Alphatricot family: Difference between revisions

mNo edit summary
Tags: Mobile edit Mobile web edit
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''Tricot''' is a [[microtemperament]], whose generator is the real cube root of third harmonic, 3<sup>1/3</sup>, tuned between 63/44 and 13/9. Tricot temperament can be described as 53&amp;70 temperament, tempering out the [[tricot comma]], {{monzo| 39 -29 3 }} in the 5-limit.  
{{Technical data page}}
The '''alphatricot family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[alphatricot comma]] ({{monzo|legend=1| 39 -29 3 }}, [[ratio]]: 68 719 476 736 000 / 68 630 377 364 883).  


There are some mappings for 7-limit extension of this temperament: trimot (53 &amp; 70), trident (53 &amp; 229) and trillium (53 &amp; 441). Tempering out [[5120/5103|hemifamity comma]] (5120/5103) leads to trimot, [[6144/6125|porwell comma]] (6144/6125) leads to trident, and [[4375/4374|ragisma]] (4375/4374) leads to trillium.
Strong 7-limit extensions of this temperament include alphatrimot (53 & 70), alphatrident (53 & 229) and alphatrillium (53 & 441). Tempering out [[5120/5103|hemifamity comma]] (5120/5103) leads to alphatrimot, [[6144/6125|porwell comma]] (6144/6125) leads to alphatrident, and [[4375/4374|ragisma]] (4375/4374) leads to alphatrillium.


== Tricot ==
== Alphatricot ==
Tricot temperament can be described as 53&amp;70 temperament, tempering out the [[tricot comma]], {{monzo| 39 -29 3 }} in the 5-limit.  
Alphatricot is a [[microtemperament]] whose generator is the real cube root of the [[3/1|3rd]] [[harmonic]], 3<sup>1/3</sup>, tuned between [[63/44]] and [[13/9]] and representing the acute augmented fourth of 59049/40960, that is, a [[729/512|Pythagorean augmented fourth]] plus a [[81/80|syntonic comma]]. Its [[ploidacot]] is alpha-tricot. It is a member of the [[schismic–Mercator equivalence continuum]] with {{nowrap|''n'' {{=}} 3 }}, so unless 53edo is used as a tuning, the [[schisma]] is always observed.  


This temperament was named by [[Paul Erlich]] in 2002<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5041.html Yahoo! Tuning Group | ''Paul's new names'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5080.html#5113 Yahoo! Tuning Group | ''Ultimate 5-limit comma list'']</ref>.  
The temperament was named by [[Paul Erlich]] in 2002 as ''tricot''<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5041.html Yahoo! Tuning Group | ''Paul's new names'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5080.html#5113 Yahoo! Tuning Group | ''Ultimate 5-limit comma list'']</ref>, but renamed in 2025 following the specifications of ploidacot.  


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma list]]: {{monzo| 39 -29 3 }} = 68719476736000/68630377364883
[[Comma list]]: {{monzo| 39 -29 3 }}


{{Mapping|legend=1| 1 0 -13 | 0 3 29 }}
{{Mapping|legend=1| 1 0 -13 | 0 3 29 }}
Line 16: Line 17:
: mapping generators: ~2, ~59049/40960
: mapping generators: ~2, ~59049/40960


{{Multival|legend=1| 3 29 39 }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~59049/40960 = 634.0102
: [[error map]]: {{val| 0.0000 +0.0757 -0.0168 }}
* [[POTE]]: ~2 = 1200.0000, ~59049/40960 = 634.0124
: error map: {{val| 0.0000 +0.0821 +0.0454 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~59049/40960 = 634.012
{{Optimal ET sequence|legend=1| 53, 229, 282, 335, 388, 441, 1376, 1817, 2258, 15365bbc, 17632bbc }}


{{Optimal ET sequence|legend=1| 53, 229, 282, 335, 388, 441, 1376, 1817, 2258 }}
[[Badness]] (Smith): 0.046093


[[Badness]]: 0.046093
; Scales
* [[Alphatricot17]] – proper [[2L 15s]]
* [[Alphatricot19]] – improper [[17L 2s]]


=== 2.3.5.13 subgroup ===
=== 2.3.5.13 subgroup ===
''See also [[No-fives subgroup temperaments#Threedic]].''
{{See also| No-fives subgroup temperaments #Threedic }}
 
This extension identifies the generator with [[13/9]] by tempering out the threedie, [[2197/2187]], providing a relatively low-complexity mapping for 13.


Subgroup: 2.3.5.13
Subgroup: 2.3.5.13


[[Comma list]]: 2197/2187, 41067/40960
Comma list: 2197/2187, 41067/40960
 
Mapping: {{mapping| 1 0 -13 0 | 0 3 29 7 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~13/9 = 634.0179
* POTE: ~2 = 1200.000, ~13/9 = 633.9970
 
{{Optimal ET sequence|legend=0| 17c, 36c, 53 }}
 
Badness (Sintel): 1.262
 
=== Catatricot ===
However, alphatricot in the 5-limit is far more accurate than threedic. Catatricot interprets the generator as ~[[75/52]] instead of 13/9, making the tempering of [[140625/140608]], the catasma, instead of the threedie. It also tempers out [[256000/255879]], the phaotisma.


[[Gencom]]: [2 13/9; 2197/2187, 41067/40960]
Subgroup: 2.3.5.13


[[Gencom|Gencom mapping]]: [{{val|1 0 -13 0 0 0}}, {{val|0 3 29 0 0 7}}]
Comma list: 140628/140625, 256000/255879


[[Mapping|Sval mapping]]: [{{val|1 0 -13 0}}, {{val|0 3 29 7}}]
Mapping: {{mapping| 1 0 -13 -28 | 0 3 29 60 }}


[[Tp tuning|POL2 generator]]: ~13/9 = 633.997
Optimal tunings:  
* CTE: ~2 = 1200.000, ~75/52 = 634.009
* POTE: ~2 = 1200.000, ~75/52 = 634.0108


{{Optimal ET sequence|legend=1| 17c, 36c, 53 }}
{{Optimal ET sequence|legend=1| 17cff, 36cff, 53, 282, 335, 388, 441, 494, 935 }}


[[Tp tuning #T2 tuning|RMS error]]: 0.2342 cents
Badness (Sintel): 0.181


=== Scales ===
== Alphatrillium ==
* [[Tricot17]] – proper [[2L 15s]]
Alphatrillium, named by [[Xenllium]] in 2021 as ''trillium'' but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 441 }} temperament, tempering out the [[ragisma]] aside from the alphatricot comma. [[441edo]] is a good tuning for this temperament, with generator 233\441. The harmonic 7 is found at -95 generator steps, so that the smallest [[mos scale]] is the 123-tone one. For much simpler mappings of 7 at the cost of higher errors, you could try [[#Alphatrident|alphatrident]] and [[#Alphatrimot|alphatrimot]].
* [[Tricot19]] – improper [[17L 2s]]
* [[Tricot36]] – improper [[17L 19s]]


== Trimot ==
It can be extended to the 11-limit by tempering out [[131072/130977]], and to the 13-limit by tempering out [[2080/2079]], [[4096/4095]] and [[4225/4224]]. The optimal tunings in the 11- and 13-limit lean towards [[494edo]]; [[935edo]] and especially [[1429edo]] are recommendable tunings.  
Trimot, named by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref>, can be described as the 53 & 70 temperament.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2430/2401, 5120/5103
[[Comma list]]: 4375/4374, 1099511627776/1098337086315
 
{{Mapping|legend=1| 1 0 -13 53 | 0 3 29 -95 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~23625/16384 = 634.0121
: [[error map]]: {{val| 0.0000 +0.0813 +0.0372 +0.0247 }}
* [[POTE]]: ~2 = 1200.0000, ~23625/16384 = 634.0118
: error map: {{val| 0.0000 +0.0804 +0.0283 +0.0537 }}
 
{{Optimal ET sequence|legend=1| 53, …, 335, 388, 441, 935, 1376, 3193, 4569, 5945, 10514b }}
 
[[Badness]] (Smith): 0.030852
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 131072/130977, 759375/758912
 
Mapping: {{mapping| 1 0 -13 53 -89 | 0 3 29 -95 175 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~3888/2695 = 634.0091
* POTE: ~2 = 1200.0000, ~3888/2695 = 634.0094
 
{{Optimal ET sequence|legend=0| 53, 388e, 441, 494, 935, 1429, 1923e }}
 
Badness (Smith): 0.046758
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Mapping|legend=1| 1 0 -13 -3 | 0 3 29 11 }}
Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078


{{Multival|legend=1| 3 29 11 39 9 -56 }}
Mapping: {{mapping| 1 0 -13 53 -89 -28 | 0 3 29 -95 175 60 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~81/56 = 634.0259
Optimal tunings:
* CTE: ~2 = 1200.0000, ~75/52 = 634.0091
* POTE: ~2 = 1200.0000, ~75/52 = 634.0095


{{Optimal ET sequence|legend=1| 17c, 36c, 53, 70, 229dd, 282dd }}
{{Optimal ET sequence|legend=0| 53, 388e, 441, 494, 935, 1429, 1923e, 3352de }}


[[Badness]]: 0.100127
Badness (Smith): 0.019393


=== 11-limit ===
=== Pseudotrillium ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 99/98, 121/120, 5120/5103
Comma list: 4375/4374, 5632/5625, 4108797/4096000


Mapping: {{mapping| 1 0 -13 -3 -5 | 0 3 29 11 16 }}
Mapping: {{mapping| 1 0 -13 53 -61 | 0 3 29 -95 122 }}


Optimal tuning (POTE): ~2 = 1\1, ~63/44 = 634.0273
Optimal tunings:
* CTE: ~2 = 1200.0000, ~231/160 = 634.0195
* POTE: ~2 = 1200.0000, ~231/160 = 634.0190


{{Optimal ET sequence|legend=1| 17c, 36ce, 53, 70, 123de }}
{{Optimal ET sequence|legend=0| 53, 335, 388 }}


Badness: 0.056134
Badness (Smith): 0.111931


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 99/98, 121/120, 169/168, 352/351
Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374


Mapping: {{mapping| 1 0 -13 -3 -5 0 | 0 3 29 11 16 7 }}
Mapping: {{mapping| 1 0 -13 53 -61 -28 | 0 3 29 -95 122 60 }}


Optimal tuning (POTE): ~2 = 1\1, ~13/9 = 634.0115
Optimal tunings:
* CTE: ~2 = 1200.0000, ~75/52 = 634.0185
* POTE: ~2 = 1200.0000, ~75/52 = 634.0181


{{Optimal ET sequence|legend=1| 17c, 36ce, 53, 70, 123de }}
{{Optimal ET sequence|legend=0| 53, 335, 388 }}


Badness: 0.032102
Badness (Smith): 0.054837


== Trident ==
== Alphatrident ==
Trident, named by [[Xenllium]] in 2021, can be described as the 53 & 229 temperament.  
Alphatrident, also named by [[Xenllium]] in 2021 as ''trident'' but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 229 }} temperament. It tempers out the [[garischisma]], 33554432/33480783 ({{monzo| 25 -14 0 1 }}), and finds the harmonic 7 at -14 fifths or {{nowrap| (-14) × 3 {{=}} -42 }} generator steps, so that the smallest mos scale that includes it is the 53-note one.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 100: Line 157:
{{Mapping|legend=1| 1 0 -13 25 | 0 3 29 -42 }}
{{Mapping|legend=1| 1 0 -13 25 | 0 3 29 -42 }}


{{Multival|legend=1| 3 29 -42 39 -75 -179 }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~4096/2835 = 634.0484
: [[error map]]: {{val| 0.0000 +0.1901 +1.0893 +1.1421 }}
* [[POTE]]: ~2 = 1200.0000, ~4096/2835 = 634.0480
: error map: {{val| 0.0000 +0.1890 +1.0784 +1.1579 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~4096/2835 = 634.0480
{{Optimal ET sequence|legend=1| 53, 176, 229, 282, 511, 793cd }}


{{Optimal ET sequence|legend=1| 53, 176, 229, 282, 511 }}
[[Badness]] (Smith): 0.101694
 
[[Badness]]: 0.101694


=== 11-limit ===
=== 11-limit ===
Line 115: Line 174:
Mapping: {{mapping| 1 0 -13 25 -33 | 0 3 29 -42 69 }}
Mapping: {{mapping| 1 0 -13 25 -33 | 0 3 29 -42 69 }}


Optimal tuning (POTE): ~2 = 1\1, ~231/160 = 634.0669
Optimal tunings:
* CTE: ~2 = 1200.0000, ~231/160 = 634.0630
* POTE: ~2 = 1200.0000, ~231/160 = 634.0669


{{Optimal ET sequence|legend=1| 53, 176, 229 }}
{{Optimal ET sequence|legend=0| 53, 123, 176, 229 }}


Badness: 0.074272
Badness (Smith): 0.074272


=== 13-limit ===
=== 13-limit ===
Line 128: Line 189:
Mapping: {{mapping| 1 0 -13 25 -33 0 | 0 3 29 -42 69 7 }}
Mapping: {{mapping| 1 0 -13 25 -33 0 | 0 3 29 -42 69 7 }}


Optimal tuning (POTE): ~2 = 1\1, ~13/9 = 634.0652
Optimal tunings:
* CTE: ~2 = 1200.0000, ~13/9 = 634.0643
* POTE: ~2 = 1200.0000, ~13/9 = 634.0652


{{Optimal ET sequence|legend=1| 53, 176, 229 }}
{{Optimal ET sequence|legend=0| 53, 123, 176, 229 }}


Badness: 0.046593
Badness (Smith): 0.046593


== Trillium ==
== Alphatrimot ==
Trillium, also named by [[Xenllium]] in 2021, can be described as the 53 & 441 temperament.  
Alphatrimot, named by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref> but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 70 }} temperament. It finds prime 7 at only 11 generators up so that the generator is interpreted as a flat ~[[81/56]], but is more of a full 13-limit system in its own right. [[123edo]] in the 123de val is a great tuning for it. Mos scales of 5, 7, 9, 11, 13, 15, 17, 19, 36 or 53 notes are available.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 1099511627776/1098337086315
[[Comma list]]: 2430/2401, 5120/5103


{{Mapping|legend=1| 1 0 -13 53 | 0 3 29 -95 }}
{{Mapping|legend=1| 1 0 -13 -3 | 0 3 29 11 }}


{{Multival|legend=1| 3 29 -95 39 -159 -302 }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~81/56 = 633.9681
: [[error map]]: {{val| 0.0000 -0.0508 -1.2400 +4.8227 }}
* [[POTE]]: ~2 = 1200.0000, ~81/56 = 634.0259
: error map: {{val| 0.0000 +0.1228 +0.4387 +5.4595 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~23625/16384 = 634.0118
{{Optimal ET sequence|legend=1| 17c, 36c, 53, 229dd, 282dd }}


{{Optimal ET sequence|legend=1| 53, 441, 494, 935, 1376, 3193, 4569 }}
[[Badness]] (Smith): 0.100127
 
[[Badness]]: 0.030852


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 131072/130977, 759375/758912
Comma list: 99/98, 121/120, 5120/5103


Mapping: {{mapping| 1 0 -13 53 -89 | 0 3 29 -95 175 }}
Mapping: {{mapping| 1 0 -13 -3 -5 | 0 3 29 11 16 }}


Optimal tuning (POTE): ~2 = 1\1, ~3888/2695 = 634.0094
Optimal tunings:
* CTE: ~2 = 1200.0000, ~63/44 = 634.0214
* POTE: ~2 = 1200.0000, ~63/44 = 634.0273


{{Optimal ET sequence|legend=1| 53, 441, 494, 935, 1429 }}
{{Optimal ET sequence|legend=0| 17c, 36ce, 53 }}


Badness: 0.046758
Badness (Smith): 0.056134


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078
Comma list: 99/98, 121/120, 169/168, 352/351


Mapping: {{mapping| 1 0 -13 53 -89 -28 | 0 3 29 -95 175 60 }}
Mapping: {{mapping| 1 0 -13 -3 -5 0 | 0 3 29 11 16 7 }}


Optimal tuning (POTE): ~2 = 1\1, ~75/52 = 634.0095
Optimal tunings:
* CTE: ~2 = 1200.0000, ~13/9 = 634.0275
* POTE: ~2 = 1200.0000, ~13/9 = 634.0115


{{Optimal ET sequence|legend=1| 53, 441, 494, 935, 1429 }}
{{Optimal ET sequence|legend=0| 17c, 36ce, 53 }}


Badness: 0.019393
Badness (Smith): 0.032102
 
=== Pseudotrillium ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 5632/5625, 4108797/4096000
 
Mapping: {{mapping| 1 0 -13 53 -61 | 0 3 29 -95 122 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~231/160 = 634.0190
 
{{Optimal ET sequence|legend=1| 53, 335, 388 }}
 
Badness: 0.111931
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374
 
Mapping: {{mapping| 1 0 -13 53 -61 -28 | 0 3 29 -95 122 60 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~75/52 = 634.0181
 
{{Optimal ET sequence|legend=1| 53, 335, 388 }}
 
Badness: 0.054837


== Tritricot ==
== Tritricot ==
Line 210: Line 253:
{{Mapping|legend=1| 3 6 19 30 | 0 -3 -29 -52 }}
{{Mapping|legend=1| 3 6 19 30 | 0 -3 -29 -52 }}


{{Multival|legend=1| 9 87 156 117 222 118 }}
[[Optimal tuning]] ([[POTE]]): ~63/50 = 400.0000, ~100352/91125 = 165.9837
 
[[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~100352/91125 = 165.9837


{{Optimal ET sequence|legend=1| 159, 282, 441, 2487, 2928, 3369 }}
{{Optimal ET sequence|legend=1| 159, 282, 441, 2487, 2928, 3369 }}


[[Badness]]: 0.086081
[[Badness]] (Smith): 0.086081


=== 11-limit ===
=== 11-limit ===
Line 225: Line 266:
Mapping: {{mapping| 3 6 19 30 22 | 0 -3 -29 -52 -28 }}
Mapping: {{mapping| 3 6 19 30 22 | 0 -3 -29 -52 -28 }}


Optimal tuning (POTE): ~63/50 = 1\3, ~11/10 = 165.9835
Optimal tuning (POTE): ~63/50 = 400.0000, ~11/10 = 165.9835


{{Optimal ET sequence|legend=1| 159, 282, 441 }}
{{Optimal ET sequence|legend=0| 159, 282, 441 }}


Badness: 0.074002
Badness (Smith): 0.074002


==== 13-limit ====
==== 13-limit ====
Line 238: Line 279:
Mapping: {{mapping| 3 6 19 30 22 36 | 0 -3 -29 -52 -28 -60 }}
Mapping: {{mapping| 3 6 19 30 22 36 | 0 -3 -29 -52 -28 -60 }}


Optimal tuning (POTE): ~63/50 = 1\3, ~11/10 = 165.9842
Optimal tuning (POTE): ~63/50 = 400.0000, ~11/10 = 165.9842


{{Optimal ET sequence|legend=1| 159, 282, 441 }}
{{Optimal ET sequence|legend=0| 159, 282, 441 }}


Badness: 0.035641
Badness (Smith): 0.035641


==== 17-limit ====
==== 17-limit ====
Line 251: Line 292:
Mapping: {{mapping| 3 6 19 30 22 36 16 | 0 -3 -29 -52 -28 -60 -9 }}
Mapping: {{mapping| 3 6 19 30 22 36 16 | 0 -3 -29 -52 -28 -60 -9 }}


Optimal tuning (POTE): ~34/27 = 1\3, ~11/10 = 165.9805
Optimal tuning (POTE): ~34/27 = 400.0000, ~11/10 = 165.9805


{{Optimal ET sequence|legend=1| 159, 282, 441 }}
{{Optimal ET sequence|legend=0| 159, 282, 441 }}


Badness: 0.025972
Badness (Smith): 0.025972


=== Noletaland ===
=== Noletaland ===
Noletaland is described as 282 & 1323, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators ([[noleta]]-…) and tempers out the landscape comma (…-land). Noletaland reaches [[13/11]] in 2 generators, and [[29/19]] in 5. Then there is [[44/25]] in 4, and [[152/115]] in also 4.
Noletaland is described as {{nowrap| 282 & 1323 }}, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators ([[noleta]]-…) and tempers out the landscape comma (…-land). Noletaland reaches [[13/11]] in 2 generators, and [[29/19]] in 5. Then there is [[44/25]] in 4, and [[152/115]] in also 4.


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 268: Line 309:
: mappin generators: ~63/50, ~1936/1875
: mappin generators: ~63/50, ~1936/1875


Optimal tuning (CTE): ~63/50 = 1\3, ~1936/1875 = 55.3290
Optimal tuning (CTE): ~63/50 = 400.0000, ~1936/1875 = 55.3290


{{Optimal ET sequence|legend=1| 282, 759de, 1041, 1323, 4251e }}
{{Optimal ET sequence|legend=0| 282, 759de, 1041, 1323, 4251e }}


Badness: 0.158
Badness (Smith): 0.158


==== 13-limit ====
==== 13-limit ====
Line 281: Line 322:
Mapping: {{mapping| 3 6 19 30 35 36 | 0 -9 -87 -156 -178 -180 }}
Mapping: {{mapping| 3 6 19 30 35 36 | 0 -9 -87 -156 -178 -180 }}


Optimal tuning (CTE): ~63/50 = 1\3, ~1936/1875 = 55.3294
Optimal tuning (CTE): ~63/50 = 400.0000, ~1936/1875 = 55.3294


{{Optimal ET sequence|legend=1| 282, 759def, 1041, 1323 }}
{{Optimal ET sequence|legend=0| 282, 759def, 1041, 1323 }}


Badness: 0.0725
Badness (Smith): 0.0725


==== 17-limit ====
==== 17-limit ====
Line 294: Line 335:
Mapping: {{mapping| 3 6 19 30 35 36 29 | 0 -9 -87 -156 -178 -180 -121 }}
Mapping: {{mapping| 3 6 19 30 35 36 29 | 0 -9 -87 -156 -178 -180 -121 }}


Optimal tuning (CTE): ~63/50 = 1\3, ~351/340 = 55.3295
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3295


{{Optimal ET sequence|legend=1| 282, 759def, 1041, 1323 }}
{{Optimal ET sequence|legend=0| 282, 759def, 1041, 1323 }}


Badness: 0.0380
Badness (Smith): 0.0380


==== 19-limit ====
==== 19-limit ====
Line 307: Line 348:
Mapping: {{mapping| 3 6 19 30 35 36 29 18 | 0 -9 -87 -156 -178 -180 -121 -38 }}
Mapping: {{mapping| 3 6 19 30 35 36 29 18 | 0 -9 -87 -156 -178 -180 -121 -38 }}


Optimal tuning (CTE): ~63/50 = 1\3, ~351/340 = 55.3295
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3295


{{Optimal ET sequence|legend=1| 282, 759def, 1041, 1323 }}
{{Optimal ET sequence|legend=0| 282, 759def, 1041, 1323 }}


Badness: 0.0269
Badness (Smith): 0.0269


==== 23-limit ====
==== 23-limit ====
Line 320: Line 361:
Mapping: {{mapping| 3 6 19 30 35 36 29 18 31 | 0 -9 -87 -156 -178 -180 -121 -38 -126 }}
Mapping: {{mapping| 3 6 19 30 35 36 29 18 31 | 0 -9 -87 -156 -178 -180 -121 -38 -126 }}


Optimal tuning (CTE): ~63/50 = 1\3, ~351/340 = 55.3296
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3296


{{Optimal ET sequence|legend=1| 282, 759def, 1041, 1323 }}
{{Optimal ET sequence|legend=0| 282, 759def, 1041, 1323 }}


Badness: 0.0194
Badness (Smith): 0.0194


==== 29-limit ====
==== 29-limit ====
Line 333: Line 374:
Mapping: {{mapping| 3 6 19 30 35 36 29 18 31 19 | 0 -9 -87 -156 -178 -180 -121 -38 -126 -32 }}
Mapping: {{mapping| 3 6 19 30 35 36 29 18 31 19 | 0 -9 -87 -156 -178 -180 -121 -38 -126 -32 }}


Optimal tuning (CTE): ~63/50 = 1\3, ~351/340 = 55.3296
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3296


{{Optimal ET sequence|legend=1| 282, 759def, 1041, 1323 }}
{{Optimal ET sequence|legend=0| 282, 759def, 1041, 1323 }}


Badness: 0.0168
Badness (Smith): 0.0168


== Notes ==
== Notes ==


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Tricot family| ]] <!-- main article -->
[[Category:Pages with mostly numerical content]]
[[Category:Tricot| ]] <!-- key article -->
[[Category:Alphatricot family| ]] <!-- main article -->
[[Category:Alphatricot| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]