18edf: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
Add comparison with 20edf |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
18edf corresponds to [[31edo]] with an [[octave stretching]] of about 9 [[cent]]s. Consequently, it does not provide 31edo's good approximations of most low harmonics, but it provides good approximations to many simple ratios in the thirds region: subminor [[7/6]] (+6{{cent}}), minor [[6/5]] (-3{{cent}}), neutral [[11/9]] (+4{{cent}}), major [[5/4]] (+4{{cent}}), and supermajor [[9/7]] (-6{{cent}}). These intervals may be used to form a variety of [[triad]]s and [[tetrad]]s in close harmony along with the tuning's pure fifth. | |||
In comparison, [[20edf]] (and [[Carlos Gamma]]) offers more accurate pental (minor and major) and undecimal (neutral) thirds, but less accurate septimal (subminor and supermajor) thirds. | |||
=== Regular temperaments === | |||
18edf is related to the [[regular temperament]] which [[tempering out|tempers out]] 2401/2400 and 8589934592/8544921875 in the [[7-limit]]; with 5632/5625, 46656/46585, and 166698/166375 in the [[11-limit]], which is supported by [[31edo]], [[369edo]], [[400edo]], [[431edo]], and [[462edo]]. | 18edf is related to the [[regular temperament]] which [[tempering out|tempers out]] 2401/2400 and 8589934592/8544921875 in the [[7-limit]]; with 5632/5625, 46656/46585, and 166698/166375 in the [[11-limit]], which is supported by [[31edo]], [[369edo]], [[400edo]], [[431edo]], and [[462edo]]. | ||
=== Harmonics === | |||
{{Harmonics in equal|18|3|2|intervals=integer|columns=11}} | |||
{{Harmonics in equal|18|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 18edf (continued)}} | |||
=== | === Subsets and supersets === | ||
{{ | Since 18 factors into primes as {{nowrap| 2 × 3<sup>2</sup> }}, 18edf has subset edfs {{EDs|equave=f| 2, 3, 6, and 9 }}. | ||
{{ | |||
== Intervals == | == Intervals == | ||
{| class="wikitable mw-collapsible" | {| class="wikitable center-1 right-2 mw-collapsible" | ||
|- | |- | ||
! | ! # | ||
! Cents | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| | | 0.0 | ||
| [[1/1]] | |||
|- | |- | ||
| 1 | | 1 | ||
| | | 39.0 | ||
| | | [[33/32]], [[36/35]], [[49/48]], [[50/49]], [[64/63]] | ||
|- | |- | ||
| 2 | | 2 | ||
| | | 78.0 | ||
| [[21/20]], [[22/21]], [[25/24]], [[28/27]] | |||
| | |||
|- | |- | ||
| 3 | | 3 | ||
| | | 117.0 | ||
| 16/15 | | [[15/14]], [[16/15]] | ||
|- | |- | ||
| 4 | | 4 | ||
| | | 156.0 | ||
| | | [[11/10]], [[12/11]] | ||
|- | |- | ||
| 5 | | 5 | ||
| | | 195.0 | ||
| | | [[9/8]], [[10/9]] | ||
|- | |- | ||
| 6 | | 6 | ||
| | | 234.0 | ||
| 8/7 | | [[8/7]] | ||
|- | |- | ||
| 7 | | 7 | ||
| | | 273.0 | ||
| 7/6 | | [[7/6]] | ||
|- | |- | ||
| 8 | | 8 | ||
| | | 312.0 | ||
| 6/5 | | [[6/5]] | ||
|- | |- | ||
| 9 | | 9 | ||
| | | 351.0 | ||
| | | [[11/9]], [[16/13]] | ||
|- | |- | ||
| 10 | | 10 | ||
| | | 390.0 | ||
| 5/4 | | [[5/4]] | ||
|- | |- | ||
| 11 | | 11 | ||
| | | 429.0 | ||
| 9/7 | | [[9/7]], [[14/11]] | ||
|- | |- | ||
| 12 | | 12 | ||
| | | 468.0 | ||
| [[13/10]], [[21/16]] | |||
| | |||
|- | |- | ||
| 13 | | 13 | ||
| | | 507.0 | ||
| | | [[4/3]] | ||
|- | |- | ||
| 14 | | 14 | ||
| | | 546.0 | ||
| [[11/8]], [[15/11]] | |||
| | |||
|- | |- | ||
| 15 | | 15 | ||
| | | 585.0 | ||
| [[7/5]] | |||
| | |||
|- | |- | ||
| 16 | | 16 | ||
| | | 624.0 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 17 | | 17 | ||
| | | 663.0 | ||
| [[22/15]] | | [[16/11]], [[22/15]] | ||
|- | |- | ||
| 18 | | 18 | ||
| | | 702.0 | ||
| | | [[3/2]] | ||
|- | |- | ||
| 19 | | 19 | ||
| | | 741.0 | ||
| | | [[20/13]], [[32/21]] | ||
|- | |- | ||
| 20 | | 20 | ||
| | | 780.0 | ||
| [[11/7]], [[14/9]] | |||
| | |||
|- | |- | ||
| 21 | | 21 | ||
| 818. | | 818.9 | ||
| 8/5 | | [[8/5]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 857. | | 857.9 | ||
| | | [[18/11]] | ||
|- | |- | ||
| 23 | | 23 | ||
| 896. | | 896.9 | ||
| | | [[5/3]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 935. | | 935.9 | ||
| 12/7 | | [[12/7]] | ||
|- | |- | ||
| 25 | | 25 | ||
| 974. | | 974.9 | ||
| 7/4 | | [[7/4]] | ||
|- | |- | ||
| 26 | | 26 | ||
| 1013. | | 1013.9 | ||
| 9/5 | | [[9/5]] | ||
|- | |- | ||
| 27 | | 27 | ||
| 1052. | | 1052.9 | ||
| | | [[11/6]] | ||
|- | |- | ||
| 28 | | 28 | ||
| 1091. | | 1091.9 | ||
| 15/8 | | [[15/8]] | ||
|- | |- | ||
| 29 | | 29 | ||
| 1130. | | 1130.9 | ||
| 27/14 | | [[27/14]] | ||
|- | |- | ||
| 30 | | 30 | ||
| 1169. | | 1169.9 | ||
| [[35/18]], [[49/25]], [[63/32]] | |||
| | |||
|- | |- | ||
| 31 | | 31 | ||
| 1208. | | 1208.9 | ||
| | | [[2/1]] | ||
|- | |- | ||
| 32 | | 32 | ||
| 1247. | | 1247.9 | ||
| [[33/16]], [[45/22]], [[49/24]], [[55/27]] | |||
| | |||
|- | |- | ||
| 33 | | 33 | ||
| 1286. | | 1286.9 | ||
| [[21/10]], [[25/12]] | |||
| | |||
|- | |- | ||
| 34 | | 34 | ||
| 1325. | | 1325.9 | ||
| [[15/7]] | |||
| | |||
|- | |- | ||
| 35 | | 35 | ||
| 1364. | | 1364.9 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 36 | | 36 | ||
| 1403. | | 1403.9 | ||
| | | [[9/4]] | ||
|} | |} | ||
Line 236: | Line 204: | ||
{{Todo|cleanup|expand|inline=1|comment=say what the temperaments are like and why one would want to use them, and for what}} | {{Todo|cleanup|expand|inline=1|comment=say what the temperaments are like and why one would want to use them, and for what}} | ||
== See also == | |||
* [[31edo]] – relative edo | |||
* [[49edt]] – relative edt | |||
* [[72ed5]] – relative ed5 | |||
* [[80ed6]] – relative ed6 | |||
* [[87ed7]] – relative ed7 | |||
* [[107ed11]] – relative ed11 | |||
* [[111ed12]] – relative ed12 | |||
* [[138ed22]] – relative ed22 | |||
* [[204ed96]] – close to the zeta-optimized tuning for 31edo | |||
* [[39cET]] | |||
[[Category:31edo]] |