Dicot family: Difference between revisions
Switch to Sintel's badness, WE & CWE tunings, per community consensus |
+ short intro to each temp |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | {{Technical data page}} | ||
The '''dicot family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] [[25/24]], the classical chromatic semitone. The head of this family, dicot, is [[generator|generated]] by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, {{nowrap|(5/4)<sup>2</sup> {{=}} (3/2)(25/24)}}. | The '''dicot family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] [[25/24]], the classical chromatic semitone. | ||
== Dicot == | |||
The head of this family, dicot, is [[generator|generated]] by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, {{nowrap|(5/4)<sup>2</sup> {{=}} (3/2)(25/24)}}. Its [[ploidacot]] is the same as its name, dicot. | |||
Possible tunings for dicot are [[7edo]], [[10edo]], [[17edo]], [[24edo]] using the val {{val| 24 38 55 }} (24c), and [[31edo]] using the val {{val| 31 49 71 }} (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an [[exotemperament]]. | Possible tunings for dicot are [[7edo]], [[10edo]], [[17edo]], [[24edo]] using the val {{val| 24 38 55 }} (24c), and [[31edo]] using the val {{val| 31 49 71 }} (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an [[exotemperament]]. | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 18: | Line 20: | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 351.086{{c}} | * [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 351.086{{c}} | ||
: error map: {{val| 0.000 +0.216 -35.228 }} | : error map: {{val| 0.000 +0.216 -35.228 }} | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
Line 32: | Line 30: | ||
=== Overview to extensions === | === Overview to extensions === | ||
The second comma of the [[ | The second comma of the [[normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot adds [[36/35]], flattie adds [[21/20]], sharpie adds [[28/27]], and dichotic adds [[64/63]], all retaining the same period and generator. | ||
Decimal adds 49/48, sidi adds 245/243, and jamesbond adds | Decimal adds [[49/48]], sidi adds [[245/243]], and jamesbond adds [[16/15]]. Here decimal divides the [[period]] to a [[sqrt(2)|semi-octave]], and sidi uses 14/9 as a generator, with two of them making up the combined 5/2~12/5 neutral tenth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. | ||
Temperaments discussed elsewhere are: | Temperaments discussed elsewhere are: | ||
* ''[[Geryon]]'' → [[Very low accuracy temperaments #Geryon|Very low accuracy temperaments]] | * ''[[Geryon]]'' → [[Very low accuracy temperaments #Geryon|Very low accuracy temperaments]] | ||
* ''[[Jamesbond]]'' → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]] | |||
The rest are considered below. | The rest are considered below. | ||
=== 2.3.5.11 subgroup === | === 2.3.5.11 subgroup === | ||
The 2.3.5.11-subgroup extension | The 2.3.5.11-subgroup extension maps [[11/9]]~[[27/22]] to the neutral third. As such, it is related to most of the septimal extensions. | ||
Subgroup: 2.3.5.11 | Subgroup: 2.3.5.11 | ||
Line 51: | Line 50: | ||
Gencom mapping: {{mapping| 1 1 2 0 2 | 0 2 1 0 5 }} | Gencom mapping: {{mapping| 1 1 2 0 2 | 0 2 1 0 5 }} | ||
Optimal tunings: | Optimal tunings: | ||
* WE: ~2 = 1206.750{{c}}, ~6/5 = 348.684{{c}} | * WE: ~2 = 1206.750{{c}}, ~6/5 = 348.684{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 348.954{{c}} | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 348.954{{c}} | ||
{{Optimal ET sequence|legend=0| 3e, 4e, 7, 24c, 31c }} | {{Optimal ET sequence|legend=0| 3e, 4e, 7, 24c, 31c }} | ||
Line 72: | Line 67: | ||
Gencom mapping: {{mapping| 1 1 2 0 2 4 | 0 2 1 0 5 -1 }} | Gencom mapping: {{mapping| 1 1 2 0 2 4 | 0 2 1 0 5 -1 }} | ||
Optimal tunings: | Optimal tunings: | ||
* WE: ~2 = 1202.433{{c}}, ~ | * WE: ~2 = 1202.433{{c}}, ~5/4 = 351.237{{c}} | ||
* CWE | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 350.978{{c}} | ||
{{Optimal ET sequence|legend=0| 3e, 7, 17 }} | {{Optimal ET sequence|legend=0| 3e, 7, 17 }} | ||
Line 86: | Line 77: | ||
== Septimal dicot == | == Septimal dicot == | ||
Septimal dicot is the extension where 7/6 and 9/7 are also conflated into 5/4~6/5. Although 5/4~6/5 | Septimal dicot is the extension where [[7/6]] and [[9/7]] are also conflated into 5/4~6/5. Although 5/4~6/5 covers a giant block of pitches already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 99: | Line 90: | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 338.561{{c}} | * [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 338.561{{c}} | ||
: error map: {{val| 0.000 -24.834 -47.753 +46.856 }} | : error map: {{val| 0.000 -24.834 -47.753 +46.856 }} | ||
{{Optimal ET sequence|legend=1| 3d, 4, 7 }} | {{Optimal ET sequence|legend=1| 3d, 4, 7 }} | ||
Line 118: | Line 105: | ||
* WE: ~2 = 1203.346{{c}}, ~6/5 = 343.078{{c}} | * WE: ~2 = 1203.346{{c}}, ~6/5 = 343.078{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 343.260{{c}} | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 343.260{{c}} | ||
{{Optimal ET sequence|legend=0| 3de, 4e, 7 }} | {{Optimal ET sequence|legend=0| 3de, 4e, 7 }} | ||
Line 135: | Line 120: | ||
* WE: ~2 = 1205.828{{c}}, ~6/5 = 337.683{{c}} | * WE: ~2 = 1205.828{{c}}, ~6/5 = 337.683{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 336.909{{c}} | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 336.909{{c}} | ||
{{Optimal ET sequence|legend=0| 3d, 4, 7, 18bc, 25bccd }} | {{Optimal ET sequence|legend=0| 3d, 4, 7, 18bc, 25bccd }} | ||
Line 152: | Line 135: | ||
* WE: ~2 = 1202.660{{c}}, ~6/5 = 339.597{{c}} | * WE: ~2 = 1202.660{{c}}, ~6/5 = 339.597{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 339.104{{c}} | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 339.104{{c}} | ||
{{Optimal ET sequence|legend=0| 3d, 4, 7 }} | {{Optimal ET sequence|legend=0| 3d, 4, 7 }} | ||
Line 160: | Line 141: | ||
== Flattie == | == Flattie == | ||
This temperament used to be known as | This temperament used to be known as ''flat''. Unlike septimal dicot where 7/6 is added to the neutral third, here [[8/7]] is added instead. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 173: | Line 154: | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 335.391{{c}} | * [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 335.391{{c}} | ||
: error map: {{val| 0.000 -31.173 -50.922 -104.217 }} | : error map: {{val| 0.000 -31.173 -50.922 -104.217 }} | ||
{{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | {{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | ||
Line 192: | Line 169: | ||
* WE: ~2 = 1216.069{{c}}, ~6/5 = 342.052{{c}} | * WE: ~2 = 1216.069{{c}}, ~6/5 = 342.052{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 338.467{{c}} | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 338.467{{c}} | ||
{{Optimal ET sequence|legend=0| 3, 4, 7d }} | {{Optimal ET sequence|legend=0| 3, 4, 7d }} | ||
Line 209: | Line 184: | ||
* WE: ~2 = 1211.546{{c}}, ~6/5 = 344.304{{c}} | * WE: ~2 = 1211.546{{c}}, ~6/5 = 344.304{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 341.373{{c}} | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 341.373{{c}} | ||
{{Optimal ET sequence|legend=0| 3, 4, 7d }} | {{Optimal ET sequence|legend=0| 3, 4, 7d }} | ||
Line 217: | Line 190: | ||
== Sharpie == | == Sharpie == | ||
This temperament used to be known as | This temperament used to be known as ''sharp''. This is where you find 7/6 at the major second and [[7/4]] at the major sixth. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 230: | Line 203: | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 358.495{{c}} | * [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 358.495{{c}} | ||
: error map: {{val| 0.000 +15.035 -27.818 -17.854 }} | : error map: {{val| 0.000 +15.035 -27.818 -17.854 }} | ||
{{Optimal ET sequence|legend=1| 3d, 7d, 10 }} | {{Optimal ET sequence|legend=1| 3d, 7d, 10 }} | ||
Line 249: | Line 218: | ||
* WE: ~2 = 1201.518{{c}}, ~5/4 = 356.557{{c}} | * WE: ~2 = 1201.518{{c}}, ~5/4 = 356.557{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 356.457{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 356.457{{c}} | ||
{{Optimal ET sequence|legend=0| 3de, 7d, 10, 17d }} | {{Optimal ET sequence|legend=0| 3de, 7d, 10, 17d }} | ||
Line 270: | Line 237: | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 356.275{{c}} | * [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 356.275{{c}} | ||
: error map: {{val| 0.000 +10.595 -30.039 +6.074 }} | : error map: {{val| 0.000 +10.595 -30.039 +6.074 }} | ||
{{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c }} | {{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c }} | ||
Line 289: | Line 252: | ||
* WE: ~2 = 1199.504{{c}}, ~5/4 = 354.115{{c}} | * WE: ~2 = 1199.504{{c}}, ~5/4 = 354.115{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.236{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.236{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 10, 17 }} | {{Optimal ET sequence|legend=0| 7, 10, 17 }} | ||
Line 306: | Line 267: | ||
* WE: ~2 = 1199.289{{c}}, ~5/4 = 354.156{{c}} | * WE: ~2 = 1199.289{{c}}, ~5/4 = 354.156{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.340{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.340{{c}} | ||
{{Optimal ET sequence|legend=0| 7, 10, 17, 27ce, 44cce }} | {{Optimal ET sequence|legend=0| 7, 10, 17, 27ce, 44cce }} | ||
Line 323: | Line 282: | ||
* WE: ~2 = 1203.949{{c}}, ~5/4 = 355.239{{c}} | * WE: ~2 = 1203.949{{c}}, ~5/4 = 355.239{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.024{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.024{{c}} | ||
{{Optimal ET sequence|legend=0| 3, 7, 10e }} | {{Optimal ET sequence|legend=0| 3, 7, 10e }} | ||
Line 340: | Line 297: | ||
* WE: ~2 = 1202.979{{c}}, ~5/4 = 355.193{{c}} | * WE: ~2 = 1202.979{{c}}, ~5/4 = 355.193{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.254{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.254{{c}} | ||
{{Optimal ET sequence|legend=0| 3, 7, 10e }} | {{Optimal ET sequence|legend=0| 3, 7, 10e }} | ||
Line 357: | Line 312: | ||
* WE: ~2 = 1197.526{{c}}, ~5/4 = 359.915{{c}} | * WE: ~2 = 1197.526{{c}}, ~5/4 = 359.915{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.745{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.745{{c}} | ||
{{Optimal ET sequence|legend=0| 3, 7e, 10 }} | {{Optimal ET sequence|legend=0| 3, 7e, 10 }} | ||
Line 374: | Line 327: | ||
* WE: ~2 = 1197.922{{c}}, ~5/4 = 360.021{{c}} | * WE: ~2 = 1197.922{{c}}, ~5/4 = 360.021{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.722{{c}} | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.722{{c}} | ||
{{Optimal ET sequence|legend=0| 3, 7e, 10 }} | {{Optimal ET sequence|legend=0| 3, 7e, 10 }} | ||
Line 384: | Line 335: | ||
{{Main| Decimal }} | {{Main| Decimal }} | ||
{{See also| Jubilismic clan }} | {{See also| Jubilismic clan }} | ||
Decimal tempers out 49/48 and [[50/49]], and has a semi-octave period for 7/5~10/7 and a hemitwelfth generator for 7/4~12/7. Its ploidacot is diploid dicot. [[10edo]] makes for a good tuning, from which it derives its name. [[14edo]] in the 14c val and [[24edo]] in the 24c val are also among the possibilities. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 398: | Line 351: | ||
* [[CWE]]: ~7/5 = 600.000{{c}}, ~7/4 = 950.957{{c}} (~7/6 = 249.043{{c}}) | * [[CWE]]: ~7/5 = 600.000{{c}}, ~7/4 = 950.957{{c}} (~7/6 = 249.043{{c}}) | ||
: error map: {{val| 0.000 -0.041 -35.357 -17.869 }} | : error map: {{val| 0.000 -0.041 -35.357 -17.869 }} | ||
{{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd }} | {{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd }} | ||
Line 417: | Line 366: | ||
* WE: ~7/5 = 603.558{{c}}, ~7/4 = 952.121{{c}} (~7/6 = 254.996{{c}}) | * WE: ~7/5 = 603.558{{c}}, ~7/4 = 952.121{{c}} (~7/6 = 254.996{{c}}) | ||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 948.610{{c}} (~7/6 = 251.390{{c}}) | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 948.610{{c}} (~7/6 = 251.390{{c}}) | ||
{{Optimal ET sequence|legend=0| 4e, 10, 14c, 24c }} | {{Optimal ET sequence|legend=0| 4e, 10, 14c, 24c }} | ||
Line 434: | Line 381: | ||
* WE: ~7/5 = 603.612{{c}}, ~7/4 = 953.663{{c}} (~7/6 = 253.562{{c}}) | * WE: ~7/5 = 603.612{{c}}, ~7/4 = 953.663{{c}} (~7/6 = 253.562{{c}}) | ||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 950.116{{c}} (~7/6 = 249.884{{c}}) | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 950.116{{c}} (~7/6 = 249.884{{c}}) | ||
{{Optimal ET sequence|legend=0| 4ef, 10, 14cf, 24cf }} | {{Optimal ET sequence|legend=0| 4ef, 10, 14cf, 24cf }} | ||
Line 451: | Line 396: | ||
* WE: ~7/5 = 604.535{{c}}, ~7/4 = 952.076{{c}} (~7/6 = 256.994{{c}}) | * WE: ~7/5 = 604.535{{c}}, ~7/4 = 952.076{{c}} (~7/6 = 256.994{{c}}) | ||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 946.108{{c}} (~7/6 = 253.892{{c}}) | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 946.108{{c}} (~7/6 = 253.892{{c}}) | ||
{{Optimal ET sequence|legend=0| 4, 10e, 14c }} | {{Optimal ET sequence|legend=0| 4, 10e, 14c }} | ||
Line 468: | Line 411: | ||
* WE: ~7/5 = 599.404{{c}}, ~7/4 = 955.557{{c}} (~8/7 = 243.251{{c}}) | * WE: ~7/5 = 599.404{{c}}, ~7/4 = 955.557{{c}} (~8/7 = 243.251{{c}}) | ||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 956.169{{c}} (~8/7 = 243.831{{c}}) | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 956.169{{c}} (~8/7 = 243.831{{c}}) | ||
{{Optimal ET sequence|legend=0| 4, 6, 10 }} | {{Optimal ET sequence|legend=0| 4, 6, 10 }} | ||
Line 476: | Line 417: | ||
== Sidi == | == Sidi == | ||
Sidi tempers out 245/243, and splits 5/2~12/5 in two. Its ploidacot is beta-tetracot. This relates it to [[squares]], to which it can be used as a simpler alternative. 14edo in the 14c val can be used as a tuning, in which case it is identical to squares, however. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 489: | Line 432: | ||
* [[CWE]]: ~2 = 1200.000{{c}}, ~14/9 = 773.872{{c}} | * [[CWE]]: ~2 = 1200.000{{c}}, ~14/9 = 773.872{{c}} | ||
: error map: {{val| 0.000 -6.464 -38.569 -3.973 }} | : error map: {{val| 0.000 -6.464 -38.569 -3.973 }} | ||
{{Optimal ET sequence|legend=1| 3d, …, 11cd, 14c }} | {{Optimal ET sequence|legend=1| 3d, …, 11cd, 14c }} | ||
Line 508: | Line 447: | ||
* WE: ~2 = 1207.200{{c}}, ~11/7 = 777.363{{c}} | * WE: ~2 = 1207.200{{c}}, ~11/7 = 777.363{{c}} | ||
* CWE: ~2 = 1200.000{{c}}, ~11/7 = 773.777{{c}} | * CWE: ~2 = 1200.000{{c}}, ~11/7 = 773.777{{c}} | ||
{{Optimal ET sequence|legend=0| 3de, …, 11cdee, 14c }} | {{Optimal ET sequence|legend=0| 3de, …, 11cdee, 14c }} |