40ed10: Difference between revisions
Cleanup; -duplicate data |
ArrowHead294 (talk | contribs) |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
40ed10 is related to [[12edo]], but with 10/1 instead of 2/1 being just. The octave | 40ed10 is related to [[12edo]], but with 10/1 instead of 2/1 being just. The octave is compressed from pure by 4.106{{c}}, a small but significant deviation. | ||
=== Harmonics === | === Harmonics === | ||
{{Harmonics in equal|40|10|1|intervals=integer}} | {{Harmonics in equal|40|10|1|intervals=integer}} | ||
{{Harmonics in equal|40|10|1intervals=integer|start=12|columns=12|collapsed=1|title=Approximation of harmonics in 40ed10 (continued)}} | {{Harmonics in equal|40|10|1intervals=integer|start=12|columns=12|collapsed=1|title=Approximation of harmonics in 40ed10 (continued)}} | ||
=== Subsets and supersets === | |||
Since 40 factors into 2<sup>3</sup> × 5, 40ed10 has subset ed10's {{EDs|equave=10| 2, 4, 5, 8, 10, and 20 }}. | |||
=== Miscellany === | |||
It is possible to call this division a form of '''kilobyte tuning''', as | |||
<math>2^{10} \approx 10^{3} = 1024 \approx 1000</math>; | |||
which lies in the obsolete practice of using a decimal prefix to an otherwise binary unit of information. | |||
== Intervals == | == Intervals == | ||
Line 13: | Line 23: | ||
|- | |- | ||
! # | ! # | ||
! Cents | ! Cents | ||
! Approximate | ! Approximate ratios | ||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.0 | ||
| [[1/1]] | | [[1/1]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 99. | | 99.7 | ||
| [[18/17]] | | [[18/17]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 199. | | 199.3 | ||
| | | [[9/8]] | ||
|- | |- | ||
| 3 | | 3 | ||
| | | 299.0 | ||
| [[ | | [[6/5]] | ||
|- | |- | ||
| 4 | | 4 | ||
| 398. | | 398.6 | ||
| | | [[5/4]] | ||
|- | |- | ||
| 5 | | 5 | ||
| 498. | | 498.3 | ||
| [[4/3]] | | [[4/3]] | ||
|- | |- | ||
| 6 | | 6 | ||
| 597. | | 597.9 | ||
| [[ | | [[7/5]] | ||
|- | |- | ||
| 7 | | 7 | ||
| 697. | | 697.6 | ||
| | | [[3/2]] | ||
|- | |- | ||
| 8 | | 8 | ||
| 797. | | 797.3 | ||
| | | [[8/5]] | ||
|- | |- | ||
| 9 | | 9 | ||
| 896. | | 896.9 | ||
| | | [[5/3]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 996. | | 996.6 | ||
| [[ | | [[7/4]] | ||
|- | |- | ||
| 11 | | 11 | ||
| 1096. | | 1096.2 | ||
| [[ | | [[15/8]] | ||
|- | |- | ||
| 12 | | 12 | ||
| 1195. | | 1195.9 | ||
| [[2/1]] | | [[2/1]] | ||
|- | |- | ||
| 13 | | 13 | ||
| 1295. | | 1295.6 | ||
| | | [[17/8]] | ||
|- | |- | ||
| 14 | | 14 | ||
| 1395. | | 1395.2 | ||
| [[ | | [[9/4]] | ||
|- | |- | ||
| 15 | | 15 | ||
| 1494. | | 1494.9 | ||
| | | [[12/5]] | ||
|- | |- | ||
| 16 | | 16 | ||
| 1594. | | 1594.5 | ||
| | | [[5/2]] | ||
|- | |- | ||
| 17 | | 17 | ||
| 1694. | | 1694.2 | ||
| | | [[8/3]] | ||
|- | |- | ||
| 18 | | 18 | ||
| 1793. | | 1793.8 | ||
| | | [[14/5]] | ||
|- | |- | ||
| 19 | | 19 | ||
| 1893. | | 1893.5 | ||
| [[ | | [[3/1]] | ||
|- | |- | ||
| 20 | | 20 | ||
| 1993. | | 1993.2 | ||
| | | [[16/5]] | ||
|- | |- | ||
| 21 | | 21 | ||
| 2092. | | 2092.8 | ||
| | | [[10/3]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 2192. | | 2192.5 | ||
| | | [[7/2]] | ||
|- | |- | ||
| 23 | | 23 | ||
| 2292. | | 2292.1 | ||
| | | [[15/4]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 2391. | | 2391.8 | ||
| | | [[4/1]] | ||
|- | |- | ||
| 25 | | 25 | ||
| 2491. | | 2491.4 | ||
| | | [[17/4]] | ||
|- | |- | ||
| 26 | | 26 | ||
| 2591. | | 2591.1 | ||
| | | [[9/2]] | ||
|- | |- | ||
| 27 | | 27 | ||
| 2690. | | 2690.8 | ||
| | | 19/4 | ||
|- | |- | ||
| 28 | | 28 | ||
| 2790. | | 2790.4 | ||
| | | [[5/1]] | ||
|- | |- | ||
| 29 | | 29 | ||
| 2890. | | 2890.1 | ||
| | | [[16/3]] | ||
|- | |- | ||
| 30 | | 30 | ||
| 2989. | | 2989.7 | ||
| | | 17/3 | ||
|- | |- | ||
| 31 | | 31 | ||
| 3089. | | 3089.4 | ||
| | | [[6/1]] | ||
|- | |- | ||
| 32 | | 32 | ||
| 3189. | | 3189.1 | ||
| | | 19/3 | ||
|- | |- | ||
| 33 | | 33 | ||
| 3288. | | 3288.7 | ||
| | | 20/3 | ||
|- | |- | ||
| 34 | | 34 | ||
| 3388. | | 3388.4 | ||
| | | [[7/1]] | ||
|- | |- | ||
| 35 | | 35 | ||
| 3488. | | 3488.0 | ||
| [[15/2]] | | [[15/2]] | ||
|- | |- | ||
| 36 | | 36 | ||
| 3587. | | 3587.7 | ||
| | | [[8/1]] | ||
|- | |- | ||
| 37 | | 37 | ||
| 3687. | | 3687.3 | ||
| | | [[17/2]] | ||
|- | |- | ||
| 38 | | 38 | ||
| | | 3787.0 | ||
| | | [[9/1]] | ||
|- | |- | ||
| 39 | | 39 | ||
| 3886. | | 3886.7 | ||
| | | 19/2 | ||
|- | |- | ||
| 40 | | 40 | ||
| 3986. | | 3986.3 | ||
| [[10/1]] | | [[10/1]] | ||
|} | |} | ||
== Regular temperaments == | == Regular temperaments == | ||
Line 194: | Line 197: | ||
== See also == | == See also == | ||
* [[7edf]] – relative edf | |||
* [[12edo]] – relative edo | * [[12edo]] – relative edo | ||
* [[ | * [[19edt]] – relative edt | ||
* [[28ed5]] – relative ed5 | * [[28ed5]] – relative ed5 | ||
* [[31ed6]] – relative ed6 | * [[31ed6]] – relative ed6 | ||
* [[34ed7]] – relative ed7 | * [[34ed7]] – relative ed7 | ||
* [[42ed11]] – relative ed11 | * [[42ed11]] – relative ed11 | ||
* [[76ed80]] – close to the zeta-optimized tuning for 12edo | |||
* [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] | * [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] | ||
[[Category:12edo]] | |||
[[Category:Sonifications]] | [[Category:Sonifications]] |