18edf: Difference between revisions
Add comparison with 20edf |
|||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | |||
18edf corresponds to [[31edo]] with an [[octave stretching]] of about 9 [[cent]]s. Consequently, it does not provide 31edo's good approximations of most low harmonics, but it provides good approximations to many simple ratios in the thirds region: subminor [[7/6]] (+6{{cent}}), minor [[6/5]] (-3{{cent}}), neutral [[11/9]] (+4{{cent}}), major [[5/4]] (+4{{cent}}), and supermajor [[9/7]] (-6{{cent}}). These intervals may be used to form a variety of [[triad]]s and [[tetrad]]s in close harmony along with the tuning's pure fifth. | |||
In comparison, [[20edf]] (and [[Carlos Gamma]]) offers more accurate pental (minor and major) and undecimal (neutral) thirds, but less accurate septimal (subminor and supermajor) thirds. | |||
== | === Regular temperaments === | ||
18edf is related to the [[regular temperament]] which [[tempering out|tempers out]] 2401/2400 and 8589934592/8544921875 in the [[7-limit]]; with 5632/5625, 46656/46585, and 166698/166375 in the [[11-limit]], which is supported by [[31edo]], [[369edo]], [[400edo]], [[431edo]], and [[462edo]]. | |||
==Intervals== | === Harmonics === | ||
{| class="wikitable mw-collapsible" | {{Harmonics in equal|18|3|2|intervals=integer|columns=11}} | ||
{{Harmonics in equal|18|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 18edf (continued)}} | |||
=== Subsets and supersets === | |||
Since 18 factors into primes as {{nowrap| 2 × 3<sup>2</sup> }}, 18edf has subset edfs {{EDs|equave=f| 2, 3, 6, and 9 }}. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 mw-collapsible" | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| | | | 0.0 | ||
| [[1/1]] | |||
|- | |- | ||
| 1 | |||
| | | 39.0 | ||
| | | [[33/32]], [[36/35]], [[49/48]], [[50/49]], [[64/63]] | ||
|- | |- | ||
| 2 | |||
| | | 78.0 | ||
| [[21/20]], [[22/21]], [[25/24]], [[28/27]] | |||
| | |||
|- | |- | ||
| 3 | |||
| | | 117.0 | ||
| | | [[15/14]], [[16/15]] | ||
|- | |- | ||
| 4 | |||
| | | 156.0 | ||
| | | [[11/10]], [[12/11]] | ||
|- | |- | ||
| 5 | |||
| | | 195.0 | ||
| | | [[9/8]], [[10/9]] | ||
|- | |- | ||
| 6 | |||
| | | 234.0 | ||
| | | [[8/7]] | ||
|- | |- | ||
| 7 | |||
| | | 273.0 | ||
| | | [[7/6]] | ||
|- | |- | ||
| 8 | |||
| | | 312.0 | ||
| | | [[6/5]] | ||
|- | |- | ||
| 9 | |||
| | | 351.0 | ||
| | | [[11/9]], [[16/13]] | ||
|- | |- | ||
| 10 | |||
| | | 390.0 | ||
| | | [[5/4]] | ||
|- | |- | ||
| 11 | |||
| | | 429.0 | ||
| | | [[9/7]], [[14/11]] | ||
|- | |- | ||
| 12 | |||
| | | 468.0 | ||
| [[13/10]], [[21/16]] | |||
| | |||
|- | |- | ||
| 13 | |||
| | | 507.0 | ||
| | | [[4/3]] | ||
|- | |- | ||
| 14 | |||
| | | 546.0 | ||
| [[11/8]], [[15/11]] | |||
| | |||
|- | |- | ||
| 15 | |||
| | | 585.0 | ||
| [[7/5]] | |||
| | |||
|- | |- | ||
| 16 | |||
| | | 624.0 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 17 | |||
| | | 663.0 | ||
| | | [[16/11]], [[22/15]] | ||
|- | |- | ||
| 18 | |||
| | | 702.0 | ||
| | | [[3/2]] | ||
|- | |- | ||
|19 | | 19 | ||
| | | 741.0 | ||
| | | [[20/13]], [[32/21]] | ||
|- | |- | ||
|20 | | 20 | ||
| | | 780.0 | ||
| [[11/7]], [[14/9]] | |||
| | |||
|- | |- | ||
|21 | | 21 | ||
|818. | | 818.9 | ||
|8/5 | | [[8/5]] | ||
|- | |- | ||
|22 | | 22 | ||
|857. | | 857.9 | ||
| | | [[18/11]] | ||
|- | |- | ||
|23 | | 23 | ||
|896. | | 896.9 | ||
| | | [[5/3]] | ||
|- | |- | ||
|24 | | 24 | ||
|935. | | 935.9 | ||
|12/7 | | [[12/7]] | ||
|- | |- | ||
|25 | | 25 | ||
|974. | | 974.9 | ||
|7/4 | | [[7/4]] | ||
|- | |- | ||
|26 | | 26 | ||
|1013. | | 1013.9 | ||
|9/5 | | [[9/5]] | ||
|- | |- | ||
|27 | | 27 | ||
|1052. | | 1052.9 | ||
| | | [[11/6]] | ||
|- | |- | ||
|28 | | 28 | ||
|1091. | | 1091.9 | ||
|15/8 | | [[15/8]] | ||
|- | |- | ||
|29 | | 29 | ||
|1130. | | 1130.9 | ||
|27/14 | | [[27/14]] | ||
|- | |- | ||
|30 | | 30 | ||
|1169. | | 1169.9 | ||
| [[35/18]], [[49/25]], [[63/32]] | |||
| | |||
|- | |- | ||
|31 | | 31 | ||
|1208. | | 1208.9 | ||
| | | [[2/1]] | ||
|- | |- | ||
|32 | | 32 | ||
|1247. | | 1247.9 | ||
| [[33/16]], [[45/22]], [[49/24]], [[55/27]] | |||
| | |||
|- | |- | ||
|33 | | 33 | ||
|1286. | | 1286.9 | ||
| [[21/10]], [[25/12]] | |||
| | |||
|- | |- | ||
|34 | | 34 | ||
|1325. | | 1325.9 | ||
| [[15/7]] | |||
| | |||
|- | |- | ||
|35 | | 35 | ||
|1364. | | 1364.9 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
|36 | | 36 | ||
|1403. | | 1403.9 | ||
| | | [[9/4]] | ||
|} | |} | ||
==Related regular temperaments== | == Related regular temperaments == | ||
The rank-two regular temperament supported by 31edo and 369edo has three equal divisions of the interval which equals an octave minus the step interval of 18EDF as a generator. | The rank-two regular temperament supported by 31edo and 369edo has three equal divisions of the interval which equals an octave minus the step interval of 18EDF as a generator. | ||
===7-limit 31&369=== | === 7-limit 31 & 369 === | ||
Commas: 2401/2400, 8589934592/8544921875 | Commas: 2401/2400, 8589934592/8544921875 | ||
POTE generator: ~5/4 = 386.997 | POTE generator: ~5/4 = 386.997 | ||
Mapping: [ | Mapping: [{{map| 1 19 2 7 }}, {{map| 0 -54 1 -13 }}] | ||
EDOs: {{EDOs|31, 369, 400, 431, 462}} | EDOs: {{EDOs|31, 369, 400, 431, 462}} | ||
===11-limit 31&369=== | === 11-limit 31 & 369 === | ||
Commas: 2401/2400, 5632/5625, 46656/46585 | Commas: 2401/2400, 5632/5625, 46656/46585 | ||
POTE generator: ~5/4 = 386.999 | POTE generator: ~5/4 = 386.999 | ||
Mapping: [ | Mapping: [{{map| 1 19 2 7 37 }}, {{map| 0 -54 1 -13 -104 }}] | ||
EDOs: 31, 369, 400, 431, 462 | EDOs: 31, 369, 400, 431, 462 | ||
===13-limit 31&369=== | === 13-limit 31 & 369 === | ||
Commas: 1001/1000, 1716/1715, 4096/4095, 46656/46585 | Commas: 1001/1000, 1716/1715, 4096/4095, 46656/46585 | ||
POTE generator: ~5/4 = 387.003 | POTE generator: ~5/4 = 387.003 | ||
Mapping: [ | Mapping: [{{map| 1 19 2 7 37 -35 }}, {{map| 0 -54 1 -13 -104 120 }}] | ||
EDOs: 31, 369, 400, 431, 462 | EDOs: 31, 369, 400, 431, 462 | ||
{{ | {{Todo|cleanup|expand|inline=1|comment=say what the temperaments are like and why one would want to use them, and for what}} | ||
== See also == | |||
* [[31edo]] – relative edo | |||
* [[49edt]] – relative edt | |||
* [[72ed5]] – relative ed5 | |||
* [[80ed6]] – relative ed6 | |||
* [[87ed7]] – relative ed7 | |||
* [[107ed11]] – relative ed11 | |||
* [[111ed12]] – relative ed12 | |||
* [[138ed22]] – relative ed22 | |||
* [[204ed96]] – close to the zeta-optimized tuning for 31edo | |||
* [[39cET]] | |||
[[Category:31edo]] |