Omnidiatonic: Difference between revisions

Fredg999 (talk | contribs)
Terms, step label casing, misc. edits
Sintel (talk | contribs)
Tunings: fix broken latex
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
'''Omnidiatonic''' (also known as '''interdia''' and '''archylino''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] 2L 3M 2s. Omnidiatonic is a [[chiral]] scale with LMsMLsM and LMsLMsM variants. [[14edo]] is the first equal division that supports omnidiatonic. The name "omnidiatonic" was given by [[User:CompactStar|CompactStar]] and the name "interdia" was given by [[User:Xenllium|Xenllium]], both of which refer to this scale being intermediate between the [[5L 2s]] diatonic scale and the [[2L 5s]] antidiatonic scale. The name "archylino" was given by [[User:AthiTrydhen|Praveen Venkataramana]], which refers to intervals separated by 64/63, the Archytas comma, being mapped to the same number of scale steps of 2.3.7 JI archylino 1/1 9/8 7/6 4/3 3/2 14/9 7/4 2/1 (MsLMsML).
'''Omnidiatonic''' (also known as '''interdia''' and '''archylino''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] 2L 3M 2s. Omnidiatonic is a [[chiral]] scale with LMsMLsM and LMsLMsM variants. [[14edo]] is the first equal division that supports omnidiatonic. The name "omnidiatonic" was given by [[User:CompactStar|CompactStar]] and the name "interdia" was given by [[User:Xenllium|Xenllium]], both of which refer to this scale being intermediate between the [[5L 2s]] diatonic scale and the [[2L 5s]] antidiatonic scale. The name "archylino" was given by [[User:AthiTrydhen|Praveen Venkataramana]], which refers to intervals separated by 64/63, the Archytas comma, being mapped to the same number of scale steps of 2.3.7 JI archylino 1/1 9/8 7/6 4/3 3/2 14/9 7/4 2/1 (MsLMsML). In terms of Greek scales, this can be seen as Archytas' diatonic.


Omnidiatonic can be tuned as a 7-limit JI scale or a tempered version thereof, where L represents 8/7, M represents 9/8, and s represents 28/27.
Omnidiatonic can be tuned as a 7-limit JI scale or a tempered version thereof, where L represents 8/7, M represents 9/8, and s represents 28/27.
Line 40: Line 40:
|-
|-
! Outer generator <br>(''G''<sub>1</sub> = L + 2M + s)
! Outer generator <br>(''G''<sub>1</sub> = L + 2M + s)
| <math>\displaystyle \frac{1}{2} &lt; G_\text{1} &lt; \frac{3}{5}</math>
| <math>\displaystyle \frac{1}{2} \lt G_\text{1} \lt \frac{3}{5}</math>
|-
|-
! RH inner generator <br>(''G''<sub>2R</sub> = M + s)
! RH inner generator <br>(''G''<sub>2R</sub> = M + s)
| <math>\displaystyle 2 G_\text{1} - 1 &lt; G_\text{2R} &lt; 4 G_\text{1} - 2 \text{ for }\frac{1}{2} &lt; G_\text{1} &le; \frac{4}{7}</math> <br><math>\displaystyle 2 G_\text{1} - 1 &lt; G_\text{2R} &lt; 2 - 3 G_\text{1} \text{ for }\frac{4}{7} &le; G_\text{1} &lt; \frac{3}{5}</math>
| <math>\displaystyle 2 G_\text{1} - 1 \lt G_\text{2R} \lt 4 G_\text{1} - 2 \text{ for }\frac{1}{2} \lt G_\text{1} \le \frac{4}{7}</math> <br><math>\displaystyle 2 G_\text{1} - 1 \lt G_\text{2R} \lt 2 - 3 G_\text{1} \text{ for }\frac{4}{7} \le G_\text{1} \lt \frac{3}{5}</math>
|-
|-
! LH inner generator <br>(''G''<sub>2L</sub> = L + M)
! LH inner generator <br>(''G''<sub>2L</sub> = L + M)
| <math>\displaystyle 2 - 3 G_\text{1} &lt; G_\text{2L} &lt; 1 - G_\text{1} \text{ for } \frac{1}{2} &lt; G_\text{1} &le; \frac{4}{7}</math> <br><math>\displaystyle 4 G_\text{1} - 2 &lt; G_\text{2L} &lt; 1 - G_\text{1} \text{ for }\frac{4}{7} &le; G_\text{1} &lt; \frac{3}{5}</math>
| <math>\displaystyle 2 - 3 G_\text{1} \lt G_\text{2L} \lt 1 - G_\text{1} \text{ for } \frac{1}{2} \lt G_\text{1} \le \frac{4}{7}</math> <br><math>\displaystyle 4 G_\text{1} - 2 \lt G_\text{2L} \lt 1 - G_\text{1} \text{ for }\frac{4}{7} \le G_\text{1} \lt \frac{3}{5}</math>
|-
|-
! Large step <br>(L = 1 - ''G''<sub>1</sub> - ''G''<sub>2R</sub>)
! Large step <br>(L = 1 - ''G''<sub>1</sub> - ''G''<sub>2R</sub>)
| <math>\displaystyle \frac{1}{7} &lt; L &lt; \frac{1}{2}</math>
| <math>\displaystyle \frac{1}{7} \lt L \lt \frac{1}{2}</math>
|-
|-
! Middle step <br>(M = 2''G''<sub>1</sub> - 1)
! Middle step <br>(M = 2''G''<sub>1</sub> - 1)
| <math>\displaystyle \frac{1}{5} (1 - 2 L) &lt; M &lt; L \text{ for } \frac{1}{7} &lt; L &le; \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{5} (1 - 2 L) &lt; M &lt; \frac{1}{3} (1 - 2 L) \text{ for } \frac{1}{5} &le; L &lt; \frac{1}{2}</math>
| <math>\displaystyle \frac{1}{5} (1 - 2 L) \lt M \lt L \text{ for } \frac{1}{7} \lt L \le \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{5} (1 - 2 L) \lt M \lt \frac{1}{3} (1 - 2 L) \text{ for } \frac{1}{5} \le L \lt \frac{1}{2}</math>
|-
|-
! Small step <br>(s = 1 - ''G''<sub>1</sub> - ''G''<sub>2L</sub>)
! Small step <br>(s = 1 - ''G''<sub>1</sub> - ''G''<sub>2L</sub>)
| <math>\displaystyle \frac{1}{2} (1 - 5 L) &lt; s &lt; \frac{1}{5} (1 - 2 L) \text{ for } \frac{1}{7} &lt; L &le; \frac{1}{5}</math> <br><math>\displaystyle 0 &lt; s &lt; \frac{1}{5} (1 - 2 L) \text{ for } \frac{1}{5} &le; L &lt; \frac{1}{2}</math>
| <math>\displaystyle \frac{1}{2} (1 - 5 L) \lt s \lt \frac{1}{5} (1 - 2 L) \text{ for } \frac{1}{7} \lt L \le \frac{1}{5}</math> <br><math>\displaystyle 0 \lt s \lt \frac{1}{5} (1 - 2 L) \text{ for } \frac{1}{5} \le L \lt \frac{1}{2}</math>
|}
|}