Kleismic family: Difference between revisions
m Text replacement - "{{Technical data page}}<br><br>" to "{{Technical data page}}" Tags: Mobile edit Mobile web edit |
→Marfifths: The major tenth is a compound major third, 10/3 is a compound major sixth. |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
}} | }} | ||
{{Technical data page}} | {{Technical data page}} | ||
The [[5-limit]] parent comma for the '''kleismic family''' is [[15625/15552]], the kleisma. The [[generator]] is a [[6/5|classical minor third (6/5)]], and to get to the interval class of [[5/4|major thirds]] requires five of these, and so to get to [[3/2|fifths]] requires six. In fact, (6/5)<sup>5</sup> = 5/2 × 15625/15552. This 5-limit temperament (virtually a [[microtemperament]]) is sometimes called | The [[5-limit]] parent comma for the '''kleismic family''' is [[15625/15552]], the kleisma. The [[generator]] is a [[6/5|classical minor third (6/5)]], and to get to the interval class of [[5/4|major thirds]] requires five of these, and so to get to [[3/2|fifths]] requires six. In fact, (6/5)<sup>5</sup> = 5/2 × 15625/15552. This 5-limit temperament (virtually a [[microtemperament]]) is sometimes called ''hanson'', and 14\53 is about perfect as a generator, though 9\34 also makes sense, and 5\19 and 4\15 are possible. Other tunings include [[72edo]], [[87edo]] and [[140edo]]. | ||
The second comma of the [[ | The second comma of the [[normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. [[875/864]], the keemic comma, gives keemun. [[4375/4374]], the ragisma, gives catakleismic. [[5120/5103]], hemifamity, gives countercata. [[6144/6125]], the porwell comma, gives hemikleismic. [[245/243]], sensamagic, gives clyde. [[1029/1024]], the gamelisma, gives tritikleismic. [[2401/2400]] the breedsma, gives quadritikleismic. Keemun, catakleismic and countercata all have octave period and use the minor third as a generator; catakleismic and countercata define the 7/4 more complexly but more accurately than keemun. Hemikleismic splits the 6/5 in half to get a neutral second generator of 35/32, and clyde similarly splits the 5/3 in half to get a 9/7 generator. Finally, tritikleismic has a 1/3-octave period with minor third generator, and quadritikleismic a 1/4-octave period with the minor third generator. | ||
== | == Kleismic a.k.a. hanson == | ||
{{Main| | {{Main| Kleismic }} | ||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 33: | Line 33: | ||
[[Badness]]: 0.013234 | [[Badness]]: 0.013234 | ||
=== | === 2.3.5.13 subgroup (cata) === | ||
Hanson lends itself nicely to this extension in the 2.3.5.13 subgroup, as the hemitwelfth, reached by three generator steps, can be interpreted as [[26/15]]. Notice 15625/15552 = ([[325/324]])([[625/624]]) and 325/324 = (625/624)([[676/675]]). The [[S-expression]]-based comma list of the temperament is {[[325/324|S10/S12 = S25*S26]], ([[625/624|S25]],) [[676/675|S13/S15 = S26]]}. For the high-limit version of cata with a 1\5 period, see [[thunderclysmic]]. | Hanson lends itself nicely to this extension in the 2.3.5.13 subgroup, as the hemitwelfth, reached by three generator steps, can be interpreted as [[26/15]]. Notice 15625/15552 = ([[325/324]])([[625/624]]) and 325/324 = (625/624)([[676/675]]). The [[S-expression]]-based comma list of the temperament is {[[325/324|S10/S12 = S25*S26]], ([[625/624|S25]],) [[676/675|S13/S15 = S26]]}. For the high-limit version of cata with a 1\5 period, see [[thunderclysmic]]. | ||
Line 58: | Line 58: | ||
{{Mapping|legend=1| 1 0 1 2 | 0 6 5 3 }} | {{Mapping|legend=1| 1 0 1 2 | 0 6 5 3 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.473 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.473 | ||
Line 78: | Line 76: | ||
Mapping: {{mapping| 1 0 1 2 4 | 0 6 5 3 -2 }} | Mapping: {{mapping| 1 0 1 2 4 | 0 6 5 3 -2 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.576 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.576 | ||
Line 97: | Line 93: | ||
Mapping: {{mapping| 1 0 1 2 4 5 | 0 6 5 3 -2 -5 }} | Mapping: {{mapping| 1 0 1 2 4 5 | 0 6 5 3 -2 -5 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.611 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.611 | ||
Line 199: | Line 193: | ||
{{Mapping|legend=1| 1 0 1 6 | 0 6 5 -12 }} | {{Mapping|legend=1| 1 0 1 6 | 0 6 5 -12 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 318.267 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 318.267 | ||
Line 251: | Line 243: | ||
{{Mapping|legend=1| 1 0 1 -3 | 0 6 5 22 }} | {{Mapping|legend=1| 1 0 1 -3 | 0 6 5 22 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.732 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.732 | ||
Line 285: | Line 275: | ||
Mapping: {{mapping| 1 0 1 -3 9 | 0 6 5 22 -21 }} | Mapping: {{mapping| 1 0 1 -3 9 | 0 6 5 22 -21 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.719 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.719 | ||
Line 304: | Line 292: | ||
Mapping: {{mapping| 1 0 1 -3 9 0 | 0 6 5 22 -21 14 }} | Mapping: {{mapping| 1 0 1 -3 9 0 | 0 6 5 22 -21 14 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.738 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.738 | ||
Line 455: | Line 441: | ||
{{Mapping|legend=1| 1 0 1 11 | 0 6 5 -31 }} | {{Mapping|legend=1| 1 0 1 11 | 0 6 5 -31 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 317.121 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 317.121 | ||
Line 474: | Line 458: | ||
Mapping: {{mapping| 1 0 1 11 -5 | 0 6 5 -31 32 }} | Mapping: {{mapping| 1 0 1 11 -5 | 0 6 5 -31 32 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.162 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.162 | ||
Line 493: | Line 475: | ||
Mapping: {{mapping| 1 0 1 11 -5 0 | 0 6 5 -31 32 14 }} | Mapping: {{mapping| 1 0 1 11 -5 0 | 0 6 5 -31 32 14 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.162 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.162 | ||
Line 513: | Line 493: | ||
{{Mapping|legend=1| 1 0 1 -12 | 0 6 5 56 }} | {{Mapping|legend=1| 1 0 1 -12 | 0 6 5 56 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 317.314 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 317.314 | ||
Line 528: | Line 506: | ||
Mapping: {{mapping| 1 0 1 -12 -5 | 0 6 5 56 32 }} | Mapping: {{mapping| 1 0 1 -12 -5 | 0 6 5 56 32 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.311 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.311 | ||
Line 543: | Line 519: | ||
Mapping: {{mapping| 1 0 1 -12 -5 0 | 0 6 5 56 32 14 }} | Mapping: {{mapping| 1 0 1 -12 -5 0 | 0 6 5 56 32 14 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.311 | Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 317.311 | ||
Line 558: | Line 532: | ||
{{Mapping|legend=1| 1 0 1 4 | 0 12 10 -9 }} | {{Mapping|legend=1| 1 0 1 4 | 0 12 10 -9 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/32 = 158.649 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/32 = 158.649 | ||
Line 573: | Line 545: | ||
Mapping: {{mapping| 1 0 1 4 2 | 0 12 10 -9 11 }} | Mapping: {{mapping| 1 0 1 4 2 | 0 12 10 -9 11 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 158.677 | Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 158.677 | ||
Line 588: | Line 558: | ||
Mapping: {{mapping| 1 0 1 4 2 0 | 0 12 10 -9 11 28 }} | Mapping: {{mapping| 1 0 1 4 2 0 | 0 12 10 -9 11 28 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 158.655 | Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 158.655 | ||
Line 605: | Line 573: | ||
: mapping generators: ~2, ~9/7 | : mapping generators: ~2, ~9/7 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 441.335 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 441.335 | ||
Line 613: | Line 579: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 12/25 0 0 -1/25 }} | * [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 12/25 0 0 -1/25 }} | ||
: {{monzo list| 1 0 0 0 | 6/25 0 0 12/25 | 6/5 0 0 2/5 | 0 0 0 1 }} | : {{monzo list| 1 0 0 0 | 6/25 0 0 12/25 | 6/5 0 0 2/5 | 0 0 0 1 }} | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7 | ||
[[Algebraic generator]]: real root of 5''x''<sup>3</sup> - 6''x'' - 3, the Poussami generator. Approximately 441.309 [[cent]]s. Associated recurrence relationship quickly converges. | [[Algebraic generator]]: real root of 5''x''<sup>3</sup> - 6''x'' - 3, the Poussami generator. Approximately 441.309 [[cent]]s. Associated recurrence relationship quickly converges. | ||
Line 627: | Line 593: | ||
Mapping: {{mapping| 1 6 6 12 -5 | 0 -12 -10 -25 23 }} | Mapping: {{mapping| 1 6 6 12 -5 | 0 -12 -10 -25 23 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.355 | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.355 | ||
Line 642: | Line 606: | ||
Mapping: {{mapping| 1 6 6 12 -5 14 | 0 -12 -10 -25 23 -28 }} | Mapping: {{mapping| 1 6 6 12 -5 14 | 0 -12 -10 -25 23 -28 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.363 | Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 441.363 | ||
Line 659: | Line 621: | ||
: mapping generators: ~63/50, ~6/5 | : mapping generators: ~63/50, ~6/5 | ||
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~6/5 = 316.872 (~21/20 = 83.128) | [[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~6/5 = 316.872 (~21/20 = 83.128) | ||
Line 667: | Line 627: | ||
* [[7-odd-limit]]: ~6/5 = {{monzo| 1/3 0 1/7 -1/7 }} | * [[7-odd-limit]]: ~6/5 = {{monzo| 1/3 0 1/7 -1/7 }} | ||
: [{{monzo| 1 0 0 0 }}, {{monzo| 2 0 6/7 -6/7 }}, {{monzo| 8/3 0 5/7 -5/7 }}, {{monzo| 8/3 0 -2/7 2/7 }}] | : [{{monzo| 1 0 0 0 }}, {{monzo| 2 0 6/7 -6/7 }}, {{monzo| 8/3 0 5/7 -5/7 }}, {{monzo| 8/3 0 -2/7 2/7 }}] | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5 | ||
* [[9-odd-limit]]: ~6/5 = {{monzo| 5/21 1/7 0 -1/14 }} | * [[9-odd-limit]]: ~6/5 = {{monzo| 5/21 1/7 0 -1/14 }} | ||
: [{{monzo| 1 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 }}, {{monzo| 46/21 5/7 0 -5/14 }}, {{monzo| 20/7 -2/7 0 1/7 }}] | : [{{monzo| 1 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 }}, {{monzo| 46/21 5/7 0 -5/14 }}, {{monzo| 20/7 -2/7 0 1/7 }}] | ||
: [[Eigenmonzo basis| | : [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7 | ||
{{Optimal ET sequence|legend=1| 15, 42bc, 57, 72, 159, 231 }} | {{Optimal ET sequence|legend=1| 15, 42bc, 57, 72, 159, 231 }} | ||
Line 685: | Line 645: | ||
Mapping: {{mapping| 3 0 3 10 8 | 0 6 5 -2 3 }} | Mapping: {{mapping| 3 0 3 10 8 | 0 6 5 -2 3 }} | ||
Optimal tuning (POTE): ~44/35 = 1\3, ~6/5 = 316.881 (~21/20 = 83.119) | Optimal tuning (POTE): ~44/35 = 1\3, ~6/5 = 316.881 (~21/20 = 83.119) | ||
Line 693: | Line 651: | ||
* 11-odd-limit: ~6/5 = {{monzo| 5/21 1/7 0 -1/14 }} | * 11-odd-limit: ~6/5 = {{monzo| 5/21 1/7 0 -1/14 }} | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 0 }}, {{monzo| 46/21 5/7 0 -5/14 0 }}, {{monzo| 20/7 -2/7 0 1/7 0 }}, {{monzo| 71/21 3/7 0 -3/14 0 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 10/7 6/7 0 -3/7 0 }}, {{monzo| 46/21 5/7 0 -5/14 0 }}, {{monzo| 20/7 -2/7 0 1/7 0 }}, {{monzo| 71/21 3/7 0 -3/14 0 }}] | ||
: | : unchanged-interval (eigenmonzo) basis: 2.9/7 | ||
{{Optimal ET sequence|legend=1| 15, 42bc, 57, 72, 159, 231 }} | {{Optimal ET sequence|legend=1| 15, 42bc, 57, 72, 159, 231 }} | ||
Line 705: | Line 663: | ||
Mapping: {{mapping| 3 0 3 10 8 0 | 0 6 5 -2 3 14 }} | Mapping: {{mapping| 3 0 3 10 8 0 | 0 6 5 -2 3 14 }} | ||
Optimal tuning (POTE): ~44/35 = 1\3, ~6/5 = 316.9585 (~21/20 = 83.0415) | Optimal tuning (POTE): ~44/35 = 1\3, ~6/5 = 316.9585 (~21/20 = 83.0415) | ||
Line 735: | Line 691: | ||
: mapping generators: ~25/21, ~6/5 | : mapping generators: ~25/21, ~6/5 | ||
[[Optimal tuning]] ([[POTE]]): ~25/21 = 1\4, ~6/5 = 316.9999 (~126/125 = 16.9999) | [[Optimal tuning]] ([[POTE]]): ~25/21 = 1\4, ~6/5 = 316.9999 (~126/125 = 16.9999) | ||
Line 750: | Line 704: | ||
Mapping: {{mapping| 4 0 4 7 17 | 0 6 5 4 -3 }} | Mapping: {{mapping| 4 0 4 7 17 | 0 6 5 4 -3 }} | ||
Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9247 (~100/99 = 16.9247) | Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9247 (~100/99 = 16.9247) | ||
Line 765: | Line 717: | ||
Mapping: {{mapping| 4 0 4 7 17 0 | 0 6 5 4 -3 14 }} | Mapping: {{mapping| 4 0 4 7 17 0 | 0 6 5 4 -3 14 }} | ||
Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9887 (~100/99 = 16.9887) | Optimal tuning (POTE): ~25/21 = 1\4, ~6/5 = 316.9887 (~100/99 = 16.9887) | ||
Line 795: | Line 745: | ||
: mapping generators: ~2, ~25/21 | : mapping generators: ~2, ~25/21 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 294.303 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 294.303 | ||
Line 831: | Line 779: | ||
== Marfifths == | == Marfifths == | ||
The ''marfifths'' temperament (19&140) tempers out the [[hemimage comma]], 10976/10935. It splits the interval of major | The ''marfifths'' temperament (19&140) tempers out the [[hemimage comma]], 10976/10935. It splits the interval of a major thirteenth (~10/3) into three marvelous fifth ([[112/75]]) intervals, and uses it for a generator. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 839: | Line 787: | ||
{{Mapping|legend=1| 1 -6 -4 -17 | 0 18 15 47 }} | {{Mapping|legend=1| 1 -6 -4 -17 | 0 18 15 47 }} | ||
: mapping generators: ~2, ~75/ | : mapping generators: ~2, ~75/5 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~75/56 = 505.705 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~75/56 = 505.705 | ||
Line 941: | Line 887: | ||
: mapping generators: ~2, ~56/45 | : mapping generators: ~2, ~56/45 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~56/45 = 379.252 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~56/45 = 379.252 | ||
Line 1,027: | Line 971: | ||
: mapping generators: ~2592/2401, ~6/5 | : mapping generators: ~2592/2401, ~6/5 | ||
[[Optimal tuning]] ([[POTE]]): ~2592/2401 = 1\9, ~6/5 = 317.005 (~36/35 = 50.338) | [[Optimal tuning]] ([[POTE]]): ~2592/2401 = 1\9, ~6/5 = 317.005 (~36/35 = 50.338) | ||
Line 1,074: | Line 1,016: | ||
: mapping generators: ~2, 125/98 | : mapping generators: ~2, 125/98 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/98 = 416.603 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/98 = 416.603 | ||
Line 1,089: | Line 1,029: | ||
Mapping: {{mapping| 1 12 11 16 17 | 0 -30 -25 -38 -39 }} | Mapping: {{mapping| 1 12 11 16 17 | 0 -30 -25 -38 -39 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.604 | Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.604 | ||
Line 1,104: | Line 1,042: | ||
Mapping: {{mapping| 1 12 11 16 17 28 | 0 -30 -25 -38 -39 -70 }} | Mapping: {{mapping| 1 12 11 16 17 28 | 0 -30 -25 -38 -39 -70 }} | ||
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.585 | Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.585 | ||
Line 1,149: | Line 1,085: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Kleismic family| ]] <!-- main article --> | [[Category:Kleismic family| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] | ||
[[Category:Listen]] | [[Category:Listen]] |