|legend=0| 5, 7d, 12de }}
Line 1,484: Line 1,331:


== Supermean ==
== Supermean ==
Supermean tempers out 672/625 and finds the interval class of 7 at 15 generators up, as a double-augmented fifth (C–Gx). As such, it extends [[leapfrog]].
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 672/625
[[Comma list]]: 81/80, 672/625


{{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }}
{{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
Line 1,495: Line 1,344:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}}
: error map: {{val| 0.000 +2.583 +31.836 -0.763 }}
: error map: {{val| 0.000 +2.583 +31.836 -0.763 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 703.811{{c}}
: [[error map]]: {{val| 0.000 +1.856 +28.929 -11.665 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 704.889{{c}}
: error map: {{val| 0.000 +2.934 +33.242 +4.507 }} -->


{{Optimal ET sequence|legend=1| 5d, 12d, 17c }}
{{Optimal ET sequence|legend=1| 5d, 12d, 17c }}
Line 1,514: Line 1,359:
* WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}}
* WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 704.016{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 705.096{{c}} -->


{{Optimal ET sequence|legend=0| 5de, 12de, 17c }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c }}
Line 1,531: Line 1,374:
* WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}}
* WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~3/2 = 704.121{{c}}
* POTE: ~2 = 1200.000{{c}}, ~3/2 = 705.094{{c}} -->


{{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }}
Line 1,541: Line 1,382:
{{Main| Mohajira }}
{{Main| Mohajira }}


Mohajira can be viewed as derived from mohaha which maps the interval half a [[chroma]] flat of 16/9 to 7/4 so that it's mapped to a semidiminished seventh, where a chroma is equated to two quarter-tones, although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the porwell comma. [[31edo]] makes for an excellent (7-limit) mohajira tuning, with generator 9\31.
Mohajira can be viewed as derived from mohaha which maps the interval half a [[chromatic semitone|chroma]] flat of the minor seventh to ~7/4 so that 7/4 is mapped to a semidiminished seventh (C–Bdb), although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the [[porwell comma]]. It can be described as {{nowrap| 24 & 31 }}; its ploidacot is dicot. [[31edo]] makes for an excellent mohajira tuning, with generator 9\31.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 1,556: Line 1,397:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}}
: error map: {{val| 0.000 -5.116 +1.041 -1.439 }}
: error map: {{val| 0.000 -5.116 +1.041 -1.439 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~128/105 = 348.437{{c}}
: [[error map]]: {{val| 0.000 -5.080 +1.186 -1.637 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~128/105 = 348.415{{c}}
: error map: {{val| 0.000 -5.125 +1.005 -1.390 }} -->


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 1,589: Line 1,426:
* WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}}
* WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/9 = 348.561{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/9 = 348.477{{c}} -->


Minimax tuning:  
Minimax tuning:  
Line 1,617: Line 1,452:
* WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}}
* WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/9 = 348.587{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/9 = 348.558{{c}} -->


{{Optimal ET sequence|legend=0| 7, 24, 31 }}
{{Optimal ET sequence|legend=0| 7, 24, 31 }}
Line 1,636: Line 1,469:
* WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}}
* WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/9 = 348.735{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/9 = 348.736{{c}} -->


{{Optimal ET sequence|legend=0| 7, 24, 31 }}
{{Optimal ET sequence|legend=0| 7, 24, 31 }}
Line 1,655: Line 1,486:
* WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}}
* WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/9 = 348.821{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/9 = 348.810{{c}} -->


{{Optimal ET sequence|legend=0| 7, 24, 31, 55 }}
{{Optimal ET sequence|legend=0| 7, 24, 31, 55 }}
Line 1,665: Line 1,494:


== Mohamaq ==
== Mohamaq ==
Mohamaq is a lower-accuracy alternative to mohajira that favors tunings sharp of 24edo. It may be described as {{nowrap| 17c & 24 }}; its ploidacot is dicot, the same as mohajira.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 1,678: Line 1,509:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}}
: error map: {{val| 0.000 -0.984 +17.571 -12.513 }}
: error map: {{val| 0.000 -0.984 +17.571 -12.513 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~25/21 = 350.352{{c}}
: [[error map]]: {{val| 0.000 -1.250 +16.505 -14.245 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~25/21 = 350.586{{c}}
: error map: {{val| 0.000 -0.784 +18.370 -11.214 }} -->


{{Optimal ET sequence|legend=1| 7d, 17c, 24 }}
{{Optimal ET sequence|legend=1| 7d, 17c, 24 }}
Line 1,699: Line 1,526:
* WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}}
* WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/9 = 350.347{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/9 = 350.565{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 17c, 24 }}
{{Optimal ET sequence|legend=0| 7d, 17c, 24 }}
Line 1,718: Line 1,543:
* WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}}
* WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/9 = 350.365{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/9 = 350.745{{c}} -->


{{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }}
{{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }}
Line 1,730: Line 1,553:
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>


Liese splits the twelfth interval of 3/1 into three generators of 10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. Liese is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.  
Liese splits the [[3/1|perfect twelfth]] into three generators of ~10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. It may be described as {{nowrap| 17c & 19 }}; its ploidacot is alpha-tricot. It is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 1,745: Line 1,568:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}}
: error map: {{val| 0.000 -4.263 +4.454 -10.622 }}
: error map: {{val| 0.000 -4.263 +4.454 -10.622 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~10/7 = 632.783{{c}}
: [[error map]]: {{val| 0.000 -3.606 +7.084 -8.212 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~10/7 = 632.406{{c}}
: error map: {{val| 0.000 -4.738 +2.554 -12.363 }} -->


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 1,771: Line 1,590:
* WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}}
* WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 632.812{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 633.073{{c}} -->


{{Optimal ET sequence|legend=0| 17c, 19, 36 }}
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}
Line 1,788: Line 1,605:
* WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}}
* WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 632.925{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 633.042{{c}} -->


{{Optimal ET sequence|legend=0| 17c, 19, 36 }}
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}
Line 1,805: Line 1,620:
* WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}}
* WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 633.317{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 633.061{{c}} -->


{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}
Line 1,822: Line 1,635:
* WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}}
* WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 633.370{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 632.991{{c}} -->


{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}
Line 1,839: Line 1,650:
* WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}}
* WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 631.981{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 631.370{{c}} -->


{{Optimal ET sequence|legend=0| 17cee, 19 }}
{{Optimal ET sequence|legend=0| 17cee, 19 }}
Line 1,856: Line 1,665:
* WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}}
* WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 632.093{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 631.221{{c}} -->


{{Optimal ET sequence|legend=0| 17cee, 19 }}
{{Optimal ET sequence|legend=0| 17cee, 19 }}
Line 1,866: Line 1,673:
{{See also| No-sevens subgroup temperaments #Superpine }}
{{See also| No-sevens subgroup temperaments #Superpine }}


The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]]–harmonics other than 3 all require the 15-tone mos to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. It may be described as {{nowrap| 36 & 43 }}; its ploidacot is omega-tricot. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]] – harmonics other than 3 all require the 15-tone mos to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 1,879: Line 1,686:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}}
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }}
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~35/32 = 167.279{{c}}
: [[error map]]: {{val| 0.000 -3.793 +6.336 +5.804 }} -->


{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}
{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}
Line 1,896: Line 1,701:
* WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}}
* WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/10 = 167.407{{c}} -->


{{Optimal ET sequence|legend=0| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 7, 36, 43 }}
Line 1,912: Line 1,716:
* WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}}
* WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/10 = 167.427{{c}} -->


{{Optimal ET sequence|legend=0| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 7, 36, 43 }}
Line 1,919: Line 1,722:


== Lithium ==
== Lithium ==
Lithium is named after the 3rd element for having a 3rd-octave period, and also for lithium's molar mass of 6.9 g/mol since 69edo supports it. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.
Lithium is named after the 3rd element for having a 3rd-octave period (and also for lithium's molar mass of 6.9 g/mol since 69edo supports it). Its ploidacot is triploid monocot. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 1,934: Line 1,737:
* [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}})
* [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}})
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }}
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }}
<!-- * [[CTE]]: ~56/45 = 400.000{{c}}, ~3/2 = 695.827{{c}} (~15/14 = 104.173{{c}})
: error map: {{val| 0.000 -6.128 -3.007 +6.135 }} -->


{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}
{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}
Line 1,944: Line 1,745:
{{Main| Squares }}
{{Main| Squares }}


Squares splits the interval of an eleventh, or 8/3, into four supermajor third ([[9/7]]) intervals, and uses it for a generator. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].
Squares splits the [[6/1|6th harmonic]] into four subminor sixths of [[11/7]]~[[14/9]] (or splits a [[8/3|perfect eleventh]] into four supermajor thirds of [[9/7]]~[[14/11]]), and uses it for a generator. It may be described as {{nowrap| 14c & 17c }}; its ploidacot is beta-tetracot. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 1,959: Line 1,760:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}}
: error map: {{val| 0.000 -5.331 +0.183 -1.422 }}
: error map: {{val| 0.000 -5.331 +0.183 -1.422 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~14/9 = 774.305{{c}}
: [[error map]]: {{val| 0.000 -4.734 +2.570 -0.079 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~14/9 = 774.058{{c}}
: error map: {{val| 0.000 -5.721 -1.378 -2.300 }} -->


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 1,987: Line 1,784:
* WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}}
* WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/7 = 774.401{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/7 = 774.043{{c}} -->


{{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }}
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }}
Line 2,004: Line 1,799:
* WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}}
* WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/7 = 774.422{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/7 = 774.450{{c}} -->


{{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }}
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }}
Line 2,021: Line 1,814:
* WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}}
* WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/7 = 774.703{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/7 = 774.248{{c}} -->


{{Optimal ET sequence|legend=0| 14cf, 17c, 31f }}
{{Optimal ET sequence|legend=0| 14cf, 17c, 31f }}
Line 2,038: Line 1,829:
* WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}}
* WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/7 = 774.130{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/7 = 773.724{{c}} -->


{{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }}
{{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }}
Line 2,055: Line 1,844:
* WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}}
* WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/7 = 774.081{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/7 = 773.813{{c}} -->


{{Optimal ET sequence|legend=0| 14cf, 31 }}
{{Optimal ET sequence|legend=0| 14cf, 31 }}
Line 2,072: Line 1,859:
* WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}}
* WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~11/7 = 774.016{{c}}
* POTE: ~2 = 1200.000{{c}}, ~11/7 = 773.775{{c}} -->


{{Optimal ET sequence|legend=0| 14cf, 31 }}
{{Optimal ET sequence|legend=0| 14cf, 31 }}
Line 2,089: Line 1,874:
* WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}}
* WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~14/9 = 774.101{{c}}
* POTE: ~2 = 1200.000{{c}}, ~14/9 = 774.007{{c}} -->


{{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }}
{{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }}
Line 2,097: Line 1,880:


== Jerome ==
== Jerome ==
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. While the generator represents both 13/12 and 12/11, the POTE and Hieronymus generators are close to 13/12 in size.
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. It may be described as {{nowrap| 17c & 26 }}; its ploidacot is pentacot. While the generator represents both 13/12 and 12/11, the CTE/CWE and Hieronymus generators are close to 13/12 in size.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 2,112: Line 1,895:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}}
: error map: {{val| 0.000 -5.191 +0.741 +6.643 }}
: error map: {{val| 0.000 -5.191 +0.741 +6.643 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~54/49 = 139.371{{c}}
: [[error map]]: {{val| 0.000 -5.098 +1.114 +6.774 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~54/49 = 139.343{{c}}
: error map: {{val| 0.000 -5.238 +0.553 +6.577 }} -->


{{Optimal ET sequence|legend=1| 17c, 26, 43 }}
{{Optimal ET sequence|legend=1| 17c, 26, 43 }}
Line 2,131: Line 1,910:
* WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}}
* WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~12/11 = 139.349{{c}}
* POTE: ~2 = 1200.000{{c}}, ~12/11 = 139.428{{c}} -->


{{Optimal ET sequence|legend=0| 17c, 26, 43 }}
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}
Line 2,148: Line 1,925:
* WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}}
* WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~13/12 = 139.369{{c}}
* POTE: ~2 = 1200.000{{c}}, ~13/12 = 139.387{{c}} -->


{{Optimal ET sequence|legend=0| 17c, 26, 43 }}
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}
Line 2,165: Line 1,940:
* WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}}
* WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~13/12 = 139.334{{c}}
* POTE: ~2 = 1200.000{{c}}, ~13/12 = 139.362{{c}} -->


{{Optimal ET sequence|legend=0| 17cg, 26, 43 }}
{{Optimal ET sequence|legend=0| 17cg, 26, 43 }}
Line 2,182: Line 1,955:
* WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}}
* WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~13/12 = 139.296{{c}}
* POTE: ~2 = 1200.000{{c}}, ~13/12 = 139.313{{c}} -->


{{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }}
Line 2,190: Line 1,961:


== Meantritone ==
== Meantritone ==
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, three septimal tritones equals ~30/11 (an octave plus [[15/11]]-wide super-fourth) and five of them equals ~[[16/3]] (double-compound fourth). The name "meantritone" is a portmanteau of meantone and tritone, the latter is a generator of this temperament.
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, the 6th harmonic is split into five generators of ~10/7; the ploidacot of this temperament is beta-pentacot. The name ''meantritone'' is a portmanteau of ''meantone'' and ''tritone'', the latter is a generator of this temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 2,205: Line 1,976:
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}}
: error map: {{val| 0.000 -5.367 +0.038 -1.791 }}
: error map: {{val| 0.000 -5.367 +0.038 -1.791 }}
<!-- * [[CTE]]: ~2 = 1200.000{{c}}, ~10/7 = 619.432{{c}}
: [[error map]]: {{val| 0.000 -4.795 +2.325 +0.381 }}
* [[POTE]]: ~2 = 1200.000{{c}}, ~10/7 = 619.234{{c}}
: error map: {{val| 0.000 -5.785 -1.634 -3.380 }} -->


{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }}
{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }}
Line 2,224: Line 1,991:
* WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}}
* WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}}
<!-- * CTE: ~2 = 1200.000{{c}}, ~10/7 = 619.518{{c}}
* POTE: ~2 = 1200.000{{c}}, ~10/7 = 619.353{{c}} -->


{{Optimal ET sequence|legend=0| 29cde, 31 }}
{{Optimal ET sequence|legend=0| 29cde, 31 }}
Line 2,232: Line 1,997:


== Injera ==
== Injera ==
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a ~15/14 semitone difference between a half-octave and a perfect fifth. Injera may be described as {{nowrap| 12 & 26 }}; its ploidacot is diploid monocot. It tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.


[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
Line 2,249: Line 2,014:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}})
: error map: {{val| 0.000 -7.184 -7.229 +10.259 }}
: error map: {{val| 0.000 -7.184 -7.229 +10.259 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~3/2 = 695.330{{c}} (~21/20 = 95.330{{c}})
: [[error map]]: {{val| 0.000 -6.625 -4.993 +12.495 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~3/2 = 694.375{{c}} (~21/20 = 94.375{{c}})
: error map: {{val| 0.000 -7.580 -8.813 +8.675 }} -->


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 2,276: Line 2,037:
* WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}})
* WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 694.098{{c}} (~21/20 = 94.098{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 692.840{{c}} (~21/20 = 92.840{{c}}) -->


Tuning ranges:  
Tuning ranges:  
Line 2,297: Line 2,056:
* WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}})
* WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 693.806{{c}} (~21/20 = 93.806{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 692.673{{c}} (~21/20 = 92.673{{c}}) -->


Tuning ranges:  
Tuning ranges:  
Line 2,318: Line 2,075:
* WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}})
* WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 693.852{{c}} (~21/20 = 93.852{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 692.487{{c}} (~21/20 = 92.487{{c}}) -->


{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
Line 2,335: Line 2,090:
* WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}})
* WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 694.031{{c}} (~21/20 = 94.031{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 692.299{{c}} (~21/20 = 92.299{{c}}) -->


{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
Line 2,352: Line 2,105:
* WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}})
* WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 693.088{{c}} (~21/20 = 93.088{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 694.121{{c}} (~21/20 = 94.121{{c}}) -->


{{Optimal ET sequence|legend=0| 10cdeef, 12f }}
{{Optimal ET sequence|legend=0| 10cdeef, 12f }}
Line 2,369: Line 2,120:
* WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}})
* WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 694.619{{c}} (~21/20 = 94.619{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 690.548{{c}} (~21/20 = 90.548{{c}}) -->


{{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }}
{{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }}
Line 2,386: Line 2,135:
* WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}})
* WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 695.330{{c}} (~21/20 = 95.330{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 699.001{{c}} (~21/20 = 99.001{{c}}) -->


{{Optimal ET sequence|legend=0| 10cd, 12 }}
{{Optimal ET sequence|legend=0| 10cd, 12 }}
Line 2,396: Line 2,143:
{{Main| Teff }}
{{Main| Teff }}


Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in half in order to accommodate higher limit intervals, creating a half-octave quarter-tone temperament.
Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in halves in order to accommodate higher-limit intervals, creating a half-octave quartertone temperament. Its ploidacot is diploid alpha-dicot.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 2,409: Line 2,156:
* WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}})
* WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.669{{c}} (~33/32 = 47.669{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.470{{c}} (~33/32 = 47.470{{c}}) -->


{{Optimal ET sequence|legend=0| 24d, 26, 50d }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}
Line 2,426: Line 2,171:
* WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}})
* WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.703{{c}} (~33/32 = 47.703{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.468{{c}} (~33/32 = 47.468{{c}}) -->


{{Optimal ET sequence|legend=0| 24d, 26, 50d }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}
Line 2,443: Line 2,186:
* WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}})
* WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.751{{c}} (~34/33 = 47.751{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.344{{c}} (~34/33 = 47.344{{c}}) -->


{{Optimal ET sequence|legend=0| 24d, 26 }}
{{Optimal ET sequence|legend=0| 24d, 26 }}
Line 2,460: Line 2,201:
* WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}})
* WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.893{{c}} (~34/33 = 47.893{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~16/11 = 647.362{{c}} (~34/33 = 47.362{{c}}) -->


{{Optimal ET sequence|legend=0| 24d, 26 }}
{{Optimal ET sequence|legend=0| 24d, 26 }}
Line 2,468: Line 2,207:


== Pombe ==
== Pombe ==
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Its ploidacot is diploid alpha-dicot, the same as teff. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 2,483: Line 2,222:
* [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}})
* [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}})
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }}
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }}
<!-- * [[CTE]]: ~735/512 = 600.000{{c}}, ~35/24 = 648.155{{c}} (~36/35 = 48.155{{c}})
: error map: {{val| 0.000 -5.645 -1.075 -9.600 }}
* [[POTE]]: ~735/512 = 600.000{{c}}, ~35/24 = 648.779{{c}} (~36/35 = 48.779{{c}})
: error map: {{val| 0.000 -6.396 -4.078 -7.723 }} -->


{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}
{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}
Line 2,502: Line 2,237:
* WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}})
* WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}})
<!-- * CTE: ~99/70 = 600.000{{c}}, ~16/11 = 648.157{{c}} (~36/35 = 48.157{{c}})
* POTE: ~99/70 = 600.000{{c}}, ~16/11 = 647.907{{c}} (~36/35 = 47.907{{c}}) -->


{{Optimal ET sequence|legend=0| 24, 26, 50 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}
Line 2,519: Line 2,252:
* WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}})
* WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})
<!-- * CTE: ~99/70 = 600.000{{c}}, ~16/11 = 648.152{{c}} (~36/35 = 48.152{{c}})
* POTE: ~99/70 = 600.000{{c}}, ~16/11 = 647.850{{c}} (~36/35 = 47.850{{c}}) -->


{{Optimal ET sequence|legend=0| 24, 26, 50 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}
Line 2,536: Line 2,267:
* WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}})
* WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})
<!-- * CTE: ~17/12 = 600.000{{c}}, ~16/11 = 648.207{{c}} (~36/35 = 48.207{{c}})
* POTE: ~17/12 = 600.000{{c}}, ~16/11 = 647.842{{c}} (~36/35 = 47.842{{c}}) -->


{{Optimal ET sequence|legend=0| 24, 26, 50 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}
Line 2,553: Line 2,282:
* WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}})
* WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}})
<!-- * CTE: ~17/12 = 600.000{{c}}, ~16/11 = 648.340{{c}} (~36/35 = 48.340{{c}})
* POTE: ~17/12 = 600.000{{c}}, ~16/11 = 647.880{{c}} (~36/35 = 47.880{{c}}) -->


{{Optimal ET sequence|legend=0| 24, 26, 50 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}
Line 2,561: Line 2,288:


== Orphic ==
== Orphic ==
Orphic has a semi-octave period and four generators plus a period gives the 3rd harmonic; its ploidacot is diploid alpha-tetracot.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 2,574: Line 2,303:
* [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}})
* [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}})
: error map: {{val| 0.000 -5.041 +1.342 +3.860 }}
: error map: {{val| 0.000 -5.041 +1.342 +3.860 }}
<!-- * [[CTE]]: ~2401/1728 = 600.000{{c}}, ~343/288 = 324.275{{c}} (~7/6 = 275.725{{c}})
: [[error map]]: {{val| 0.000 -4.854 +2.091 +4.000 }}
* [[POTE]]: ~2401/1728 = 600.000{{c}}, ~343/288 = 324.206{{c}} (~7/6 = 275.794{{c}})
: error map: {{val| 0.000 -5.131 +0.983 +3.792 }} -->


{{Optimal ET sequence|legend=1| 26, 48c, 74 }}
{{Optimal ET sequence|legend=1| 26, 48c, 74 }}
Line 2,593: Line 2,318:
* WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}})
* WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}})
* CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}})
* CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}})
<!-- * CTE: ~363/256 = 600.000{{c}}, ~77/64 = 324.276{{c}} (~7/6 = 275.724{{c}})
* POTE: ~363/256 = 600.000{{c}}, ~77/64 = 324.238{{c}} (~7/6 = 275.762{{c}}) -->


{{Optimal ET sequence|legend=0| 26, 48c, 74 }}
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}
Line 2,610: Line 2,333:
* WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}})
* WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}})
* CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}})
* CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}})
<!-- * CTE: ~55/39 = 600.000{{c}}, ~77/64 = 324.250{{c}} (~7/6 = 275.750{{c}})
* POTE: ~55/39 = 600.000{{c}}, ~77/64 = 324.226{{c}} (~7/6 = 275.774{{c}}) -->


{{Optimal ET sequence|legend=0| 26, 48c, 74 }}
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}
Line 2,618: Line 2,339:


== Cloudtone ==
== Cloudtone ==
The cloudtone temperament ({{nowrap| 5 & 50 }}) tempers out the [[cloudy comma]], 16807/16384 and the [[81/80|syntonic comma]], 81/80 in the 7-limit. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.
The cloudtone temperament tempers out the [[cloudy comma]], 16807/16384 and the [[syntonic comma]], 81/80 in the 7-limit. It may be described as {{nowrap| 5 & 50 }}; its ploidacot is pentaploid monocot. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 2,633: Line 2,354:
* [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}})
* [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}})
: error map: {{val| 0.000 -5.791 -1.659 -8.826 }}
: error map: {{val| 0.000 -5.791 -1.659 -8.826 }}
<!-- * [[CTE]]: ~8/7 = 240.000{{c}}, ~3/2 = 697.214{{c}} (~49/48 = 22.786{{c}})
: error map: {{val| 0.000 -4.741 +2.544 -8.826 }}
* [[POTE]]: ~8/7 = 240.000{{c}}, ~3/2 = 695.720{{c}} (~49/48 = 24.280{{c}})
: error map: {{val| 0.000 -6.235 -3.435 -8.826 }} -->


{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }}
{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }}
Line 2,652: Line 2,369:
* WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}})
* WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}})
<!-- * CTE: ~8/7 = 240.000{{c}}, ~3/2 = 697.034{{c}} (~56/55 = 22.966{{c}})
* POTE: ~8/7 = 240.000{{c}}, ~3/2 = 696.536{{c}} (~56/55 = 23.464{{c}}) -->


{{Optimal ET sequence|legend=0| 5, 45, 50 }}
{{Optimal ET sequence|legend=0| 5, 45, 50 }}
Line 2,669: Line 2,384:
* WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}})
* WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}})
<!-- * CTE: ~8/7 = 240.000{{c}}, ~3/2 = 696.749{{c}} (~91/90 = 23.251{{c}})
* POTE: ~8/7 = 240.000{{c}}, ~3/2 = 696.162{{c}} (~91/90 = 23.838{{c}}) -->


{{Optimal ET sequence|legend=0| 5, 45f, 50 }}
{{Optimal ET sequence|legend=0| 5, 45f, 50 }}
Line 2,683: Line 2,396:


{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}
: sval mapping generators: ~2, ~3


{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}


: [[gencom]]: [2 3; 81/80 96/95]
: mapping generators: ~2, ~3


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 697.681{{c}}
* [[WE]]: ~2 = 1199.5513{{c}}, ~3/2 = 697.6058{{c}}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 697.867{{c}}
: [[error map]]: {{val| -0.448 -4.798 +4.110 +6.977 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 697.8222{{c}}
: error map: {{val| 0.000 -4.133 +4.975 +9.020 }}


{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43 }}
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43, 98h }}


[[Tp tuning #T2 tuning|RMS error]]: 1.378 cents
[[Badness]] (Sintel): 0.324


=== Hypnotone ===
=== Hypnotone ===
Line 2,707: Line 2,420:
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}


: sval mapping generators: ~2, ~3
{{Mapping|legend=3| 1 0 -4 0 -6 | 0 1 4 0 6 }}
 
: mapping generators: ~2, ~3


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 694.700{{c}}
* [[WE]]: ~2 = 1202.0621{{c}}, ~3/2 = 694.5448{{c}}
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.908{{c}}
: [[error map]]: {{val| +2.062 -5.348 -8.135 +15.951 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.9085{{c}}
: error map: {{val| 0.000 -8.047 -10.680 +12.133 }}


{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}


[[Badness]] (Smith): 0.0104
[[Badness]] (Sintel): 0.326


==== 2.3.5.11.13 subgroup ====
==== 2.3.5.11.13 subgroup ====
Line 2,722: Line 2,439:
Comma list: 45/44, 65/64, 81/80
Comma list: 45/44, 65/64, 81/80


Sval mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}
Subgroup-val mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}


: sval mapping generators: ~2, ~3
Gencom mapping: {{mapping| 1 0 -4 0 -6 10 | 0 1 4 0 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000{{c}}, ~3/2 = 693.951{{c}}
* WE: ~2 = 1202.6916{{c}}, ~3/2 = 694.4181{{c}}
* CTE: ~2 = 1200.000{{c}}, ~3/2 = 693.087{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0870{{c}}


{{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }}
{{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }}


Badness (Smith): 0.0141
Badness (Sintel): 0.561


=== Dequarter ===
=== Dequarter ===
Line 2,741: Line 2,458:
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}


: sval mapping generators: ~2, ~3
{{Mapping|legend=3| 1 0 -4 0 5 | 0 1 4 0 -1 }}
 
: mapping generators: ~2, ~3


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 696.039{{c}}
* [[WE]]: ~2 = 1206.5832{{c}}, ~3/2 = 695.8763{{c}}
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.121{{c}}
: [[error map]]: {{val| +6.583 +0.504 -2.809 -20.862 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.1206{{c}}
: error map: {{val| 0.000 -8.834 -13.831 -44.439 }}


{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}


[[Badness]] (Smith): 0.0145
[[Badness]] (Sintel): 0.451


==== Dreamtone ====
==== Dreamtone ====
Line 2,756: Line 2,477:
Comma list: 33/32, 55/54, 975/968
Comma list: 33/32, 55/54, 975/968


Sval mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}
Subgroup-val mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}


: sval mapping generators: ~2, ~3
Gencom mapping: {{mapping| 1 0 -4 0 5 21 | 0 1 4 0 -1 -11 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1200.000{{c}}, ~3/2 = 689.699{{c}}
* WE: ~2 = 1207.8248{{c}}, ~3/2 = 694.7806{{c}}
* CWE: ~2 = 1200.000{{c}}, ~3/2 = 690.183{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 690.1826{{c}}


{{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }}
{{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }}


Badness (Smith): 0.0353
Badness (Sintel): 1.40


[[Category:Temperament families]]
[[Category:Temperament families]]