Meantone family: Difference between revisions
Switch to Sintel's badness, WE & CWE tunings, per community consensus (4/) |
+ intro and ploidacots to certain temps |
||
(2 intermediate revisions by the same user not shown) | |||
Line 26: | Line 26: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}} | ||
: error map: {{val| 0.000 -5.304 +0.291 }} | : error map: {{val| 0.000 -5.304 +0.291 }} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 103: | Line 99: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}} | ||
: error map: {{val| 0.000 -5.299 +0.311 -2.264 }} | : error map: {{val| 0.000 -5.299 +0.311 -2.264 }} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 139: | Line 131: | ||
* WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}} | * WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 170: | Line 160: | ||
* WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}} | * WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 193: | Line 181: | ||
* WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}} | * WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}} | ||
{{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }} | {{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }} | ||
Line 210: | Line 196: | ||
* WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}} | * WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}} | ||
{{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }} | {{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }} | ||
Line 229: | Line 213: | ||
* WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}} | * WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 31 }} | {{Optimal ET sequence|legend=0| 12f, 31 }} | ||
Line 246: | Line 228: | ||
* WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}} | * WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 31 }} | {{Optimal ET sequence|legend=0| 12f, 31 }} | ||
Line 265: | Line 245: | ||
* WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}} | * WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 290: | Line 268: | ||
* WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}} | * WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}} | ||
{{Optimal ET sequence|legend=0| 12, 31, 43, 74g }} | {{Optimal ET sequence|legend=0| 12, 31, 43, 74g }} | ||
Line 307: | Line 283: | ||
* WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}} | * WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}} | ||
{{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }} | {{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }} | ||
Line 326: | Line 300: | ||
* WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}} | * WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 347: | Line 319: | ||
* WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}} | * WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}} | ||
{{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }} | {{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }} | ||
Line 364: | Line 334: | ||
* WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}} | * WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}} | ||
{{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }} | {{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }} | ||
Line 381: | Line 349: | ||
* WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}} | * WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 43 }} | {{Optimal ET sequence|legend=0| 12f, 43 }} | ||
Line 398: | Line 364: | ||
* WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}} | * WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 43 }} | {{Optimal ET sequence|legend=0| 12f, 43 }} | ||
Line 417: | Line 381: | ||
* WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}} | * WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}} | ||
{{Optimal ET sequence|legend=0| 19e, 43, 62 }} | {{Optimal ET sequence|legend=0| 19e, 43, 62 }} | ||
Line 434: | Line 396: | ||
* WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}} | * WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}} | ||
{{Optimal ET sequence|legend=0| 19eg, 43, 62 }} | {{Optimal ET sequence|legend=0| 19eg, 43, 62 }} | ||
Line 451: | Line 411: | ||
* WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}} | * WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}} | ||
{{Optimal ET sequence|legend=0| 19egh, 43, 62 }} | {{Optimal ET sequence|legend=0| 19egh, 43, 62 }} | ||
Line 470: | Line 428: | ||
* WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}} | * WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}} | ||
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}} | * CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, …, 50eff, 62, 136b }} | {{Optimal ET sequence|legend=0| 12f, …, 50eff, 62, 136b }} | ||
Line 487: | Line 443: | ||
* WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}} | * WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}} | ||
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}} | * CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }} | {{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }} | ||
Line 504: | Line 458: | ||
* WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}} | * WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}} | ||
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}} | * CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 50eff, 62 }} | {{Optimal ET sequence|legend=0| 12f, 50eff, 62 }} | ||
Line 527: | Line 479: | ||
* WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}} | * WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 559: | Line 509: | ||
* WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}} | * WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 584: | Line 532: | ||
* WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}} | * WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}} | ||
{{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }} | {{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }} | ||
Line 601: | Line 547: | ||
* WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}} | * WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}} | ||
{{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }} | {{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }} | ||
Line 618: | Line 562: | ||
* WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}} | * WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}} | ||
{{Optimal ET sequence|legend=0| 19, 31 }} | {{Optimal ET sequence|legend=0| 19, 31 }} | ||
Line 635: | Line 577: | ||
* WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}} | * WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}} | ||
{{Optimal ET sequence|legend=0| 19, 31 }} | {{Optimal ET sequence|legend=0| 19, 31 }} | ||
Line 652: | Line 592: | ||
* WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}} | * WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 673: | Line 611: | ||
* WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}} | * WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}} | ||
{{Optimal ET sequence|legend=0| 12e, 19 }} | {{Optimal ET sequence|legend=0| 12e, 19 }} | ||
Line 690: | Line 626: | ||
* WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}} | * WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}} | ||
{{Optimal ET sequence|legend=0| 12e, 19 }} | {{Optimal ET sequence|legend=0| 12e, 19 }} | ||
Line 709: | Line 643: | ||
* WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}} | * WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}} | ||
Tuning ranges: | Tuning ranges: | ||
Line 730: | Line 662: | ||
* WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}} | * WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}} | ||
{{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }} | {{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }} | ||
Line 747: | Line 677: | ||
* WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}} | * WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 19, 31e }} | {{Optimal ET sequence|legend=0| 12f, 19, 31e }} | ||
Line 764: | Line 692: | ||
* WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}} | * WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 19, 31e }} | {{Optimal ET sequence|legend=0| 12f, 19, 31e }} | ||
Line 781: | Line 707: | ||
* WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}} | * WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 12, 19 }} | {{Optimal ET sequence|legend=0| 7d, 12, 19 }} | ||
Line 798: | Line 722: | ||
* WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}} | * WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}} | ||
{{Optimal ET sequence|legend=0| 12, 19 }} | {{Optimal ET sequence|legend=0| 12, 19 }} | ||
Line 815: | Line 737: | ||
* WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}} | * WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}} | ||
{{Optimal ET sequence|legend=0| 12, 19 }} | {{Optimal ET sequence|legend=0| 12, 19 }} | ||
Line 832: | Line 752: | ||
* WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}} | * WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 12f, 19f }} | {{Optimal ET sequence|legend=0| 7d, 12f, 19f }} | ||
Line 849: | Line 767: | ||
* WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}} | * WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}} | ||
{{Optimal ET sequence|legend=0| 7dg, 12f }} | {{Optimal ET sequence|legend=0| 7dg, 12f }} | ||
Line 866: | Line 782: | ||
* WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}} | * WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}} | ||
{{Optimal ET sequence|legend=0| 7dgh, 12f }} | {{Optimal ET sequence|legend=0| 7dgh, 12f }} | ||
Line 885: | Line 799: | ||
* WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}} | * WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }} | {{Optimal ET sequence|legend=0| 7d, 12e, 19e }} | ||
Line 902: | Line 814: | ||
* WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}} | * WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }} | {{Optimal ET sequence|legend=0| 7d, 12e, 19e }} | ||
Line 923: | Line 833: | ||
* WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}} | * WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}} | ||
* CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}} | * CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}} | ||
{{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }} | {{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }} | ||
Line 940: | Line 848: | ||
* WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}} | * WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}} | ||
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}} | * CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }} | {{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }} | ||
Line 957: | Line 863: | ||
* WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}} | * WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}} | ||
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}} | * CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 38df, 50 }} | {{Optimal ET sequence|legend=0| 12f, 38df, 50 }} | ||
Line 974: | Line 878: | ||
* WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}} | * WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}} | ||
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}} | * CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}} | ||
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }} | {{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }} | ||
Line 995: | Line 897: | ||
* WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}} | * WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }} | {{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }} | ||
Line 1,012: | Line 912: | ||
* WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}} | * WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }} | {{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }} | ||
Line 1,029: | Line 927: | ||
* WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}} | * WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}} | ||
{{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }} | {{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }} | ||
Line 1,052: | Line 948: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}} | ||
: error map: {{val| 0.000 -8.222 -11.380 -12.426 }} | : error map: {{val| 0.000 -8.222 -11.380 -12.426 }} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 1,088: | Line 980: | ||
* WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}} | * WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}} | ||
Tuning ranges: | Tuning ranges: | ||
Line 1,109: | Line 999: | ||
* WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}} | * WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}} | ||
Tuning ranges: | Tuning ranges: | ||
Line 1,136: | Line 1,024: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}} | ||
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }} | : error map: {{val| 0.000 -9.907 -18.122 -4.012 }} | ||
{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }} | {{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }} | ||
Line 1,153: | Line 1,039: | ||
* WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}} | * WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 19d, 26 }} | {{Optimal ET sequence|legend=0| 7d, 19d, 26 }} | ||
Line 1,166: | Line 1,051: | ||
{{See also| Archytas clan }} | {{See also| Archytas clan }} | ||
The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]]. | The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh (C–Bb). The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]]. | ||
Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments. | Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments. | ||
Line 1,181: | Line 1,066: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}} | ||
: error map: {{val| 0.000 -0.842 +18.136 +28.949 }} | : error map: {{val| 0.000 -0.842 +18.136 +28.949 }} | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
Line 1,209: | Line 1,090: | ||
* WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}} | * WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }} | {{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }} | ||
Line 1,226: | Line 1,105: | ||
* WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}} | * WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}} | ||
Tuning ranges: | Tuning ranges: | ||
Line 1,247: | Line 1,124: | ||
* WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}} | * WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 12, 17c }} | {{Optimal ET sequence|legend=0| 5, 12, 17c }} | ||
Line 1,264: | Line 1,139: | ||
* WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}} | * WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}} | ||
{{Optimal ET sequence|legend=0| 5e, 7, 12 }} | {{Optimal ET sequence|legend=0| 5e, 7, 12 }} | ||
Line 1,281: | Line 1,154: | ||
* WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}} | * WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 12 }} | {{Optimal ET sequence|legend=0| 7, 12 }} | ||
Line 1,298: | Line 1,169: | ||
* WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}} | * WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 12 }} | {{Optimal ET sequence|legend=0| 7, 12 }} | ||
Line 1,315: | Line 1,184: | ||
* WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}} | * WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}} | ||
{{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }} | {{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }} | ||
Line 1,332: | Line 1,199: | ||
* WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}} | * WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}} | ||
{{Optimal ET sequence|legend=0| 5e, 7, 12f }} | {{Optimal ET sequence|legend=0| 5e, 7, 12f }} | ||
Line 1,349: | Line 1,214: | ||
* WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}} | * WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}} | ||
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }} | {{Optimal ET sequence|legend=0| 5e, 12e, 17c }} | ||
Line 1,366: | Line 1,229: | ||
* WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}} | * WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}} | ||
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }} | {{Optimal ET sequence|legend=0| 5e, 12e, 17c }} | ||
Line 1,383: | Line 1,244: | ||
* WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}} | * WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 7, 12e }} | {{Optimal ET sequence|legend=0| 5, 7, 12e }} | ||
Line 1,400: | Line 1,259: | ||
* WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}} | * WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 7 }} | {{Optimal ET sequence|legend=0| 5, 7 }} | ||
Line 1,417: | Line 1,274: | ||
* WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}} | * WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 7 }} | {{Optimal ET sequence|legend=0| 5, 7 }} | ||
Line 1,434: | Line 1,289: | ||
* WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}} | * WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }} | {{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }} | ||
Line 1,457: | Line 1,310: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}} | ||
: error map: {{val| 0.000 -0.462 +19.657 -64.347 }} | : error map: {{val| 0.000 -0.462 +19.657 -64.347 }} | ||
{{Optimal ET sequence|legend=1| 5, 7d, 12d }} | {{Optimal ET sequence|legend=1| 5, 7d, 12d }} | ||
Line 1,476: | Line 1,325: | ||
* WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}} | * WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}} | ||
{{Optimal ET sequence|legend=0| 5, 7d, 12de }} | {{Optimal ET sequence|legend=0| 5, 7d, 12de }} | ||
Line 1,484: | Line 1,331: | ||
== Supermean == | == Supermean == | ||
Supermean tempers out 672/625 and finds the interval class of 7 at 15 generators up, as a double-augmented fifth (C–Gx). As such, it extends [[leapfrog]]. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 81/80, 672/625 | [[Comma list]]: 81/80, 672/625 | ||
{{Mapping|legend=1| | {{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }} | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
Line 1,495: | Line 1,344: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}} | ||
: error map: {{val| 0.000 +2.583 +31.836 -0.763 }} | : error map: {{val| 0.000 +2.583 +31.836 -0.763 }} | ||
{{Optimal ET sequence|legend=1| 5d, 12d, 17c }} | {{Optimal ET sequence|legend=1| 5d, 12d, 17c }} | ||
Line 1,514: | Line 1,359: | ||
* WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}} | * WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}} | ||
{{Optimal ET sequence|legend=0| 5de, 12de, 17c }} | {{Optimal ET sequence|legend=0| 5de, 12de, 17c }} | ||
Line 1,531: | Line 1,374: | ||
* WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}} | * WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}} | ||
{{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }} | {{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }} | ||
Line 1,541: | Line 1,382: | ||
{{Main| Mohajira }} | {{Main| Mohajira }} | ||
Mohajira can be viewed as derived from mohaha which maps the interval half a [[chroma]] flat of | Mohajira can be viewed as derived from mohaha which maps the interval half a [[chromatic semitone|chroma]] flat of the minor seventh to ~7/4 so that 7/4 is mapped to a semidiminished seventh (C–Bdb), although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the [[porwell comma]]. It can be described as {{nowrap| 24 & 31 }}; its ploidacot is dicot. [[31edo]] makes for an excellent mohajira tuning, with generator 9\31. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 1,556: | Line 1,397: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}} | ||
: error map: {{val| 0.000 -5.116 +1.041 -1.439 }} | : error map: {{val| 0.000 -5.116 +1.041 -1.439 }} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 1,589: | Line 1,426: | ||
* WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}} | * WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}} | ||
Minimax tuning: | Minimax tuning: | ||
Line 1,617: | Line 1,452: | ||
* WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}} | * WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 24, 31 }} | {{Optimal ET sequence|legend=0| 7, 24, 31 }} | ||
Line 1,636: | Line 1,469: | ||
* WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}} | * WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 24, 31 }} | {{Optimal ET sequence|legend=0| 7, 24, 31 }} | ||
Line 1,655: | Line 1,486: | ||
* WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}} | * WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 24, 31, 55 }} | {{Optimal ET sequence|legend=0| 7, 24, 31, 55 }} | ||
Line 1,665: | Line 1,494: | ||
== Mohamaq == | == Mohamaq == | ||
Mohamaq is a lower-accuracy alternative to mohajira that favors tunings sharp of 24edo. It may be described as {{nowrap| 17c & 24 }}; its ploidacot is dicot, the same as mohajira. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 1,678: | Line 1,509: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}} | ||
: error map: {{val| 0.000 -0.984 +17.571 -12.513 }} | : error map: {{val| 0.000 -0.984 +17.571 -12.513 }} | ||
{{Optimal ET sequence|legend=1| 7d, 17c, 24 }} | {{Optimal ET sequence|legend=1| 7d, 17c, 24 }} | ||
Line 1,699: | Line 1,526: | ||
* WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}} | * WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 17c, 24 }} | {{Optimal ET sequence|legend=0| 7d, 17c, 24 }} | ||
Line 1,718: | Line 1,543: | ||
* WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}} | * WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}} | ||
{{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }} | {{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }} | ||
Line 1,730: | Line 1,553: | ||
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span> | <span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span> | ||
Liese splits the | Liese splits the [[3/1|perfect twelfth]] into three generators of ~10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. It may be described as {{nowrap| 17c & 19 }}; its ploidacot is alpha-tricot. It is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 1,745: | Line 1,568: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}} | ||
: error map: {{val| 0.000 -4.263 +4.454 -10.622 }} | : error map: {{val| 0.000 -4.263 +4.454 -10.622 }} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 1,771: | Line 1,590: | ||
* WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}} | * WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 19, 36 }} | {{Optimal ET sequence|legend=0| 17c, 19, 36 }} | ||
Line 1,788: | Line 1,605: | ||
* WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}} | * WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 19, 36 }} | {{Optimal ET sequence|legend=0| 17c, 19, 36 }} | ||
Line 1,805: | Line 1,620: | ||
* WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}} | * WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }} | {{Optimal ET sequence|legend=0| 17c, 19e, 36e }} | ||
Line 1,822: | Line 1,635: | ||
* WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}} | * WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }} | {{Optimal ET sequence|legend=0| 17c, 19e, 36e }} | ||
Line 1,839: | Line 1,650: | ||
* WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}} | * WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}} | ||
{{Optimal ET sequence|legend=0| 17cee, 19 }} | {{Optimal ET sequence|legend=0| 17cee, 19 }} | ||
Line 1,856: | Line 1,665: | ||
* WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}} | * WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}} | ||
{{Optimal ET sequence|legend=0| 17cee, 19 }} | {{Optimal ET sequence|legend=0| 17cee, 19 }} | ||
Line 1,866: | Line 1,673: | ||
{{See also| No-sevens subgroup temperaments #Superpine }} | {{See also| No-sevens subgroup temperaments #Superpine }} | ||
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]] | The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. It may be described as {{nowrap| 36 & 43 }}; its ploidacot is omega-tricot. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]] – harmonics other than 3 all require the 15-tone mos to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 1,879: | Line 1,686: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}} | ||
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }} | : error map: {{val| 0.000 -3.723 +6.613 +5.503 }} | ||
{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }} | {{Optimal ET sequence|legend=1| 7, 36, 43, 79c }} | ||
Line 1,896: | Line 1,701: | ||
* WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}} | * WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 36, 43 }} | {{Optimal ET sequence|legend=0| 7, 36, 43 }} | ||
Line 1,912: | Line 1,716: | ||
* WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}} | * WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 36, 43 }} | {{Optimal ET sequence|legend=0| 7, 36, 43 }} | ||
Line 1,919: | Line 1,722: | ||
== Lithium == | == Lithium == | ||
Lithium is named after the 3rd element for having a 3rd-octave period | Lithium is named after the 3rd element for having a 3rd-octave period (and also for lithium's molar mass of 6.9 g/mol since 69edo supports it). Its ploidacot is triploid monocot. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 1,934: | Line 1,737: | ||
* [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}}) | * [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}}) | ||
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }} | : error map: {{val| 0.000 -6.814 -5.748 +2.022 }} | ||
{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }} | {{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }} | ||
Line 1,944: | Line 1,745: | ||
{{Main| Squares }} | {{Main| Squares }} | ||
Squares splits the | Squares splits the [[6/1|6th harmonic]] into four subminor sixths of [[11/7]]~[[14/9]] (or splits a [[8/3|perfect eleventh]] into four supermajor thirds of [[9/7]]~[[14/11]]), and uses it for a generator. It may be described as {{nowrap| 14c & 17c }}; its ploidacot is beta-tetracot. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]]. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 1,959: | Line 1,760: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}} | ||
: error map: {{val| 0.000 -5.331 +0.183 -1.422 }} | : error map: {{val| 0.000 -5.331 +0.183 -1.422 }} | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 1,987: | Line 1,784: | ||
* WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}} | * WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}} | ||
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }} | {{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }} | ||
Line 2,004: | Line 1,799: | ||
* WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}} | * WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}} | ||
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }} | {{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }} | ||
Line 2,021: | Line 1,814: | ||
* WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}} | * WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}} | ||
{{Optimal ET sequence|legend=0| 14cf, 17c, 31f }} | {{Optimal ET sequence|legend=0| 14cf, 17c, 31f }} | ||
Line 2,038: | Line 1,829: | ||
* WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}} | * WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}} | ||
{{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }} | {{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }} | ||
Line 2,055: | Line 1,844: | ||
* WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}} | * WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}} | ||
{{Optimal ET sequence|legend=0| 14cf, 31 }} | {{Optimal ET sequence|legend=0| 14cf, 31 }} | ||
Line 2,072: | Line 1,859: | ||
* WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}} | * WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}} | ||
{{Optimal ET sequence|legend=0| 14cf, 31 }} | {{Optimal ET sequence|legend=0| 14cf, 31 }} | ||
Line 2,089: | Line 1,874: | ||
* WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}} | * WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}} | ||
{{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }} | {{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }} | ||
Line 2,097: | Line 1,880: | ||
== Jerome == | == Jerome == | ||
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. While the generator represents both 13/12 and 12/11, the | Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. It may be described as {{nowrap| 17c & 26 }}; its ploidacot is pentacot. While the generator represents both 13/12 and 12/11, the CTE/CWE and Hieronymus generators are close to 13/12 in size. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 2,112: | Line 1,895: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}} | ||
: error map: {{val| 0.000 -5.191 +0.741 +6.643 }} | : error map: {{val| 0.000 -5.191 +0.741 +6.643 }} | ||
{{Optimal ET sequence|legend=1| 17c, 26, 43 }} | {{Optimal ET sequence|legend=1| 17c, 26, 43 }} | ||
Line 2,131: | Line 1,910: | ||
* WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}} | * WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 26, 43 }} | {{Optimal ET sequence|legend=0| 17c, 26, 43 }} | ||
Line 2,148: | Line 1,925: | ||
* WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}} | * WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}} | ||
{{Optimal ET sequence|legend=0| 17c, 26, 43 }} | {{Optimal ET sequence|legend=0| 17c, 26, 43 }} | ||
Line 2,165: | Line 1,940: | ||
* WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}} | * WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}} | ||
{{Optimal ET sequence|legend=0| 17cg, 26, 43 }} | {{Optimal ET sequence|legend=0| 17cg, 26, 43 }} | ||
Line 2,182: | Line 1,955: | ||
* WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}} | * WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}} | ||
{{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }} | {{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }} | ||
Line 2,190: | Line 1,961: | ||
== Meantritone == | == Meantritone == | ||
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, | The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, the 6th harmonic is split into five generators of ~10/7; the ploidacot of this temperament is beta-pentacot. The name ''meantritone'' is a portmanteau of ''meantone'' and ''tritone'', the latter is a generator of this temperament. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 2,205: | Line 1,976: | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}} | * [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}} | ||
: error map: {{val| 0.000 -5.367 +0.038 -1.791 }} | : error map: {{val| 0.000 -5.367 +0.038 -1.791 }} | ||
{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }} | {{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }} | ||
Line 2,224: | Line 1,991: | ||
* WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}} | * WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}} | ||
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}} | * CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}} | ||
{{Optimal ET sequence|legend=0| 29cde, 31 }} | {{Optimal ET sequence|legend=0| 29cde, 31 }} | ||
Line 2,232: | Line 1,997: | ||
== Injera == | == Injera == | ||
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera. | Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a ~15/14 semitone difference between a half-octave and a perfect fifth. Injera may be described as {{nowrap| 12 & 26 }}; its ploidacot is diploid monocot. It tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera. | ||
[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name] | [https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name] | ||
Line 2,249: | Line 2,014: | ||
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}}) | * [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}}) | ||
: error map: {{val| 0.000 -7.184 -7.229 +10.259 }} | : error map: {{val| 0.000 -7.184 -7.229 +10.259 }} | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
Line 2,276: | Line 2,037: | ||
* WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}}) | * WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}}) | ||
Tuning ranges: | Tuning ranges: | ||
Line 2,297: | Line 2,056: | ||
* WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}}) | * WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}}) | ||
Tuning ranges: | Tuning ranges: | ||
Line 2,318: | Line 2,075: | ||
* WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}}) | * WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}}) | ||
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }} | {{Optimal ET sequence|legend=0| 12f, 14cf, 26 }} | ||
Line 2,335: | Line 2,090: | ||
* WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}}) | * WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}}) | ||
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }} | {{Optimal ET sequence|legend=0| 12f, 14cf, 26 }} | ||
Line 2,352: | Line 2,105: | ||
* WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}}) | * WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}}) | ||
{{Optimal ET sequence|legend=0| 10cdeef, 12f }} | {{Optimal ET sequence|legend=0| 10cdeef, 12f }} | ||
Line 2,369: | Line 2,120: | ||
* WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}}) | * WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}}) | ||
{{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }} | {{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }} | ||
Line 2,386: | Line 2,135: | ||
* WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}}) | * WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}}) | ||
{{Optimal ET sequence|legend=0| 10cd, 12 }} | {{Optimal ET sequence|legend=0| 10cd, 12 }} | ||
Line 2,396: | Line 2,143: | ||
{{Main| Teff }} | {{Main| Teff }} | ||
Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in | Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in halves in order to accommodate higher-limit intervals, creating a half-octave quartertone temperament. Its ploidacot is diploid alpha-dicot. | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Line 2,409: | Line 2,156: | ||
* WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}}) | * WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}}) | ||
{{Optimal ET sequence|legend=0| 24d, 26, 50d }} | {{Optimal ET sequence|legend=0| 24d, 26, 50d }} | ||
Line 2,426: | Line 2,171: | ||
* WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}}) | * WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}}) | ||
{{Optimal ET sequence|legend=0| 24d, 26, 50d }} | {{Optimal ET sequence|legend=0| 24d, 26, 50d }} | ||
Line 2,443: | Line 2,186: | ||
* WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}}) | * WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}}) | ||
{{Optimal ET sequence|legend=0| 24d, 26 }} | {{Optimal ET sequence|legend=0| 24d, 26 }} | ||
Line 2,460: | Line 2,201: | ||
* WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}}) | * WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}}) | ||
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}}) | * CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}}) | ||
{{Optimal ET sequence|legend=0| 24d, 26 }} | {{Optimal ET sequence|legend=0| 24d, 26 }} | ||
Line 2,468: | Line 2,207: | ||
== Pombe == | == Pombe == | ||
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall. | Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Its ploidacot is diploid alpha-dicot, the same as teff. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 2,483: | Line 2,222: | ||
* [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}}) | * [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}}) | ||
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }} | : error map: {{val| 0.000 -6.229 -3.411 -8.140 }} | ||
{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }} | {{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }} | ||
Line 2,502: | Line 2,237: | ||
* WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}}) | * WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}}) | ||
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}}) | * CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}}) | ||
{{Optimal ET sequence|legend=0| 24, 26, 50 }} | {{Optimal ET sequence|legend=0| 24, 26, 50 }} | ||
Line 2,519: | Line 2,252: | ||
* WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}}) | * WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}}) | ||
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}}) | * CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}}) | ||
{{Optimal ET sequence|legend=0| 24, 26, 50 }} | {{Optimal ET sequence|legend=0| 24, 26, 50 }} | ||
Line 2,536: | Line 2,267: | ||
* WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}}) | * WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}}) | ||
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}}) | * CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}}) | ||
{{Optimal ET sequence|legend=0| 24, 26, 50 }} | {{Optimal ET sequence|legend=0| 24, 26, 50 }} | ||
Line 2,553: | Line 2,282: | ||
* WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}}) | * WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}}) | ||
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}}) | * CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}}) | ||
{{Optimal ET sequence|legend=0| 24, 26, 50 }} | {{Optimal ET sequence|legend=0| 24, 26, 50 }} | ||
Line 2,561: | Line 2,288: | ||
== Orphic == | == Orphic == | ||
Orphic has a semi-octave period and four generators plus a period gives the 3rd harmonic; its ploidacot is diploid alpha-tetracot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 2,574: | Line 2,303: | ||
* [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}}) | * [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}}) | ||
: error map: {{val| 0.000 -5.041 +1.342 +3.860 }} | : error map: {{val| 0.000 -5.041 +1.342 +3.860 }} | ||
{{Optimal ET sequence|legend=1| 26, 48c, 74 }} | {{Optimal ET sequence|legend=1| 26, 48c, 74 }} | ||
Line 2,593: | Line 2,318: | ||
* WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}}) | * WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}}) | ||
* CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}}) | * CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}}) | ||
{{Optimal ET sequence|legend=0| 26, 48c, 74 }} | {{Optimal ET sequence|legend=0| 26, 48c, 74 }} | ||
Line 2,610: | Line 2,333: | ||
* WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}}) | * WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}}) | ||
* CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}}) | * CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}}) | ||
{{Optimal ET sequence|legend=0| 26, 48c, 74 }} | {{Optimal ET sequence|legend=0| 26, 48c, 74 }} | ||
Line 2,618: | Line 2,339: | ||
== Cloudtone == | == Cloudtone == | ||
The cloudtone temperament | The cloudtone temperament tempers out the [[cloudy comma]], 16807/16384 and the [[syntonic comma]], 81/80 in the 7-limit. It may be described as {{nowrap| 5 & 50 }}; its ploidacot is pentaploid monocot. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 2,633: | Line 2,354: | ||
* [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}}) | * [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}}) | ||
: error map: {{val| 0.000 -5.791 -1.659 -8.826 }} | : error map: {{val| 0.000 -5.791 -1.659 -8.826 }} | ||
{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }} | {{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }} | ||
Line 2,652: | Line 2,369: | ||
* WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}}) | * WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}}) | ||
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}}) | * CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}}) | ||
{{Optimal ET sequence|legend=0| 5, 45, 50 }} | {{Optimal ET sequence|legend=0| 5, 45, 50 }} | ||
Line 2,669: | Line 2,384: | ||
* WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}}) | * WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}}) | ||
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}}) | * CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}}) | ||
{{Optimal ET sequence|legend=0| 5, 45f, 50 }} | {{Optimal ET sequence|legend=0| 5, 45f, 50 }} | ||
Line 2,683: | Line 2,396: | ||
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }} | {{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }} | ||
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }} | {{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }} | ||
: | : mapping generators: ~2, ~3 | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1199.5513{{c}}, ~3/2 = 697.6058{{c}} | ||
* [[ | : [[error map]]: {{val| -0.448 -4.798 +4.110 +6.977 }} | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 697.8222{{c}} | |||
: error map: {{val| 0.000 -4.133 +4.975 +9.020 }} | |||
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43 }} | {{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43, 98h }} | ||
[[ | [[Badness]] (Sintel): 0.324 | ||
=== Hypnotone === | === Hypnotone === | ||
Line 2,707: | Line 2,420: | ||
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }} | {{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }} | ||
: | {{Mapping|legend=3| 1 0 -4 0 -6 | 0 1 4 0 6 }} | ||
: mapping generators: ~2, ~3 | |||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1202.0621{{c}}, ~3/2 = 694.5448{{c}} | ||
* [[CWE]]: ~2 = 1200. | : [[error map]]: {{val| +2.062 -5.348 -8.135 +15.951 }} | ||
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.9085{{c}} | |||
: error map: {{val| 0.000 -8.047 -10.680 +12.133 }} | |||
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }} | {{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 0.326 | ||
==== 2.3.5.11.13 subgroup ==== | ==== 2.3.5.11.13 subgroup ==== | ||
Line 2,722: | Line 2,439: | ||
Comma list: 45/44, 65/64, 81/80 | Comma list: 45/44, 65/64, 81/80 | ||
Subgroup-val mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }} | |||
: | Gencom mapping: {{mapping| 1 0 -4 0 -6 10 | 0 1 4 0 6 -4 }} | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1202.6916{{c}}, ~3/2 = 694.4181{{c}} | ||
* | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0870{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }} | {{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }} | ||
Badness ( | Badness (Sintel): 0.561 | ||
=== Dequarter === | === Dequarter === | ||
Line 2,741: | Line 2,458: | ||
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }} | {{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }} | ||
: | {{Mapping|legend=3| 1 0 -4 0 5 | 0 1 4 0 -1 }} | ||
: mapping generators: ~2, ~3 | |||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1206.5832{{c}}, ~3/2 = 695.8763{{c}} | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693. | : [[error map]]: {{val| +6.583 +0.504 -2.809 -20.862 }} | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.1206{{c}} | |||
: error map: {{val| 0.000 -8.834 -13.831 -44.439 }} | |||
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }} | {{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }} | ||
[[Badness]] ( | [[Badness]] (Sintel): 0.451 | ||
==== Dreamtone ==== | ==== Dreamtone ==== | ||
Line 2,756: | Line 2,477: | ||
Comma list: 33/32, 55/54, 975/968 | Comma list: 33/32, 55/54, 975/968 | ||
Subgroup-val mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }} | |||
: | Gencom mapping: {{mapping| 1 0 -4 0 5 21 | 0 1 4 0 -1 -11 }} | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1207.8248{{c}}, ~3/2 = 694.7806{{c}} | ||
* CWE: ~2 = 1200. | * CWE: ~2 = 1200.0000{{c}}, ~3/2 = 690.1826{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }} | {{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }} | ||
Badness ( | Badness (Sintel): 1.40 | ||
[[Category:Temperament families]] | [[Category:Temperament families]] |