71zpi: Difference between revisions

Contribution (talk | contribs)
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''71 zeta peak index''' (abbreviated '''71zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 71st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]].
'''71 zeta peak index''' (abbreviated '''71zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 71st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]].


{| class="wikitable"
{{ZPI
! colspan="3" | Tuning
| zpi = 71
! colspan="3" | Strength
| steps = 20.2248393119540
! colspan="2" | Closest EDO
| step size = 59.3329806724710
! colspan="2" | Integer limit
| height = 3.531097
|-
| integral = 0.613581
! ZPI
| gap = 12.986080
! Steps per octave
| octave = 1186.65961344942
! Step size (cents)
| consistent = 6
! Height
| distinct = 6
! Integral
}}
! Gap
! EDO
! Octave (cents)
! Consistent
! Distinct
|-
| [[71zpi]]
| 20.2248393119540
| 59.3329806724710
| 3.531097
| 0.613581
| 12.986080
| [[20edo]]
| 1186.65961344942
| 6
| 6
|}


[[File:71zpi.png|thumb|right|The Riemann zeta function around 71zpi]]
[[File:71zpi.png|thumb|right|The Riemann zeta function around 71zpi]]


== Theory ==
== Theory ==
'''71zpi''' marks the most prominent [[zeta peak index]] in the [[vicinity]] of [[20edo]]. While [[70zpi]] is the nearest peak to [[20edo]] and closely competes with 71zpi in terms of strength, 71zpi remains superior across all measures of strength. 71zpi may also be viewed as a tritave compression of [[32edt]], a [[The_Riemann_zeta_function_and_tuning#Removing_primes|no-2s zeta peak EDT]] (consistent in the no-2s [[Odd_limit#Nonoctave_equaves|21-throdd-limit]]), but with less extreme stretch than [[71zpi#Record on the Riemann zeta function with prime 2 removed|the no-2s peak]] at 59.271105 cents.
'''71zpi''' marks the most prominent [[zeta peak index]] in the [[vicinity]] of [[20edo]]. While [[70zpi]] is the nearest peak to [[20edo]] and closely competes with 71zpi in terms of strength, 71zpi remains superior across all measures of strength. 71zpi may also be viewed as a tritave compression of [[32edt]], a [[The_Riemann_zeta_function_and_tuning#Removing_primes|no-2s zeta peak EDT]] (consistent in the [[Odd_limit#Nonoctave_equaves|no-2s 19-integer-limit]]), but with less extreme stretch than [[71zpi#Record on the Riemann zeta function with prime 2 removed|the no-2s peak]] at 59.271105 cents.


71zpi features a good 3:5:9:11:14:15:16:19:25:26:33 chord, which differs a lot from the harmonic characteristics of [[20edo]].
71zpi features a good 3:5:9:11:14:15:16:19:25:26:33 chord, which differs a lot from the harmonic characteristics of [[20edo]].
Line 50: Line 33:


{| class="wikitable center-1 right-2 left-3 center-4 center-5"
{| class="wikitable center-1 right-2 left-3 center-4 center-5"
|+ style="white-space:nowrap" | Intervals in 71zpi
|-
|-
|+ style="white-space:nowrap" | Intervals in 71zpi
| colspan="3" style="text-align:left;" | JI ratios are comprised of 33-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy:
| colspan="3" style="text-align:left;" | JI ratios are comprised of 32-integer limit ratios,<br>and are stylized as follows to indicate their accuracy:
* '''<u>Bold Underlined:</u>''' relative error < 8.333 %
* '''<u>Bold Underlined:</u>''' relative error < 8.333 %
* '''Bold:''' relative error < 16.667 %
* '''Bold:''' relative error < 16.667 %
Line 64: Line 47:
! Cents
! Cents
! Ratios
! Ratios
! Ups and Downs Notation
! Ups and downs notation
! Step
! Step
|-
|-
Line 75: Line 58:
| 1
| 1
| 59.333
| 59.333
| '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small>
| '''[[33/32]]''', '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small>
| v<sup>7</sup>m2
| v<sup>7</sup>m2
| 9
| 9
Line 81: Line 64:
| 2
| 2
| 118.666
| 118.666
| <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small>
| <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], [[33/31]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small>
| ^^m2
| ^^m2
| 18
| 18
Line 93: Line 76:
| 4
| 4
| 237.332
| 237.332
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small>[[29/25]]</small>, <small><small><small>[[7/6]]</small></small></small>
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, [[33/29]], '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small>[[29/25]]</small>, <small><small><small>[[7/6]]</small></small></small>
| ^<sup>6</sup>M2
| ^<sup>6</sup>M2
| 36
| 36
Line 99: Line 82:
| 5
| 5
| 296.665
| 296.665
| <small>[[27/23]]</small>, <small>[[20/17]]</small>, '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small>
| <small>[[27/23]]</small>, <small>[[20/17]]</small>, [[33/28]], '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small>
| vm3
| vm3
| 45
| 45
Line 111: Line 94:
| 7
| 7
| 415.331
| 415.331
| <small><small><small>[[5/4]]</small></small></small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small>[[9/7]]</small>, <small><small><small>[[31/24]]</small></small></small>
| <small><small><small>[[5/4]]</small></small></small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[33/26]]'''</u>, '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small>[[9/7]]</small>, <small><small><small>[[31/24]]</small></small></small>
| ^^^M3
| ^^^M3
| 63
| 63
Line 117: Line 100:
| 8
| 8
| 474.664
| 474.664
| <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], [[17/13]], '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, <small><small>[[4/3]]</small></small>
| <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], [[17/13]], '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, '''[[33/25]]''', <small><small>[[4/3]]</small></small>
| v<sup>4</sup>4
| v<sup>4</sup>4
| 72
| 72
Line 135: Line 118:
| 11
| 11
| 652.663
| 652.663
| <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''<u>[[19/13]]'''</u>, [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small>
| <small><small><small>[[33/23]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''<u>[[19/13]]'''</u>, [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small>
| ~5
| ~5
| 99
| 99
Line 159: Line 142:
| 15
| 15
| 889.995
| 889.995
| <small><small><small>[[28/17]]</small></small></small>, '''[[5/3]]''', [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small>
| <small><small><small>[[28/17]]</small></small></small>, <small><small>[[33/20]]</small></small>, '''[[5/3]]''', [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small>
| vM6
| vM6
| 135
| 135
Line 165: Line 148:
| 16
| 16
| 949.328
| 949.328
| <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, <small>[[7/4]]</small>
| <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, '''[[33/19]]''', <small>[[7/4]]</small>
| v<sup>6</sup>A6, ^<sup>6</sup>d7
| v<sup>6</sup>A6, ^<sup>6</sup>d7
| 144
| 144
Line 183: Line 166:
| 19
| 19
| 1127.327
| 1127.327
| <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''<u>[[25/13]]'''</u>, '''[[27/14]]''', [[29/15]], <small>[[31/16]]</small>
| <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''<u>[[25/13]]'''</u>, '''[[27/14]]''', [[29/15]], <small>[[31/16]]</small>, <small><small>[[33/17]]</small></small>
| ^<sup>5</sup>M7
| ^<sup>5</sup>M7
| 171
| 171
Line 195: Line 178:
| 21
| 21
| 1245.993
| 1245.993
| [[31/15]], [[29/14]], <small>[[27/13]]</small>, <small><small>[[25/12]]</small></small>
| '''[[33/16]]''', [[31/15]], [[29/14]], <small>[[27/13]]</small>, <small><small>[[25/12]]</small></small>
| ^<sup>7</sup>1 +1 oct
| ^<sup>7</sup>1 +1 oct
| 189
| 189
Line 219: Line 202:
| 25
| 25
| 1483.325
| 1483.325
| <small>[[7/3]]</small>, '''[[26/11]]''', [[19/8]], <small><small>[[31/13]]</small></small>
| <small>[[7/3]]</small>, '''<u>[[33/14]]'''</u>, '''[[26/11]]''', [[19/8]], <small><small>[[31/13]]</small></small>
| vvvm3 +1 oct
| vvvm3 +1 oct
| 225
| 225
Line 231: Line 214:
| 27
| 27
| 1601.990
| 1601.990
| <small>[[5/2]]</small>, <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small>
| <small>[[5/2]]</small>, [[33/13]], <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small>
| ^M3 +1 oct
| ^M3 +1 oct
| 243
| 243
Line 279: Line 262:
| 35
| 35
| 2076.654
| 2076.654
| <small>[[23/7]]</small>, '''[[10/3]]''', <small><small><small>[[27/8]]</small></small></small>
| <small>[[23/7]]</small>, '''[[33/10]]''', '''[[10/3]]''', <small><small><small>[[27/8]]</small></small></small>
| vvvM6 +1 oct
| vvvM6 +1 oct
| 315
| 315
Line 315: Line 298:
| 41
| 41
| 2432.652
| 2432.652
| <small><small><small>[[29/7]]</small></small></small>
| <small><small>[[33/8]]</small></small>, <small><small><small>[[29/7]]</small></small></small>
| ^<sup>5</sup>1 +2 oct
| ^<sup>5</sup>1 +2 oct
| 369
| 369
Line 339: Line 322:
| 45
| 45
| 2669.984
| 2669.984
| <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, <small><small><small>[[19/4]]</small></small></small>
| <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, [[33/7]], <small><small><small>[[19/4]]</small></small></small>
| v<sup>5</sup>m3 +2 oct
| v<sup>5</sup>m3 +2 oct
| 405
| 405
Line 399: Line 382:
| 55
| 55
| 3263.314
| 3263.314
| <small><small>[[13/2]]</small></small>, <small><small>[[20/3]]</small></small>
| <small><small>[[13/2]]</small></small>, '''<u>[[33/5]]'''</u>, <small><small>[[20/3]]</small></small>
| v<sup>5</sup>M6 +2 oct
| v<sup>5</sup>M6 +2 oct
| 495
| 495
Line 441: Line 424:
| 62
| 62
| 3678.645
| 3678.645
| '''[[25/3]]''', <small><small><small>[[17/2]]</small></small></small>
| <small><small><small>[[33/4]]</small></small></small>, '''[[25/3]]''', <small><small><small>[[17/2]]</small></small></small>
| v<sup>4</sup>m2 +3 oct
| v<sup>4</sup>m2 +3 oct
| 558
| 558
Line 561: Line 544:
| 82
| 82
| 4865.304
| 4865.304
|  
| [[33/2]]
| v<sup>6</sup>m2 +4 oct
| v<sup>6</sup>m2 +4 oct
| 738
| 738
Line 678: Line 661:
| v1 +5 oct
| v1 +5 oct
| 909
| 909
|-
| 102
| 6051.964
| '''<u>[[33/1]]'''</u>
| v<sup>6</sup>A1 +5 oct, ^<sup>6</sup>d2 +5 oct
| 918
|}
|}


== Approximation to JI ==
== Approximation to JI ==
The following table illustrates the representation of the 32-integer limit intervals in 71zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''.  
 
=== Interval mappings ===
 
The following tables show how 33-integer-limit intervals are represented in 71zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''.


{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
|+ style="white-space: nowrap;" | Intervals by direct approximation (even if inconsistent)
|+ style="white-space: nowrap;" | 33-integer-limit intervals in 71zpi (by direct approximation)
|-
|-
! Ratio
! Ratio
Line 691: Line 683:
|-
|-
| [[14/1]]
| [[14/1]]
| +0.186
| -0.186
| +0.314
| -0.314
|-
|-
| [[11/5]]
| [[11/5]]
| +0.346
| -0.346
| +0.583
| -0.583
|-
|- style="background-color: #cccccc;"
| ''[[17/8]]''
| ''[[17/8]]''
| ''-0.370''
| ''+0.370''
| ''-0.624''
| ''+0.624''
|-
|-
| [[31/22]]
| [[31/22]]
| +0.388
| -0.388
| +0.654
| -0.654
|-
|-
| [[21/13]]
| [[21/13]]
| -0.408
| +0.408
| -0.688
| +0.688
|-
|-
| [[25/19]]
| [[25/19]]
| +0.451
| -0.451
| +0.759
| -0.759
|-
|-
| [[26/3]]
| [[26/3]]
| +0.595
| -0.595
| +1.003
| -1.003
|-
|-
| [[30/29]]
| [[30/29]]
| -0.641
| +0.641
| -1.081
| +1.081
|-
|-
| [[31/10]]
| [[31/10]]
| +0.733
| -0.733
| +1.236
| -1.236
|-
|- style="background-color: #cccccc;"
| ''[[32/9]]''
| ''[[32/9]]''
| ''+0.770''
| ''-0.770''
| ''+1.297''
| ''-1.297''
|-
|-
| [[15/14]]
| [[15/14]]
| +0.777
| -0.777
| +1.309
| -1.309
|-
|- style="background-color: #cccccc;"
| ''[[19/16]]''
| ''[[19/16]]''
| ''+0.848''
| ''-0.848''
| ''+1.429''
| ''-1.429''
|-
|-
| [[15/1]]
| [[15/1]]
| +0.963
| -0.963
| +1.623
| -1.623
|-
|-
| [[23/12]]
| [[23/12]]
| -1.007
| +1.007
| -1.698
| +1.698
|-
|-
| [[27/10]]
| [[27/10]]
| -1.105
| +1.105
| -1.863
| +1.863
|-
|-
| [[33/14]]
| -1.123
| -1.892
|- style="background-color: #cccccc;"
| ''[[25/16]]''
| ''[[25/16]]''
| ''+1.299''
| ''-1.299''
| ''+2.189''
| ''-2.189''
|-
| [[33/1]]
| -1.309
| -2.206
|-
|-
| [[29/28]]
| [[29/28]]
| +1.418
| -1.418
| +2.390
| -2.390
|-
|-
| [[27/22]]
| [[27/22]]
| -1.451
| +1.451
| -2.445
| +2.445
|-
|-
| [[31/2]]
| [[31/2]]
| -1.603
| +1.603
| -2.702
| +2.702
|-
|-
| [[29/2]]
| [[29/2]]
| +1.605
| -1.605
| +2.705
| -2.705
|-
|-
| [[29/6]]
| [[29/6]]
| -1.695
| +1.695
| -2.857
| +2.857
|-
|-
| [[31/28]]
| [[31/28]]
| -1.789
| +1.789
| -3.016
| +3.016
|-
|-
| [[31/27]]
| [[31/27]]
| +1.839
| -1.839
| +3.099
| -3.099
|-
|-
| '''[[11/1]]'''
| '''[[11/1]]'''
| '''-1.991'''
| '''+1.991'''
| '''-3.355'''
| '''+3.355'''
|-
|-
| [[14/11]]
| [[14/11]]
| +2.177
| -2.177
| +3.669
| -3.669
|-
|-
| [[23/4]]
| [[23/4]]
| +2.292
| -2.292
| +3.864
| -3.864
|-
|-
| '''[[5/1]]'''
| '''[[5/1]]'''
| '''-2.336'''
| '''+2.336'''
| '''-3.938'''
| '''+3.938'''
|-
|-
| [[14/5]]
| [[14/5]]
| +2.523
| -2.523
| +4.252
| -4.252
|-
|- style="background-color: #cccccc;"
| ''[[32/27]]''
| ''[[32/27]]''
| ''-2.530''
| ''+2.530''
| ''-4.264''
| ''+4.264''
|-
|-
| [[31/30]]
| [[31/30]]
| -2.566
| +2.566
| -4.325
| +4.325
|-
| [[33/26]]
| +2.586
| +4.358
|-
|-
| [[25/11]]
| [[25/11]]
| -2.682
| +2.682
| -4.520
| +4.520
|-
|-
| [[26/9]]
| [[26/9]]
| -2.705
| +2.705
| -4.559
| +4.559
|-
|-
| [[19/5]]
| [[19/5]]
| -2.787
| +2.787
| -4.697
| +4.697
|-
|- style="background-color: #cccccc;"
| ''[[24/7]]''
| ''[[24/7]]''
| ''-2.858''
| ''+2.858''
| ''-4.817''
| ''+4.817''
|-
|-
| [[26/15]]
| [[26/15]]
| +2.931
| -2.931
| +4.940
| -4.940
|-
|-
| [[15/11]]
| [[15/11]]
| +2.954
| -2.954
| +4.979
| -4.979
|-
|-
| [[14/3]]
| [[14/3]]
| -3.113
| +3.113
| -5.247
| +5.247
|-
|-
| [[19/11]]
| [[19/11]]
| -3.133
| +3.133
| -5.280
| +5.280
|-
|-
| [[31/29]]
| [[31/29]]
| -3.208
| +3.208
| -5.406
| +5.406
|-
|-
| '''[[3/1]]'''
| '''[[3/1]]'''
| '''+3.300'''
| '''-3.300'''
| '''+5.561'''
| '''-5.561'''
|-
|-
| [[27/2]]
| [[27/2]]
| -3.442
| +3.442
| -5.800
| +5.800
|-
|- style="background-color: #cccccc;"
| ''[[16/13]]''
| ''[[16/13]]''
| ''+3.474''
| ''-3.474''
| ''+5.856''
| ''-5.856''
|-
|-
| [[29/22]]
| [[29/22]]
| +3.595
| -3.595
| +6.060
| -6.060
|-
|-
| [[28/27]]
| [[28/27]]
| +3.628
| -3.628
| +6.115
| -6.115
|-
|- style="background-color: #cccccc;"
| ''[[16/5]]''
| ''[[16/5]]''
| ''-3.635''
| ''+3.635''
| ''-6.127''
| ''+6.127''
|-
|-
| [[33/5]]
| -3.645
| -6.144
|- style="background-color: #cccccc;"
| ''[[24/17]]''
| ''[[24/17]]''
| ''+3.670''
| ''-3.670''
| ''+6.185''
| ''-6.185''
|-
|-
| [[13/7]]
| [[13/7]]
| +3.708
| -3.708
| +6.250
| -6.250
|-
|- style="background-color: #cccccc;"
| ''[[21/16]]''
| ''[[21/16]]''
| ''-3.883''
| ''+3.883''
| ''-6.544''
| ''+6.544''
|-
|-
| [[26/1]]
| [[26/1]]
| +3.894
| -3.894
| +6.564
| -6.564
|-
|-
| [[29/10]]
| [[29/10]]
| +3.941
| -3.941
| +6.642
| -6.642
|-
|- style="background-color: #cccccc;"
| ''[[16/11]]''
| ''[[16/11]]''
| ''-3.981''
| ''+3.981''
| ''-6.709''
| ''+6.709''
|-
|- style="background-color: #cccccc;"
| ''[[32/3]]''
| ''[[32/3]]''
| ''+4.069''
| ''-4.069''
| ''+6.858''
| ''-6.858''
|-
|-
| [[19/13]]
| [[19/13]]
| +4.323
| -4.323
| +7.285
| -7.285
|-
|- style="background-color: #cccccc;"
| ''[[32/31]]''
| ''[[32/31]]''
| ''-4.369''
| ''+4.369''
| ''-7.363''
| ''+7.363''
|-
|-
| [[10/9]]
| [[10/9]]
| +4.405
| -4.405
| +7.424
| -7.424
|-
|-
| [[23/20]]
| [[23/20]]
| +4.629
| -4.629
| +7.801
| -7.801
|-
|-
| [[25/1]]
| [[25/1]]
| -4.673
| +4.673
| -7.875
| +7.875
|-
|-
| [[21/19]]
| [[21/19]]
| -4.731
| +4.731
| -7.974
| +7.974
|-
|-
| [[22/9]]
| [[22/9]]
| +4.750
| -4.750
| +8.006
| -8.006
|-
|-
| [[25/13]]
| [[25/13]]
| +4.773
| -4.773
| +8.045
| -8.045
|-
|-
| [[25/14]]
| [[25/14]]
| -4.859
| +4.859
| -8.190
| +8.190
|-
|-
| [[31/6]]
| [[31/6]]
| -4.903
| +4.903
| -8.263
| +8.263
|-
|-
| [[29/18]]
| [[29/18]]
| -4.995
| +4.995
| -8.418
| +8.418
|-
|-
| [[29/27]]
| [[29/27]]
| +5.046
| -5.046
| +8.505
| -8.505
|-
|-
| '''[[19/1]]'''
| '''[[19/1]]'''
| '''-5.123'''
| '''+5.123'''
| '''-8.635'''
| '''+8.635'''
|-
|-
| [[31/9]]
| [[31/9]]
| +5.138
| -5.138
| +8.660
| -8.660
|-
|-
| [[25/21]]
| [[25/21]]
| +5.182
| -5.182
| +8.733
| -8.733
|-
|-
| [[11/3]]
| [[11/3]]
| -5.290
| +5.290
| -8.916
| +8.916
|-
|-
| [[19/14]]
| [[19/14]]
| -5.310
| +5.310
| -8.949
| +8.949
|-
|-
| [[5/3]]
| [[5/3]]
| -5.636
| +5.636
| -9.499
| +9.499
|-
|-
| [[26/11]]
| [[26/11]]
| +5.885
| -5.885
| +9.919
| -9.919
|- style="background-color: #cccccc;"
| ''[[16/1]]''
| ''+5.971''
| ''+10.064''
|-
|-
| ''[[16/1]]''
| [[33/25]]
| ''-5.971''
| -5.982
| ''-10.064''
| -10.082
|-
|-
| [[27/26]]
| [[27/26]]
| +6.004
| -6.004
| +10.120
| -10.120
|- style="background-color: #cccccc;"
| ''[[33/32]]''
| ''+6.060''
| ''+10.214''
|-
|-
| [[19/15]]
| [[19/15]]
| -6.087
| +6.087
| -10.258
| +10.258
|-
|- style="background-color: #cccccc;"
| ''[[8/7]]''
| ''[[8/7]]''
| ''-6.158''
| ''+6.158''
| ''-10.378''
| ''+10.378''
|-
|-
| [[26/5]]
| [[26/5]]
| +6.231
| -6.231
| +10.502
| -10.502
|-
|- style="background-color: #cccccc;"
| ''[[32/15]]''
| ''[[32/15]]''
| ''+6.406''
| ''-6.406''
| ''+10.796''
| ''-10.796''
|-
|-
| [[14/9]]
| [[14/9]]
| -6.413
| +6.413
| -10.808
| +10.808
|-
| [[33/19]]
| -6.432
| -10.841
|-
|-
| [[17/7]]
| [[17/7]]
| -6.528
| +6.528
| -11.002
| +11.002
|-
|- style="background-color: #cccccc;"
| ''[[24/13]]''
| ''[[24/13]]''
| ''-6.566''
| ''+6.566''
| ''-11.067''
| ''+11.067''
|-
|-
| [[9/1]]
| [[9/1]]
| +6.599
| -6.599
| +11.122
| -11.122
|-
|-
| [[9/2]]
| [[9/2]]
| -6.741
| +6.741
| -11.362
| +11.362
|-
|-
| [[28/9]]
| [[28/9]]
| +6.928
| -6.928
| +11.676
| -11.676
|-
|- style="background-color: #cccccc;"
| ''[[16/15]]''
| ''[[16/15]]''
| ''-6.935''
| ''+6.935''
| ''-11.688''
| ''+11.688''
|-
|-
| [[13/5]]
| [[13/5]]
| -7.110
| +7.110
| -11.982
| +11.982
|-
|- style="background-color: #cccccc;"
| ''[[16/7]]''
| ''[[16/7]]''
| ''+7.183''
| ''-7.183''
| ''+12.106''
| ''-12.106''
|-
|- style="background-color: #cccccc;"
| ''[[33/16]]''
| ''-7.280''
| ''-12.270''
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''[[32/1]]''
| ''+7.369''
| ''-7.369''
| ''+12.420''
| ''-12.420''
|-
|-
| [[13/11]]
| [[13/11]]
| -7.455
| +7.455
| -12.565
| +12.565
|-
|-
| [[21/5]]
| [[21/5]]
| -7.518
| +7.518
| -12.671
| +12.671
|-
|- style="background-color: #cccccc;"
| ''[[32/29]]''
| ''[[32/29]]''
| ''-7.576''
| ''+7.576''
| ''-12.769''
| ''+12.769''
|-
|-
| [[10/3]]
| [[10/3]]
| +7.704
| -7.704
| +12.985
| -12.985
|-
|-
| [[31/26]]
| [[31/26]]
| +7.843
| -7.843
| +13.219
| -13.219
|-
|-
| [[21/11]]
| [[21/11]]
| -7.864
| +7.864
| -13.253
| +13.253
|-
|-
| [[25/3]]
| [[25/3]]
| -7.972
| +7.972
| -13.437
| +13.437
|-
|-
| [[19/7]]
| [[19/7]]
| +8.031
| -8.031
| +13.535
| -13.535
|-
|-
| [[22/3]]
| [[22/3]]
| +8.050
| -8.050
| +13.568
| -13.568
|-
|-
| [[31/18]]
| [[31/18]]
| -8.202
| +8.202
| -13.824
| +13.824
|-
|-
| [[29/9]]
| [[29/9]]
| +8.346
| -8.346
| +14.066
| -14.066
|-
|-
| [[19/3]]
| [[19/3]]
| -8.423
| +8.423
| -14.196
| +14.196
|-
|-
| [[31/3]]
| [[31/3]]
| +8.438
| -8.438
| +14.221
| -14.221
|-
|-
| [[25/7]]
| [[25/7]]
| +8.481
| -8.481
| +14.294
| -14.294
|-
|-
| [[26/25]]
| [[26/25]]
| +8.567
| -8.567
| +14.439
| -14.439
|-
|-
| [[11/9]]
| [[11/9]]
| -8.590
| +8.590
| -14.478
| +14.478
|-
|-
| [[9/5]]
| [[9/5]]
| +8.936
| -8.936
| +15.060
| -15.060
|-
|-
| [[26/19]]
| [[26/19]]
| +9.018
| -9.018
| +15.199
| -15.199
|-
|-
| [[23/18]]
| [[23/18]]
| +9.033
| -9.033
| +15.225
| -15.225
|-
|- style="background-color: #cccccc;"
| ''[[16/3]]''
| ''[[16/3]]''
| ''-9.271''
| ''+9.271''
| ''-15.625''
| ''+15.625''
|-
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''[[32/11]]''
| ''+9.360''
| ''-9.360''
| ''+15.775''
| ''-15.775''
|-
|-
| [[29/20]]
| [[29/20]]
| -9.399
| +9.399
| -15.842
| +15.842
|-
|-
| '''[[13/1]]'''
| '''[[13/1]]'''
| '''-9.446'''
| '''+9.446'''
| '''-15.920'''
| '''+15.920'''
|-
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''[[21/8]]''
| ''+9.457''
| ''-9.457''
| ''+15.940''
| ''-15.940''
|-
|-
| [[14/13]]
| [[14/13]]
| +9.632
| -9.632
| +16.234
| -16.234
|-
|- style="background-color: #cccccc;"
| ''[[17/12]]''
| ''[[17/12]]''
| ''+9.671''
| ''-9.671''
| ''+16.299''
| ''-16.299''
|-
|-
| [[33/10]]
| +9.695
| +16.340
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''[[32/5]]''
| ''+9.705''
| ''-9.705''
| ''+16.357''
| ''-16.357''
|-
|-
| [[27/14]]
| [[27/14]]
| +9.712
| -9.712
| +16.369
| -16.369
|-
|-
| [[21/17]]
| [[21/17]]
| +9.828
| -9.828
| +16.563
| -16.563
|-
|-
| [[21/1]]
| [[21/1]]
| -9.854
| +9.854
| -16.609
| +16.609
|-
|- style="background-color: #cccccc;"
| ''[[13/8]]''
| ''[[13/8]]''
| ''+9.866''
| ''-9.866''
| ''+16.628''
| ''-16.628''
|-
|-
| [[27/1]]
| [[27/1]]
| +9.899
| -9.899
| +16.684
| -16.684
|-
|-
| [[3/2]]
| [[3/2]]
| -10.041
| +10.041
| -16.923
| +16.923
|-
|-
| [[28/3]]
| [[28/3]]
| +10.227
| -10.227
| +17.237
| -17.237
|-
|-
| [[17/13]]
| [[17/13]]
| -10.236
| +10.236
| -17.252
| +17.252
|-
|-
| [[22/15]]
| [[22/15]]
| +10.386
| -10.386
| +17.505
| -17.505
|-
|-
| [[15/13]]
| [[15/13]]
| +10.409
| -10.409
| +17.544
| -17.544
|-
|-
| [[33/31]]
| +10.429
| +17.576
|- style="background-color: #cccccc;"
| ''[[23/17]]''
| ''[[23/17]]''
| ''-10.678''
| ''+10.678''
| ''-17.997''
| ''+17.997''
|-
| [[33/13]]
| -10.755
| -18.126
|-
|-
| [[31/15]]
| [[31/15]]
| +10.774
| -10.774
| +18.159
| -18.159
|-
|-
| [[7/5]]
| [[7/5]]
| -10.818
| +10.818
| -18.232
| +18.232
|-
|- style="background-color: #cccccc;"
| ''[[24/19]]''
| ''[[24/19]]''
| ''-10.889''
| ''+10.889''
| ''-18.352''
| ''+18.352''
|-
|-
| [[10/1]]
| [[10/1]]
| +11.004
| -11.004
| +18.546
| -18.546
|-
|-
| [[23/8]]
| [[23/8]]
| -11.048
| +11.048
| -18.620
| +18.620
|-
|-
| [[29/26]]
| [[29/26]]
| +11.051
| -11.051
| +18.625
| -18.625
|-
|-
| [[11/7]]
| [[11/7]]
| +11.163
| -11.163
| +18.815
| -18.815
|-
|-
| [[25/9]]
| [[25/9]]
| -11.272
| +11.272
| -18.998
| +18.998
|-
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''[[25/24]]''
| ''+11.339''
| ''-11.339''
| ''+19.112''
| ''-19.112''
|-
|-
| [[22/1]]
| [[22/1]]
| +11.350
| -11.350
| +19.129
| -19.129
|-
|-
| [[31/14]]
| [[31/14]]
| +11.551
| -11.551
| +19.468
| -19.468
|-
|-
| [[29/3]]
| [[29/3]]
| +11.645
| -11.645
| +19.627
| -19.627
|-
|-
| [[19/9]]
| [[19/9]]
| -11.723
| +11.723
| -19.757
| +19.757
|-
|-
| [[29/4]]
| [[29/4]]
| -11.736
| +11.736
| -19.779
| +19.779
|-
|-
| '''[[31/1]]'''
| '''[[31/1]]'''
| '''+11.738'''
| '''-11.738'''
| '''+19.782'''
| '''-19.782'''
|-
|-
| [[27/11]]
| [[27/11]]
| +11.890
| -11.890
| +20.039
| -20.039
|-
|-
| [[33/2]]
| +12.031
| +20.278
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''[[32/25]]''
| ''+12.042''
| ''-12.042''
| ''+20.295''
| ''-20.295''
|-
| [[33/28]]
| +12.218
| +20.592
|-
|-
| [[27/5]]
| [[27/5]]
| +12.235
| -12.235
| +20.621
| -20.621
|-
|-
| [[23/6]]
| [[23/6]]
| +12.333
| -12.333
| +20.786
| -20.786
|-
|-
| [[15/2]]
| [[15/2]]
| -12.377
| +12.377
| -20.860
| +20.860
|-
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''[[32/19]]''
| ''+12.492''
| ''-12.492''
| ''+21.055''
| ''-21.055''
|-
|-
| [[28/15]]
| [[28/15]]
| +12.564
| -12.564
| +21.175
| -21.175
|-
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''[[16/9]]''
| ''-12.571''
| ''+12.571''
| ''-21.187''
| ''+21.187''
|-
|-
| [[31/20]]
| [[31/20]]
| -12.607
| +12.607
| -21.248
| +21.248
|-
|-
| [[13/3]]
| [[13/3]]
| -12.746
| +12.746
| -21.481
| +21.481
|-
|- style="background-color: #cccccc;"
| ''[[17/4]]''
| ''[[17/4]]''
| ''+12.970''
| ''-12.970''
| ''+21.860''
| ''-21.860''
|-
|-
| [[11/10]]
| [[11/10]]
| -12.995
| +12.995
| -21.901
| +21.901
|-
|-
| '''[[7/1]]'''
| '''[[7/1]]'''
| '''-13.154'''
| '''+13.154'''
| '''-22.170'''
| '''+22.170'''
|-
|-
| '''[[2/1]]'''
| '''[[2/1]]'''
| '''+13.340'''
| '''-13.340'''
| '''+22.484'''
| '''-22.484'''
|-
|-
| [[28/1]]
| [[28/1]]
| +13.527
| -13.527
| +22.798
| -22.798
|-
|-
| [[33/29]]
| +13.636
| +22.982
|- style="background-color: #cccccc;"
| ''[[24/5]]''
| ''[[24/5]]''
| ''-13.676''
| ''+13.676''
| ''-23.049''
| ''+23.049''
|-
|-
| [[22/5]]
| [[22/5]]
| +13.686
| -13.686
| +23.067
| -23.067
|-
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''[[17/16]]''
| ''-13.711''
| ''+13.711''
| ''-23.108''
| ''+23.108''
|-
|-
| [[31/11]]
| [[31/11]]
| +13.728
| -13.728
| +23.138
| -23.138
|-
|-
| [[26/21]]
| [[26/21]]
| +13.749
| -13.749
| +23.172
| -23.172
|-
|-
| [[29/15]]
| [[29/15]]
| +13.982
| -13.982
| +23.565
| -23.565
|-
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''[[24/11]]''
| ''-14.021''
| ''+14.021''
| ''-23.632''
| ''+23.632''
|-
|-
| [[29/23]]
| [[29/23]]
| -14.028
| +14.028
| -23.643
| +23.643
|-
|-
| [[31/5]]
| [[31/5]]
| +14.074
| -14.074
| +23.720
| -23.720
|-
|-
| [[15/7]]
| [[15/7]]
| +14.117
| -14.117
| +23.793
| -23.793
|-
|- style="background-color: #cccccc;"
| ''[[19/8]]''
| ''[[19/8]]''
| ''+14.188''
| ''-14.188''
| ''+23.913''
| ''-23.913''
|-
|-
| [[30/1]]
| [[30/1]]
| +14.304
| -14.304
| +24.107
| -24.107
|-
|-
| [[24/23]]
| [[24/23]]
| +14.348
| -14.348
| +24.182
| -24.182
|-
|-
| [[27/20]]
| [[27/20]]
| -14.446
| +14.446
| -24.347
| +24.347
|-
| [[33/7]]
| -14.463
| -24.376
|-
|-
| [[19/17]]
| [[19/17]]
| +14.559
| -14.559
| +24.537
| -24.537
|-
|-
| [[27/25]]
| [[27/25]]
| +14.572
| -14.572
| +24.559
| -24.559
|-
|- style="background-color: #cccccc;"
| ''[[25/8]]''
| ''[[25/8]]''
| ''+14.639''
| ''-14.639''
| ''+24.673''
| ''-24.673''
|-
|-
| [[30/23]]
| [[30/23]]
| -14.669
| +14.669
| -24.724
| +24.724
|-
|-
| [[29/14]]
| [[29/14]]
| +14.759
| -14.759
| +24.874
| -24.874
|-
|-
| [[31/4]]
| [[31/4]]
| -14.943
| +14.943
| -25.185
| +25.185
|-
|-
| '''[[29/1]]'''
| '''[[29/1]]'''
| '''+14.945'''
| '''-14.945'''
| '''+25.189'''
| '''-25.189'''
|-
|-
| [[25/17]]
| [[25/17]]
| +15.009
| -15.009
| +25.297
| -25.297
|-
|-
| [[27/19]]
| [[27/19]]
| +15.022
| -15.022
| +25.318
| -25.318
|-
|-
| [[29/12]]
| [[29/12]]
| -15.035
| +15.035
| -25.341
| +25.341
|-
|- style="background-color: #cccccc;"
| ''[[20/17]]''
| ''[[20/17]]''
| ''-15.307''
| ''+15.307''
| ''-25.798''
| ''+25.798''
|-
|-
| [[11/2]]
| [[11/2]]
| -15.331
| +15.331
| -25.839
| +25.839
|-
|-
| [[28/23]]
| [[28/23]]
| -15.446
| +15.446
| -26.033
| +26.033
|-
|-
| [[28/11]]
| [[28/11]]
| +15.517
| -15.517
| +26.153
| -26.153
|-
|-
| [[23/2]]
| [[23/2]]
| +15.633
| -15.633
| +26.347
| -26.347
|-
|-
| [[5/2]]
| [[5/2]]
| -15.677
| +15.677
| -26.422
| +26.422
|-
|-
| [[28/5]]
| [[28/5]]
| +15.863
| -15.863
| +26.736
| -26.736
|-
|- style="background-color: #cccccc;"
| ''[[27/16]]''
| ''[[27/16]]''
| ''+15.870''
| ''-15.870''
| ''+26.748''
| ''-26.748''
|-
|- style="background-color: #cccccc;"
| ''[[24/1]]''
| ''[[24/1]]''
| ''-16.012''
| ''+16.012''
| ''-26.987''
| ''+26.987''
|-
|-
| [[25/22]]
| [[25/22]]
| -16.022
| +16.022
| -27.004
| +27.004
|-
|-
| [[13/9]]
| [[13/9]]
| -16.045
| +16.045
| -27.043
| +27.043
|-
|-
| [[19/10]]
| [[19/10]]
| -16.127
| +16.127
| -27.181
| +27.181
|-
|- style="background-color: #cccccc;"
| ''[[12/7]]''
| ''[[12/7]]''
| ''-16.199''
| ''+16.199''
| ''-27.301''
| ''+27.301''
|-
|-
| [[30/11]]
| [[30/11]]
| +16.294
| -16.294
| +27.463
| -27.463
|-
|-
| [[31/25]]
| [[31/25]]
| +16.410
| -16.410
| +27.658
| -27.658
|-
|-
| [[7/3]]
| [[7/3]]
| -16.454
| +16.454
| -27.731
| +27.731
|-
|-
| [[22/19]]
| [[22/19]]
| +16.473
| -16.473
| +27.764
| -27.764
|-
|-
| [[6/1]]
| [[6/1]]
| +16.640
| -16.640
| +28.045
| -28.045
|-
|-
| [[27/4]]
| [[27/4]]
| -16.782
| +16.782
| -28.284
| +28.284
|-
|- style="background-color: #cccccc;"
| ''[[32/13]]''
| ''[[32/13]]''
| ''+16.815''
| ''-16.815''
| ''+28.340''
| ''-28.340''
|-
|-
| [[31/19]]
| [[31/19]]
| +16.861
| -16.861
| +28.417
| -28.417
|-
|-
| [[29/11]]
| [[29/11]]
| +16.936
| -16.936
| +28.544
| -28.544
|-
|- style="background-color: #cccccc;"
| ''[[8/5]]''
| ''[[8/5]]''
| ''-16.975''
| ''+16.975''
| ''-28.610''
| ''+28.610''
|-
|-
| [[26/7]]
| [[26/7]]
| +17.048
| -17.048
| +28.734
| -28.734
|-
|- style="background-color: #cccccc;"
| ''[[23/7]]''
| ''[[23/7]]''
| ''-17.206''
| ''+17.206''
| ''-28.999''
| ''+28.999''
|-
|- style="background-color: #cccccc;"
| ''[[32/21]]''
| ''[[32/21]]''
| ''+17.223''
| ''-17.223''
| ''+29.028''
| ''-29.028''
|-
|-
| [[31/23]]
| [[31/23]]
| -17.236
| +17.236
| -29.049
| +29.049
|-
|-
| [[29/5]]
| [[29/5]]
| +17.281
| -17.281
| +29.126
| -29.126
|-
|- style="background-color: #cccccc;"
| ''[[11/8]]''
| ''[[11/8]]''
| ''+17.321''
| ''-17.321''
| ''+29.193''
| ''-29.193''
|-
|-
| [[17/5]]
| [[17/5]]
| -17.346
| +17.346
| -29.234
| +29.234
|-
|-
| [[23/22]]
| [[23/22]]
| +17.623
| -17.623
| +29.703
| -29.703
|-
|-
| [[17/11]]
| [[17/11]]
| -17.691
| +17.691
| -29.817
| +29.817
|-
|- style="background-color: #cccccc;"
| ''[[31/16]]''
| ''[[31/16]]''
| ''+17.709''
| ''-17.709''
| ''+29.847''
| ''-29.847''
|-
|-
| [[20/9]]
| [[20/9]]
| +17.745
| -17.745
| +29.908
| -29.908
|-
|-
| [[23/10]]
| [[23/10]]
| +17.969
| -17.969
| +30.285
| -30.285
|-
|-
| [[25/2]]
| [[25/2]]
| -18.013
| +18.013
| -30.359
| +30.359
|-
|-
| [[28/25]]
| [[28/25]]
| +18.200
| -18.200
| +30.674
| -30.674
|-
|-
| [[31/12]]
| [[31/12]]
| -18.243
| +18.243
| -30.747
| +30.747
|-
|-
| [[19/2]]
| [[19/2]]
| -18.464
| +18.464
| -31.119
| +31.119
|-
|-
| [[11/6]]
| [[11/6]]
| -18.631
| +18.631
| -31.400
| +31.400
|-
|-
| [[28/19]]
| [[28/19]]
| +18.650
| -18.650
| +31.433
| -31.433
|-
|-
| [[6/5]]
| [[6/5]]
| +18.976
| -18.976
| +31.983
| -31.983
|-
|-
| [[27/23]]
| [[27/23]]
| -19.074
| +19.074
| -32.148
| +32.148
|-
|- style="background-color: #cccccc;"
| ''[[8/1]]''
| ''[[8/1]]''
| ''-19.312''
| ''+19.312''
| ''-32.548''
| ''+32.548''
|-
|-
| [[27/13]]
| [[27/13]]
| +19.345
| -19.345
| +32.604
| -32.604
|-
|-
| [[30/19]]
| [[30/19]]
| +19.427
| -19.427
| +32.742
| -32.742
|-
|- style="background-color: #cccccc;"
| ''[[7/4]]''
| ''[[7/4]]''
| ''+19.498''
| ''-19.498''
| ''+32.862''
| ''-32.862''
|-
|-
| [[29/25]]
| [[29/25]]
| +19.618
| -19.618
| +33.064
| -33.064
|-
|-
| '''[[17/1]]'''
| '''[[17/1]]'''
| '''-19.682'''
| '''+19.682'''
| '''-33.172'''
| '''+33.172'''
|-
|- style="background-color: #cccccc;"
| ''[[18/17]]''
| ''[[18/17]]''
| ''-19.711''
| ''+19.711''
| ''-33.222''
| ''+33.222''
|-
|-
| [[9/7]]
| [[9/7]]
| +19.753
| -19.753
| +33.292
| -33.292
|-
|-
| [[17/14]]
| [[17/14]]
| -19.868
| +19.868
| -33.486
| +33.486
|-
|- style="background-color: #cccccc;"
| ''[[13/12]]''
| ''[[13/12]]''
| ''+19.907''
| ''-19.907''
| ''+33.551''
| ''-33.551''
|-
|-
| [[18/1]]
| [[18/1]]
| +19.940
| -19.940
| +33.606
| -33.606
|-
|-
| [[29/19]]
| [[29/19]]
| +20.068
| -20.068
| +33.823
| -33.823
|-
|-
| [[9/4]]
| [[9/4]]
| -20.082
| +20.082
| -33.845
| +33.845
|-
|- style="background-color: #cccccc;"
| ''[[15/8]]''
| ''[[15/8]]''
| ''+20.275''
| ''-20.275''
| ''+34.172''
| ''-34.172''
|-
|-
| [[13/10]]
| [[13/10]]
| -20.450
| +20.450
| -34.466
| +34.466
|-
|- style="background-color: #cccccc;"
| ''[[23/21]]''
| ''[[23/21]]''
| ''-20.506''
| ''+20.506''
| ''-34.560''
| ''+34.560''
|-
|- style="background-color: #cccccc;"
| ''[[32/7]]''
| ''[[32/7]]''
| ''+20.523''
| ''-20.523''
| ''+34.589''
| ''-34.589''
|- style="background-color: #cccccc;"
| ''[[33/8]]''
| ''-20.621''
| ''-34.754''
|-
|-
| [[17/15]]
| [[17/15]]
| -20.645
| +20.645
| -34.796
| +34.796
|-
|-
| [[22/13]]
| [[22/13]]
| +20.796
| -20.796
| +35.049
| -35.049
|-
|-
| [[21/10]]
| [[21/10]]
| -20.858
| +20.858
| -35.155
| +35.155
|-
|- style="background-color: #cccccc;"
| ''[[23/13]]''
| ''[[23/13]]''
| ''-20.914''
| ''+20.914''
| ''-35.249''
| ''+35.249''
|- style="background-color: #cccccc;"
| ''[[29/16]]''
| ''-20.917''
| ''-35.253''
|-
|-
| ''[[29/16]]''
| [[33/17]]
| ''+20.917''
| -20.991
| ''+35.253''
| -35.378
|-
|-
| [[20/3]]
| [[20/3]]
| +21.045
| -21.045
| +35.469
| -35.469
|-
|-
| [[31/13]]
| [[31/13]]
| +21.183
| -21.183
| +35.703
| -35.703
|-
|-
| [[22/21]]
| [[22/21]]
| +21.204
| -21.204
| +35.737
| -35.737
|-
|-
| [[25/6]]
| [[25/6]]
| -21.313
| +21.313
| -35.921
| +35.921
|-
|-
| [[31/21]]
| [[31/21]]
| +21.592
| -21.592
| +36.391
| -36.391
|-
|- style="background-color: #cccccc;"
| ''[[32/23]]''
| ''[[32/23]]''
| ''-21.604''
| ''+21.604''
| ''-36.412''
| ''+36.412''
|-
|-
| [[19/6]]
| [[19/6]]
| -21.763
| +21.763
| -36.680
| +36.680
|-
|- style="background-color: #cccccc;"
| ''[[20/7]]''
| ''[[20/7]]''
| ''-21.835''
| ''+21.835''
| ''-36.800''
| ''+36.800''
|-
|-
| [[18/11]]
| [[18/11]]
| +21.930
| -21.930
| +36.961
| -36.961
|-
|-
| [[18/5]]
| [[18/5]]
| +22.276
| -22.276
| +37.544
| -37.544
|-
|-
| [[23/9]]
| [[23/9]]
| +22.374
| -22.374
| +37.709
| -37.709
|-
|- style="background-color: #cccccc;"
| ''[[8/3]]''
| ''[[8/3]]''
| ''-22.611''
| ''+22.611''
| ''-38.109''
| ''+38.109''
|-
|-
| [[13/2]]
| [[13/2]]
| -22.786
| +22.786
| -38.404
| +38.404
|-
|- style="background-color: #cccccc;"
| ''[[21/4]]''
| ''[[21/4]]''
| ''+22.798''
| ''-22.798''
| ''+38.424''
| ''-38.424''
|-
|-
| [[28/13]]
| [[28/13]]
| +22.973
| -22.973
| +38.718
| -38.718
|-
|-
| [[17/3]]
| [[17/3]]
| -22.982
| +22.982
| -38.733
| +38.733
|- style="background-color: #cccccc;"
| ''[[17/6]]''
| ''-23.011''
| ''-38.783''
|-
|-
| ''[[17/6]]''
| [[33/20]]
| ''+23.011''
| +23.035
| ''+38.783''
| +38.824
|-
|-
| [[27/7]]
| [[27/7]]
| +23.053
| -23.053
| +38.853
| -38.853
|-
|-
| [[21/2]]
| [[21/2]]
| -23.195
| +23.195
| -39.093
| +39.093
|-
|- style="background-color: #cccccc;"
| ''[[13/4]]''
| ''[[13/4]]''
| ''+23.206''
| ''-23.206''
| ''+39.112''
| ''-39.112''
|-
|-
| [[4/3]]
| [[4/3]]
| +23.381
| -23.381
| +39.407
| -39.407
|-
|-
| [[26/17]]
| [[26/17]]
| +23.576
| -23.576
| +39.736
| -39.736
|-
|-
| [[30/13]]
| [[30/13]]
| +23.750
| -23.750
| +40.028
| -40.028
|-
|-
| [[10/7]]
| [[10/7]]
| +24.158
| -24.158
| +40.716
| -40.716
|-
|- style="background-color: #cccccc;"
| ''[[19/12]]''
| ''[[19/12]]''
| ''+24.229''
| ''-24.229''
| ''+40.836''
| ''-40.836''
|-
|-
| [[20/1]]
| [[20/1]]
| +24.344
| -24.344
| +41.030
| -41.030
|-
|-
| [[23/16]]
| [[23/16]]
| -24.388
| +24.388
| -41.104
| +41.104
|-
|-
| [[29/13]]
| [[29/13]]
| +24.391
| -24.391
| +41.109
| -41.109
|-
|-
| [[22/7]]
| [[22/7]]
| +24.504
| -24.504
| +41.299
| -41.299
|-
|-
| [[25/18]]
| [[25/18]]
| -24.612
| +24.612
| -41.482
| +41.482
|-
|- style="background-color: #cccccc;"
| ''[[25/12]]''
| ''[[25/12]]''
| ''+24.680''
| ''-24.680''
| ''+41.595''
| ''-41.595''
|-
|- style="background-color: #cccccc;"
| ''[[29/17]]''
| ''[[29/17]]''
| ''-24.706''
| ''+24.706''
| ''-41.639''
| ''+41.639''
|-
|-
| [[29/21]]
| [[29/21]]
| +24.799
| -24.799
| +41.797
| -41.797
|-
|-
| [[31/7]]
| [[31/7]]
| +24.891
| -24.891
| +41.952
| -41.952
|-
|-
| [[19/18]]
| [[19/18]]
| -25.063
| +25.063
| -42.241
| +42.241
|-
|-
| [[29/8]]
| [[29/8]]
| -25.076
| +25.076
| -42.263
| +42.263
|-
|-
| [[26/23]]
| [[26/23]]
| -25.079
| +25.079
| -42.268
| +42.268
|-
|- style="background-color: #cccccc;"
| ''[[21/20]]''
| ''[[21/20]]''
| ''+25.134''
| ''-25.134''
| ''+42.361''
| ''-42.361''
|-
|- style="background-color: #cccccc;"
| ''[[23/19]]''
| ''[[23/19]]''
| ''-25.237''
| ''+25.237''
| ''-42.534''
| ''+42.534''
|-
|- style="background-color: #cccccc;"
| ''[[30/17]]''
| ''[[30/17]]''
| ''-25.347''
| ''+25.347''
| ''-42.721''
| ''+42.721''
|-
|-
| [[33/4]]
| +25.372
| +42.762
|- style="background-color: #cccccc;"
| ''[[20/13]]''
| ''[[20/13]]''
| ''-25.543''
| ''+25.543''
| ''-43.050''
| ''+43.050''
|-
|-
| [[23/3]]
| [[23/3]]
| +25.673
| -25.673
| +43.270
| -43.270
|-
|- style="background-color: #cccccc;"
| ''[[25/23]]''
| ''[[25/23]]''
| ''+25.687''
| ''-25.687''
| ''+43.293''
| ''-43.293''
|-
|-
| [[15/4]]
| [[15/4]]
| -25.718
| +25.718
| -43.344
| +43.344
|-
|- style="background-color: #cccccc;"
| ''[[9/8]]''
| ''[[9/8]]''
| ''+25.911''
| ''-25.911''
| ''+43.671''
| ''-43.671''
|-
|-
| [[13/6]]
| [[13/6]]
| -26.086
| +26.086
| -43.965
| +43.965
|-
|- style="background-color: #cccccc;"
| ''[[28/17]]''
| ''[[28/17]]''
| ''-26.124''
| ''+26.124''
| ''-44.030''
| ''+44.030''
|-
|- style="background-color: #cccccc;"
| ''[[18/7]]''
| ''[[18/7]]''
| ''-26.239''
| ''+26.239''
| ''-44.224''
| ''+44.224''
|-
|-
| [[17/9]]
| [[17/9]]
| -26.281
| +26.281
| -44.294
| +44.294
|-
|- style="background-color: #cccccc;"
| ''[[17/2]]''
| ''[[17/2]]''
| ''+26.311''
| ''-26.311''
| ''+44.344''
| ''-44.344''
|-
|-
| [[20/11]]
| [[20/11]]
| +26.335
| -26.335
| +44.385
| -44.385
|-
|-
| [[7/2]]
| [[7/2]]
| -26.494
| +26.494
| -44.654
| +44.654
|-
|-
| [[4/1]]
| [[4/1]]
| +26.681
| -26.681
| +44.968
| -44.968
|-
|- style="background-color: #cccccc;"
| ''[[12/5]]''
| ''[[12/5]]''
| ''-27.016''
| ''+27.016''
| ''-45.533''
| ''+45.533''
|-
|- style="background-color: #cccccc;"
| ''[[32/17]]''
| ''[[32/17]]''
| ''+27.051''
| ''-27.051''
| ''+45.592''
| ''-45.592''
|-
|- style="background-color: #cccccc;"
| ''[[12/11]]''
| ''[[12/11]]''
| ''-27.362''
| ''+27.362''
| ''-46.116''
| ''+46.116''
|-
|-
| [[30/7]]
| [[30/7]]
| +27.458
| -27.458
| +46.277
| -46.277
|-
|- style="background-color: #cccccc;"
| ''[[19/4]]''
| ''[[19/4]]''
| ''+27.529''
| ''-27.529''
| ''+46.397''
| ''-46.397''
|-
|-
| [[33/23]]
| +27.664
| +46.625
|- style="background-color: #cccccc;"
| ''[[31/24]]''
| ''[[31/24]]''
| ''+27.750''
| ''-27.750''
| ''+46.769''
| ''-46.769''
|-
|- style="background-color: #cccccc;"
| ''[[31/17]]''
| ''[[31/17]]''
| ''-27.913''
| ''+27.913''
| ''-47.045''
| ''+47.045''
|-
|- style="background-color: #cccccc;"
| ''[[25/4]]''
| ''[[25/4]]''
| ''+27.979''
| ''-27.979''
| ''+47.157''
| ''-47.157''
|-
|-
| [[23/15]]
| [[23/15]]
| +28.010
| -28.010
| +47.208
| -47.208
|-
|- style="background-color: #cccccc;"
| ''[[23/5]]''
| ''[[23/5]]''
| ''-28.023''
| ''+28.023''
| ''-47.231''
| ''+47.231''
|-
|-
| [[29/7]]
| [[29/7]]
| +28.099
| -28.099
| +47.358
| -47.358
|-
|-
| [[31/8]]
| [[31/8]]
| -28.284
| +28.284
| -47.669
| +47.669
|-
|- style="background-color: #cccccc;"
| ''[[22/17]]''
| ''[[22/17]]''
| ''-28.301''
| ''+28.301''
| ''-47.699''
| ''+47.699''
|-
|- style="background-color: #cccccc;"
| ''[[23/11]]''
| ''[[23/11]]''
| ''-28.369''
| ''+28.369''
| ''-47.813''
| ''+47.813''
|-
|-
| [[29/24]]
| [[29/24]]
| -28.376
| +28.376
| -47.824
| +47.824
|-
|- style="background-color: #cccccc;"
| ''[[17/10]]''
| ''[[17/10]]''
| ''+28.647''
| ''-28.647''
| ''+48.282''
| ''-48.282''
|-
|-
| [[11/4]]
| [[11/4]]
| -28.671
| +28.671
| -48.323
| +48.323
|-
|-
| [[23/14]]
| [[23/14]]
| +28.787
| -28.787
| +48.517
| -48.517
|-
|-
| '''[[23/1]]'''
| '''[[23/1]]'''
| '''+28.973'''
| '''-28.973'''
| '''+48.831'''
| '''-48.831'''
|-
|-
| [[5/4]]
| [[5/4]]
| -29.017
| +29.017
| -48.906
| +48.906
|-
|- style="background-color: #cccccc;"
| ''[[27/8]]''
| ''[[27/8]]''
| ''+29.211''
| ''-29.211''
| ''+49.232''
| ''-49.232''
|-
|- style="background-color: #cccccc;"
| ''[[12/1]]''
| ''[[12/1]]''
| ''-29.353''
| ''+29.353''
| ''-49.471''
| ''+49.471''
|-
|-
| [[18/13]]
| [[18/13]]
| +29.386
| -29.386
| +49.526
| -49.526
|-
|-
| [[20/19]]
| [[20/19]]
| +29.468
| -29.468
| +49.665
| -49.665
|-
|- style="background-color: #cccccc;"
| ''[[7/6]]''
| ''[[7/6]]''
| ''+29.539''
| ''-29.539''
| ''+49.785''
| ''-49.785''
|-
|-
| [[27/17]]
| [[27/17]]
| +29.581
| -29.581
| +49.856
| -49.856
|}
|}


== Record on the Riemann zeta function with prime 2 removed ==
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
'''[[71zpi]]''' sets a height record on the Riemann zeta function with prime 2 removed. The previous record is [[53zpi]] and the next one is [[93zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime number 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
|+ style="white-space: nowrap;" | 33-integer-limit intervals in 71zpi (by patent val mapping)
{| class="wikitable"
|-
! colspan="6" |Unmodified Riemann zeta function
! Ratio
! colspan="5" |Riemann zeta function with prime 2 removed
! Error (abs, [[Cent|¢]])
! Error (rel, [[Relative cent|%]])
|-
|-
! colspan="3" | Tuning
| [[14/1]]
! colspan="1" |Strength
| -0.186
! colspan="2" |Closest EDO
| -0.314
! colspan="2" |Tuning
! colspan="1" |Strength
! colspan="2" |Closest EDO
|-
|-
!ZPI
| [[11/5]]
!Steps per octave
| -0.346
!Step size (cents)
| -0.583
! colspan="1" | Height
!EDO
!Octave (cents)
!Steps per octave
!Step size (cents)
! colspan="1" |Height
!EDO
!Octave (cents)
|-
|-
|[[53zpi]]
| [[31/22]]
| 16.3979501311478
| -0.388
|73.1798786069366
| -0.654
|2.518818
|-
| [[16edo]]
| [[21/13]]
|1170.87805771099
| +0.408
| 16.4044889390925
| +0.688
|73.1507092025500
|-
|4.100909
| [[25/19]]
|[[16edo]]
| -0.451
|1170.41134724080
| -0.759
|-
| [[26/3]]
| -0.595
| -1.003
|-
|-
|[[71zpi]]
| [[30/29]]
|20.2248393119540
| +0.641
|59.3329806724710
| +1.081
| 3.531097
|[[20edo]]
|1186.65961344942
|20.2459529213541
|59.2711049295348
|4.137236
|[[20edo]]
|1185.42209859070
|-
|-
| [[93zpi]]
| [[31/10]]
| 24.5782550666850
| -0.733
|48.8236449961234
| -1.236
|2.810487
|-
|[[25edo]]
| [[15/14]]
|1220.59112490308
| -0.777
|24.5738316304204
| -1.309
|48.8324335434323
|4.665720
|[[25edo]]
|1220.81083858581
|}
 
=== 71zpi with prime 2 removed ===
 
{{Harmonics in cet|59.2711049295348|columns=15|title=Approximation of harmonics in 71zpi with prime 2 removed }}
{{Harmonics in cet|59.2711049295348|columns=18|start=16|title=Approximation of harmonics in 71zpi with prime 2 removed }}
 
{| class="wikitable center-1 right-2 left-3 center-4 center-5 mw-collapsible mw-collapsed"
|+ style="white-space:nowrap" | Intervals in 71zpi with prime 2 removed
|-
|-
| colspan="3" style="text-align:left;" | JI ratios are comprised of 32-integer limit ratios,<br>and are stylized as follows to indicate their accuracy:
| [[15/1]]
* '''<u>Bold Underlined:</u>''' relative error < 8.333 %
| -0.963
* '''Bold:''' relative error < 16.667 %
| -1.623
* Normal: relative error < 25 %
* <small>Small:</small> relative error < 33.333 %
* <small><small>Small Small:</small></small> relative error < 41.667 %
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 %
| colspan="2" style="text-align:right;" | <center>'''⟨81 128] at every 4 steps'''</center><br>[[2/1|Octave]] = 81 steps<br>[[3/2|Fifth]] = 47 steps<br>[[9/8|Whole tone]] = 13 steps<br>[[256/243|Limma]] = 8 steps<br>[[2187/2048|Apotome]] = 5 steps
|-
|-
! Degree
| [[23/12]]
! Cents
| +1.007
! Ratios
| +1.698
! Ups and Downs Notation
! Step
|-
|-
| 0
| [[27/10]]
| 0.000
| +1.105
|  
| +1.863
| P1
| 0
|-
|-
| 1
| [[33/14]]
| 59.271
| -1.123
| '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small>
| -1.892
| vA1, ^d2
| 4
|-
|-
| 2
| [[33/1]]
| 118.542
| -1.309
| <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small>
| -2.206
| m2
| 8
|-
|-
| 3
| [[29/28]]
| 177.813
| -1.418
| <small><small><small>[[12/11]]</small></small></small>, <small><small>[[23/21]]</small></small>, [[11/10]], '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, '''<u>[[10/9]]'''</u>, [[29/26]], [[19/17]], <small>[[28/25]]</small>, <small><small><small>[[9/8]]</small></small></small>
| -2.390
| vM2
| 12
|-
|-
| 4
| [[27/22]]
| 237.084
| +1.451
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small><small>[[29/25]]</small></small>
| +2.445
| vvA2
| 16
|-
|-
| 5
| [[31/2]]
| 296.356
| +1.603
| <small><small><small>[[7/6]]</small></small></small>, <small>[[27/23]]</small>, <small>[[20/17]]</small>, '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small>
| +2.702
| vm3
| 20
|-
|-
| 6
| [[29/2]]
| 355.627
| -1.605
| <small><small><small>[[29/24]]</small></small></small>, <small><small><small>[[23/19]]</small></small></small>, <small>[[17/14]]</small>, <small>[[28/23]]</small>, '''[[11/9]]''', '''<u>[[27/22]]'''</u>, '''<u>[[16/13]]'''</u>, [[21/17]], [[26/21]], <small>[[31/25]]</small>
| -2.705
| vvM3
| 24
|-
|-
| 7
| [[29/6]]
| 414.898
| +1.695
| <small><small><small>[[5/4]]</small></small></small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small><small>[[9/7]]</small></small>, <small><small><small>[[31/24]]</small></small></small>
| +2.857
| ^^M3
| 28
|-
|-
| 8
| [[31/28]]
| 474.169
| +1.789
| <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], '''[[17/13]]''', '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, <small><small>[[4/3]]</small></small>
| +3.016
| vv4
| 32
|-
|-
| 9
| [[31/27]]
| 533.440
| -1.839
| <small>[[31/23]]</small>, [[27/20]], [[23/17]], '''<u>[[19/14]]'''</u>, '''<u>[[15/11]]'''</u>, '''[[26/19]]''', <small>[[11/8]]</small>, <small><small><small>[[29/21]]</small></small></small>
| -3.099
| ^^4
|-
| 36
| '''[[11/1]]'''
| '''+1.991'''
| '''+3.355'''
|-
|-
| 10
| [[14/11]]
| 592.711
| -2.177
| <small><small><small>[[18/13]]</small></small></small>, <small><small>[[25/18]]</small></small>, <small><small>[[32/23]]</small></small>, [[7/5]], '''<u>[[31/22]]'''</u>, '''<u>[[24/17]]'''</u>, [[17/12]], <small>[[27/19]]</small>, <small><small><small>[[10/7]]</small></small></small>
| -3.669
| ^A4
| 40
|-
|-
| 11
| [[23/4]]
| 651.982
| -2.292
| <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''[[19/13]]''', [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small>
| -3.864
| ^^d5
| 44
|-
|-
| 12
| '''[[5/1]]'''
| 711.253
| '''+2.336'''
| '''[[3/2]]''', <small>[[32/21]]</small>, <small><small>[[29/19]]</small></small>, <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small>
| '''+3.938'''
| ^5
| 48
|-
|-
| 13
| [[14/5]]
| 770.524
| -2.523
| <small><small><small>[[20/13]]</small></small></small>, <small>[[17/11]]</small>, [[31/20]], '''[[14/9]]''', '''<u>[[25/16]]'''</u>, [[11/7]], <small><small>[[30/19]]</small></small>, <small><small><small>[[19/12]]</small></small></small>
| -4.252
| ^^d6
| 52
|-
|-
| 14
| [[31/30]]
| 829.795
| +2.566
| <small><small><small>[[27/17]]</small></small></small>, <small>[[8/5]]</small>, '''<u>[[29/18]]'''</u>, '''<u>[[21/13]]'''</u>, [[13/8]], <small>[[31/19]]</small>, <small><small>[[18/11]]</small></small>
| +4.325
| ^m6
| 56
|-
|-
| 15
| [[33/26]]
| 889.067
| +2.586
| <small><small><small>[[23/14]]</small></small></small>, <small><small><small>[[28/17]]</small></small></small>, '''<u>[[5/3]]'''</u>, [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small>
| +4.358
| M6
| 60
|-
|-
| 16
| [[25/11]]
| 948.338
| +2.682
| <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, <small><small>[[7/4]]</small></small>
| +4.520
| vA6, ^d7
| 64
|-
|-
| 17
| [[26/9]]
| 1007.609
| +2.705
| <small><small>[[30/17]]</small></small>, <small><small>[[23/13]]</small></small>, [[16/9]], '''<u>[[25/14]]'''</u>, [[9/5]], <small><small>[[29/16]]</small></small>, <small><small><small>[[20/11]]</small></small></small>
| +4.559
| m7
| 68
|-
|-
| 18
| [[19/5]]
| 1066.880
| +2.787
| <small><small><small>[[31/17]]</small></small></small>, <small>[[11/6]]</small>, '''[[24/13]]''', '''<u>[[13/7]]'''</u>, [[28/15]], <small><small>[[15/8]]</small></small>, <small><small><small>[[32/17]]</small></small></small>
| +4.697
| vM7
| 72
|-
|-
| 19
| [[26/15]]
| 1126.151
| -2.931
| <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''[[25/13]]''', [[27/14]], <small>[[29/15]]</small>, <small>[[31/16]]</small>
| -4.940
| vvA7
| 76
|-
|-
| 20
| [[15/11]]
| 1185.422
| -2.954
| [[2/1]]
| -4.979
| v1 +1 oct
| 80
|-
|-
| 21
| [[14/3]]
| 1244.693
| +3.113
| [[31/15]], <small>[[29/14]]</small>, <small><small>[[27/13]]</small></small>, <small><small><small>[[25/12]]</small></small></small>
| +5.247
| vvA1 +1 oct
| 84
|-
|-
| 22
| [[19/11]]
| 1303.964
| +3.133
| <small><small><small>[[23/11]]</small></small></small>, <small>[[21/10]]</small>, [[19/9]], '''<u>[[17/8]]'''</u>, '''[[32/15]]''', <small>[[15/7]]</small>, <small><small>[[28/13]]</small></small>
| +5.280
| vm2 +1 oct
| 88
|-
|-
| 23
| [[31/29]]
| 1363.235
| +3.208
| <small><small>[[13/6]]</small></small>, [[24/11]], '''<u>[[11/5]]'''</u>, [[31/14]], <small>[[20/9]]</small>, <small><small><small>[[29/13]]</small></small></small>
| +5.406
| vvM2 +1 oct
| 92
|-
|-
| 24
| '''[[3/1]]'''
| 1422.507
| '''-3.300'''
| <small>[[9/4]]</small>, '''<u>[[25/11]]'''</u>, '''[[16/7]]''', <small>[[23/10]]</small>, <small><small><small>[[30/13]]</small></small></small>
| '''-5.561'''
| ^^M2 +1 oct
| 96
|-
|-
| 25
| [[27/2]]
| 1481.778
| +3.442
| <small>[[7/3]]</small>, '''[[26/11]]''', <small>[[19/8]]</small>, <small><small>[[31/13]]</small></small>
| +5.800
| vvm3 +1 oct
| 100
|-
|-
| 26
| [[29/22]]
| 1541.049
| -3.595
| <small><small><small>[[12/5]]</small></small></small>, [[29/12]], '''<u>[[17/7]]'''</u>, '''[[22/9]]''', [[27/11]], <small>[[32/13]]</small>
| -6.060
| ^^m3 +1 oct
| 104
|-
|-
| 27
| [[28/27]]
| 1600.320
| -3.628
| [[5/2]], <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small>
| -6.115
| ^M3 +1 oct
| 108
|-
|-
| 28
| [[33/5]]
| 1659.591
| -3.645
| <small><small>[[18/7]]</small></small>, <small>[[31/12]]</small>, '''[[13/5]]''', [[21/8]], <small>[[29/11]]</small>
| -6.144
| ^^d4 +1 oct
| 112
|-
|-
| 29
| [[13/7]]
| 1718.862
| -3.708
| <small><small>[[8/3]]</small></small>, '''<u>[[27/10]]'''</u>, '''[[19/7]]''', <small>[[30/11]]</small>
| -6.250
| ^4 +1 oct
|-
| 116
| [[26/1]]
| -3.894
| -6.564
|-
|-
| 30
| [[29/10]]
| 1778.133
| -3.941
| <small><small><small>[[11/4]]</small></small></small>, '''[[25/9]]''', '''<u>[[14/5]]'''</u>, <small>[[31/11]]</small>, <small><small><small>[[17/6]]</small></small></small>
| -6.642
| A4 +1 oct
| 120
|-
|-
| 31
| [[19/13]]
| 1837.404
| -4.323
| <small><small>[[20/7]]</small></small>, '''[[23/8]]''', '''<u>[[26/9]]'''</u>, '''[[29/10]]''', [[32/11]]
| -7.285
| ^d5 +1 oct
| 124
|-
|-
| 32
| [[10/9]]
| 1896.675
| -4.405
| '''[[3/1]]'''
| -7.424
| P5 +1 oct
| 128
|-
|-
| 33
| [[23/20]]
| 1955.946
| -4.629
| '''<u>[[31/10]]'''</u>, '''[[28/9]]''', <small>[[25/8]]</small>, <small><small><small>[[22/7]]</small></small></small>
| -7.801
| vA5 +1 oct, ^d6 +1 oct
| 132
|-
|-
| 34
| [[25/1]]
| 2015.218
| +4.673
| <small>[[19/6]]</small>, '''<u>[[16/5]]'''</u>, [[29/9]], <small><small><small>[[13/4]]</small></small></small>
| +7.875
| m6 +1 oct
| 136
|-
|-
| 35
| [[21/19]]
| 2074.489
| +4.731
| <small>[[23/7]]</small>, '''[[10/3]]'''
| +7.974
| vM6 +1 oct
|-
| 140
| [[22/9]]
| -4.750
| -8.006
|-
|-
| 36
| [[25/13]]
| 2133.760
| -4.773
| <small><small><small>[[27/8]]</small></small></small>, <small>[[17/5]]</small>, '''<u>[[24/7]]'''</u>, '''[[31/9]]'''
| -8.045
| vvA6 +1 oct
| 144
|-
|-
| 37
| [[25/14]]
| 2193.031
| +4.859
| <small><small>[[7/2]]</small></small>, '''<u>[[32/9]]'''</u>, [[25/7]], <small><small>[[18/5]]</small></small>
| +8.190
| vm7 +1 oct
| 148
|-
|-
| 38
| [[31/6]]
| 2252.302
| +4.903
| <small><small>[[29/8]]</small></small>, '''<u>[[11/3]]'''</u>, <small>[[26/7]]</small>
| +8.263
| vvM7 +1 oct
| 152
|-
|-
| 39
| [[29/18]]
| 2311.573
| +4.995
| <small><small>[[15/4]]</small></small>, '''<u>[[19/5]]'''</u>, [[23/6]], <small><small><small>[[27/7]]</small></small></small>
| +8.418
| ^^M7 +1 oct
| 156
|-
|-
| 40
| [[29/27]]
| 2370.844
| -5.046
| <small><small><small>[[31/8]]</small></small></small>, <small><small><small>[[4/1]]</small></small></small>
| -8.505
| vv1 +2 oct
| 160
|-
|-
| 41
| '''[[19/1]]'''
| 2430.115
| '''+5.123'''
|
| '''+8.635'''
| ^^1 +2 oct
| 164
|-
|-
| 42
| [[31/9]]
| 2489.386
| -5.138
| <small><small><small>[[29/7]]</small></small></small>, <small>[[25/6]]</small>, '''<u>[[21/5]]'''</u>, <small>[[17/4]]</small>
| -8.660
| vvm2 +2 oct
| 168
|-
|-
| 43
| [[25/21]]
| 2548.658
| -5.182
| <small><small><small>[[30/7]]</small></small></small>, [[13/3]], <small>[[22/5]]</small>, <small><small><small>[[31/7]]</small></small></small>
| -8.733
| ^^m2 +2 oct
| 172
|-
|-
| 44
| [[11/3]]
| 2607.929
| +5.290
| '''<u>[[9/2]]'''</u>, <small><small>[[32/7]]</small></small>
| +8.916
| ^M2 +2 oct
| 176
|-
|-
| 45
| [[19/14]]
| 2667.200
| +5.310
| <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>
| +8.949
| ^^d3 +2 oct
| 180
|-
|-
| 46
| [[5/3]]
| 2726.471
| +5.636
| <small><small><small>[[19/4]]</small></small></small>, [[24/5]], '''<u>[[29/6]]'''</u>
| +9.499
| ^m3 +2 oct
| 184
|-
|-
| 47
| [[26/11]]
| 2785.742
| -5.885
| '''<u>[[5/1]]'''</u>
| -9.919
| M3 +2 oct
| 188
|-
|-
| 48
| [[33/25]]
| 2845.013
| -5.982
| '''<u>[[31/6]]'''</u>, '''[[26/5]]''', <small><small><small>[[21/4]]</small></small></small>
| -10.082
| vA3 +2 oct, ^d4 +2 oct
|-
| 192
| [[27/26]]
| -6.004
| -10.120
|-
|-
| 49
| [[19/15]]
| 2904.284
| +6.087
| '''[[16/3]]''', <small>[[27/5]]</small>
| +10.258
| P4 +2 oct
| 196
|-
|-
| 50
| [[26/5]]
| 2963.555
| -6.231
| [[11/2]], <small>[[28/5]]</small>
| -10.502
| vA4 +2 oct
| 200
|-
|-
| 51
| [[14/9]]
| 3022.826
| +6.413
| <small><small>[[17/3]]</small></small>, '''[[23/4]]''', <small><small>[[29/5]]</small></small>
| +10.808
| d5 +2 oct
| 204
|-
|-
| 52
| [[33/19]]
| 3082.097
| -6.432
| <small><small>[[6/1]]</small></small>
| -10.841
| v5 +2 oct
| 208
|-
|-
| 53
| [[17/7]]
| 3141.369
| +6.528
| <small>[[31/5]]</small>
| +11.002
| vvA5 +2 oct
| 212
|-
|-
| 54
| [[9/1]]
| 3200.640
| -6.599
| <small><small><small>[[25/4]]</small></small></small>, '''[[19/3]]''', [[32/5]]
| -11.122
| vm6 +2 oct
|-
| 216
| [[9/2]]
| +6.741
| +11.362
|-
|-
| 55
| [[28/9]]
| 3259.911
| -6.928
| <small>[[13/2]]</small>, <small><small>[[20/3]]</small></small>
| -11.676
| vvM6 +2 oct
| 220
|-
|-
| 56
| [[13/5]]
| 3319.182
| +7.110
| [[27/4]]
| +11.982
| ^^M6 +2 oct
| 224
|-
|-
| 57
| [[13/11]]
| 3378.453
| +7.455
| '''[[7/1]]'''
| +12.565
| vvm7 +2 oct
| 228
|-
|-
| 58
| [[21/5]]
| 3437.724
| +7.518
| '''[[29/4]]''', [[22/3]]
| +12.671
| ^^m7 +2 oct
| 232
|-
|-
| 59
| [[10/3]]
| 3496.995
| -7.704
| '''[[15/2]]''', <small><small><small>[[23/3]]</small></small></small>
| -12.985
| ^M7 +2 oct
| 236
|-
|-
| 60
| [[31/26]]
| 3556.266
| -7.843
| [[31/4]]
| -13.219
| ^^d1 +3 oct
|-
| 240
| [[21/11]]
| +7.864
| +13.253
|-
|-
| 61
| [[25/3]]
| 3615.537
| +7.972
| <small>[[8/1]]</small>
| +13.437
| ^1 +3 oct
| 244
|-
|-
| 62
| [[19/7]]
| 3674.809
| -8.031
| '''<u>[[25/3]]'''</u>
| -13.535
| ^^d2 +3 oct
| 248
|-
|-
| 63
| [[22/3]]
| 3734.080
| -8.050
| <small><small><small>[[17/2]]</small></small></small>, '''<u>[[26/3]]'''</u>
| -13.568
| ^m2 +3 oct
| 252
|-
|-
| 64
| [[31/18]]
| 3793.351
| +8.202
| [[9/1]]
| +13.824
| M2 +3 oct
| 256
|-
|-
| 65
| [[29/9]]
| 3852.622
| -8.346
| [[28/3]]
| -14.066
| vA2 +3 oct, ^d3 +3 oct
| 260
|-
|-
| 66
| [[19/3]]
| 3911.893
| +8.423
| [[19/2]], <small>[[29/3]]</small>
| +14.196
| m3 +3 oct
| 264
|-
|-
| 67
| [[31/3]]
| 3971.164
| -8.438
| <small>[[10/1]]</small>
| -14.221
| vM3 +3 oct
| 268
|-
|-
| 68
| [[25/7]]
| 4030.435
| -8.481
| [[31/3]]
| -14.294
| vvA3 +3 oct
| 272
|-
|-
| 69
| [[26/25]]
| 4089.706
| -8.567
| <small>[[21/2]]</small>, '''[[32/3]]'''
| -14.439
| v4 +3 oct
| 276
|-
|-
| 70
| [[11/9]]
| 4148.977
| +8.590
| '''<u>[[11/1]]'''</u>
| +14.478
| vvA4 +3 oct
| 280
|-
|-
| 71
| [[9/5]]
| 4208.248
| -8.936
| <small><small>[[23/2]]</small></small>
| -15.060
| vd5 +3 oct
| 284
|-
|-
| 72
| [[26/19]]
| 4267.520
| -9.018
|  
| -15.199
| vv5 +3 oct
|-
| 288
| [[23/18]]
| -9.033
| -15.225
|-
|-
| 73
| [[29/20]]
| 4326.791
| +9.399
| <small><small><small>[[12/1]]</small></small></small>
| +15.842
| ^^5 +3 oct
| 292
|-
|-
| 74
| '''[[13/1]]'''
| 4386.062
| '''+9.446'''
| [[25/2]]
| '''+15.920'''
| vvm6 +3 oct
| 296
|-
|-
| 75
| [[14/13]]
| 4445.333
| -9.632
| '''<u>[[13/1]]'''</u>
| -16.234
| ^^m6 +3 oct
| 300
|-
|-
| 76
| [[33/10]]
| 4504.604
| +9.695
| '''<u>[[27/2]]'''</u>
| +16.340
| ^M6 +3 oct
| 304
|-
|-
| 77
| [[27/14]]
| 4563.875
| -9.712
| '''[[14/1]]'''
| -16.369
| ^^d7 +3 oct
| 308
|-
|-
| 78
| [[21/17]]
| 4623.146
| -9.828
| '''[[29/2]]'''
| -16.563
| ^m7 +3 oct
|-
| 312
| [[21/1]]
| +9.854
| +16.609
|-
|-
| 79
| [[27/1]]
| 4682.417
| -9.899
| '''[[15/1]]'''
| -16.684
| M7 +3 oct
| 316
|-
|-
| 80
| [[3/2]]
| 4741.688
| +10.041
| '''<u>[[31/2]]'''</u>
| +16.923
| vA7 +3 oct, ^d1 +4 oct
| 320
|-
|-
| 81
| [[28/3]]
| 4800.959
| -10.227
| '''<u>[[16/1]]'''</u>
| -17.237
| P1 +4 oct
| 324
|-
|-
| 82
| [[17/13]]
| 4860.231
| +10.236
|
| +17.252
| vA1 +4 oct, ^d2 +4 oct
| 328
|-
|-
| 83
| [[22/15]]
| 4919.502
| -10.386
| [[17/1]]
| -17.505
| m2 +4 oct
| 332
|-
|-
| 84
| [[15/13]]
| 4978.773
| -10.409
| <small><small><small>[[18/1]]</small></small></small>
| -17.544
| vM2 +4 oct
|-
| 336
| [[33/31]]
| +10.429
| +17.576
|-
|-
| 85
| [[33/13]]
| 5038.044
| -10.755
|  
| -18.126
| vvA2 +4 oct
| 340
|-
|-
| 86
| [[31/15]]
| 5097.315
| -10.774
| '''<u>[[19/1]]'''</u>
| -18.159
| vm3 +4 oct
| 344
|-
|-
| 87
| [[7/5]]
| 5156.586
| +10.818
|
| +18.232
| vvM3 +4 oct
| 348
|-
|-
| 88
| [[10/1]]
| 5215.857
| -11.004
| <small><small><small>[[20/1]]</small></small></small>
| -18.546
| ^^M3 +4 oct
| 352
|-
|-
| 89
| [[23/8]]
| 5275.128
| +11.048
| '''<u>[[21/1]]'''</u>
| +18.620
| vv4 +4 oct
| 356
|-
|-
| 90
| [[29/26]]
| 5334.399
| -11.051
| <small>[[22/1]]</small>
| -18.625
| ^^4 +4 oct
|-
| 360
| [[11/7]]
| -11.163
| -18.815
|-
|-
| 91
| [[25/9]]
| 5393.671
| +11.272
|
| +18.998
| ^A4 +4 oct
| 364
|-
|-
| 92
| [[22/1]]
| 5452.942
| -11.350
| <small><small>[[23/1]]</small></small>
| -19.129
| ^^d5 +4 oct
| 368
|-
|-
| 93
| [[31/14]]
| 5512.213
| -11.551
| [[24/1]]
| -19.468
| ^5 +4 oct
| 372
|-
|-
| 94
| [[29/3]]
| 5571.484
| -11.645
| '''<u>[[25/1]]'''</u>
| -19.627
| ^^d6 +4 oct
| 376
|-
|-
| 95
| [[19/9]]
| 5630.755
| +11.723
| '''[[26/1]]'''
| +19.757
| ^m6 +4 oct
| 380
|-
|-
| 96
| [[29/4]]
| 5690.026
| +11.736
| <small>[[27/1]]</small>
| +19.779
| M6 +4 oct
| 384
|-
|-
| 97
| '''[[31/1]]'''
| 5749.297
| '''-11.738'''
| <small>[[28/1]]</small>
| '''-19.782'''
| vA6 +4 oct, ^d7 +4 oct
| 388
|-
|-
| 98
| [[27/11]]
| 5808.568
| -11.890
| <small><small>[[29/1]]</small></small>
| -20.039
| m7 +4 oct
| 392
|-
|-
| 99
| [[33/2]]
| 5867.839
| +12.031
| <small><small>[[30/1]]</small></small>
| +20.278
| vM7 +4 oct
| 396
|-
|-
| 100
| [[33/28]]
| 5927.110
| +12.218
| <small>[[31/1]]</small>
| +20.592
| vvA7 +4 oct
| 400
|-
|-
| 101
| [[27/5]]
| 5986.382
| -12.235
| [[32/1]]
| -20.621
| v1 +5 oct
| 404
|}
 
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
|+ style="white-space: nowrap;" | Intervals by direct approximation (even if inconsistent)
|-
|-
! Ratio
| [[23/6]]
! Error (abs, [[Cent|¢]])
| -12.333
! Error (rel, [[Relative cent|%]])
| -20.786
|-
|-
| ''[[23/12]]''
| [[15/2]]
| ''+0.168''
| +12.377
| ''+0.284''
| +20.860
|-
|-
| '''[[19/1]]'''
| [[28/15]]
| '''+0.198'''
| -12.564
| '''+0.334'''
| -21.175
|-
|-
| [[14/3]]
| [[31/20]]
| -0.329
| +12.607
| -0.555
| +21.248
|-
|-
| [[19/5]]
| [[13/3]]
| -0.374
| +12.746
| -0.631
| +21.481
|-
|-
| [[21/13]]
| [[11/10]]
| +0.458
| +12.995
| +0.772
| +21.901
|-
|-
| '''[[5/1]]'''
| '''[[7/1]]'''
| '''+0.572'''
| '''+13.154'''
| '''+0.965'''
| '''+22.170'''
|-
|-
| [[30/29]]
| '''[[2/1]]'''
| -0.580
| '''-13.340'''
| -0.978
| '''-22.484'''
|-
|-
| ''[[24/7]]''
| [[28/1]]
| ''-0.631''
| -13.527
| ''-1.064''
| -22.798
|-
|-
| [[27/10]]
| [[33/29]]
| +0.689
| +13.636
| +1.163
| +22.982
|-
|-
| [[26/9]]
| [[22/5]]
| -0.787
| -13.686
| -1.327
| -23.067
|-
|-
| [[15/14]]
| [[31/11]]
| +0.901
| -13.728
| +1.519
| -23.138
|-
|-
| [[25/19]]
| [[26/21]]
| +0.946
| -13.749
| +1.595
| -23.172
|-
|-
| ''[[16/1]]''
| [[29/15]]
| ''-0.959''
| -13.982
| ''-1.619''
| -23.565
|-
|-
| ''[[17/8]]''
| [[29/23]]
| ''+0.991''
| +14.028
| ''+1.672''
| +23.643
|-
|-
| [[31/22]]
| [[31/5]]
| +1.007
| -14.074
| +1.698
| -23.720
|-
|-
| [[27/22]]
| [[15/7]]
| -1.080
| -14.117
| -1.821
| -23.793
|-
|-
| [[25/1]]
| [[30/1]]
| +1.144
| -14.304
| +1.929
| -24.107
|-
|-
| [[29/6]]
| [[24/23]]
| +1.151
| -14.348
| +1.943
| -24.182
|-
|-
| ''[[19/16]]''
| [[27/20]]
| ''+1.157''
| +14.446
| ''+1.953''
| +24.347
|-
|-
| [[25/11]]
| [[33/7]]
| -1.197
| -14.463
| -2.020
| -24.376
|-
|-
| [[27/2]]
| [[19/17]]
| +1.261
| -14.559
| +2.128
| -24.537
|-
|-
| [[29/28]]
| [[27/25]]
| +1.480
| -14.572
| +2.497
| -24.559
|-
|-
| ''[[16/5]]''
| [[30/23]]
| ''-1.531''
| +14.669
| ''-2.584''
| +24.724
|-
|-
| [[31/28]]
| [[29/14]]
| -1.604
| -14.759
| -2.706
| -24.874
|-
|-
| [[11/5]]
| [[31/4]]
| +1.769
| +14.943
| +2.984
| +25.185
|-
|-
| [[31/6]]
| '''[[29/1]]'''
| -1.932
| '''-14.945'''
| -3.260
| '''-25.189'''
|-
|-
| [[31/27]]
| [[25/17]]
| +2.086
| -15.009
| +3.520
| -25.297
|-
|-
| ''[[25/16]]''
| [[27/19]]
| ''+2.103''
| -15.022
| ''+3.548''
| -25.318
|-
|-
| [[19/11]]
| [[29/12]]
| -2.143
| +15.035
| -3.615
| +25.341
|-
|-
| ''[[32/27]]''
| [[11/2]]
| ''-2.221''
| +15.331
| ''-3.746''
| +25.839
|-
|-
| '''[[11/1]]'''
| [[28/23]]
| '''+2.341'''
| +15.446
| '''+3.949'''
| +26.033
|-
|-
| [[31/30]]
| [[28/11]]
| -2.504
| -15.517
| -4.225
| -26.153
|-
|-
| [[14/11]]
| [[23/2]]
| +2.610
| -15.633
| +4.404
| -26.347
|-
|-
| [[31/10]]
| [[5/2]]
| +2.775
| +15.677
| +4.683
| +26.422
|-
|-
| [[11/3]]
| [[28/5]]
| -2.939
| -15.863
| -4.959
| -26.736
|-
|-
| ''[[32/9]]''
| [[25/22]]
| ''+3.059''
| +16.022
| ''+5.161''
| +27.004
|-
|-
| [[31/29]]
| [[13/9]]
| -3.084
| +16.045
| -5.203
| +27.043
|-
|-
| ''[[16/11]]''
| [[19/10]]
| ''-3.300''
| +16.127
| ''-5.568''
| +27.181
|-
|-
| [[31/2]]
| [[30/11]]
| +3.347
| -16.294
| +5.647
| -27.463
|-
|-
| ''[[21/16]]''
| [[31/25]]
| ''-3.388''
| -16.410
| ''-5.716''
| -27.658
|-
|-
| [[15/11]]
| [[7/3]]
| +3.511
| +16.454
| +5.923
| +27.731
|-
|-
| [[28/27]]
| [[22/19]]
| +3.690
| -16.473
| +6.225
| -27.764
|-
|-
| [[25/14]]
| [[6/1]]
| -3.807
| -16.640
| -6.423
| -28.045
|-
|-
| ''[[16/13]]''
| [[27/4]]
| ''+3.846''
| +16.782
| ''+6.488''
| +28.284
|-
|-
| [[26/15]]
| [[31/19]]
| +3.921
| -16.861
| +6.616
| -28.417
|-
|-
| [[9/2]]
| [[29/11]]
| -4.019
| -16.936
| -6.780
| -28.544
|-
|-
| [[29/22]]
| [[26/7]]
| +4.090
| -17.048
| +6.901
| -28.734
|-
|-
| [[29/18]]
| [[31/23]]
| -4.128
| +17.236
| -6.965
| +29.049
|-
|-
| [[25/3]]
| [[29/5]]
| -4.136
| -17.281
| -6.978
| -29.126
|-
|-
| ''[[24/17]]''
| [[17/5]]
| ''+4.289''
| +17.346
| ''+7.235''
| +29.234
|-
|-
| ''[[32/31]]''
| [[23/22]]
| ''-4.307''
| -17.623
| ''-7.266''
| -29.703
|-
|-
| [[21/1]]
| [[17/11]]
| -4.347
| +17.691
| -7.335
| +29.817
|-
|-
| [[14/5]]
| [[20/9]]
| +4.379
| -17.745
| +7.388
| -29.908
|-
|-
| [[26/3]]
| [[23/10]]
| +4.493
| -17.969
| +7.581
| -30.285
|-
|-
| [[21/19]]
| [[25/2]]
| -4.545
| +18.013
| -7.669
| +30.359
|-
|-
| [[10/9]]
| [[28/25]]
| +4.590
| -18.200
| +7.745
| -30.674
|-
|-
| [[5/3]]
| [[31/12]]
| -4.708
| +18.243
| -7.943
| +30.747
|-
|-
| [[19/14]]
| [[19/2]]
| -4.753
| +18.464
| -8.019
| +31.119
|-
|-
| '''[[13/1]]'''
| [[11/6]]
| '''-4.805'''
| +18.631
| '''-8.107'''
| +31.400
|-
|-
| [[13/7]]
| [[28/19]]
| +4.822
| -18.650
| +8.135
| -31.433
|-
|-
| ''[[23/20]]''
| [[6/5]]
| ''+4.876''
| -18.976
| ''+8.227''
| -31.983
|-
|-
| [[21/5]]
| [[27/23]]
| -4.919
| +19.074
| -8.300
| +32.148
|-
|-
| [[17/7]]
| [[27/13]]
| -4.919
| -19.345
| -8.300
| -32.604
|-
|-
| [[14/1]]
| [[30/19]]
| +4.951
| -19.427
| +8.353
| -32.742
|-
|-
| [[19/13]]
| [[29/25]]
| +5.003
| -19.618
| +8.441
| -33.064
|-
|-
| [[19/3]]
| '''[[17/1]]'''
| -5.082
| '''+19.682'''
| -8.574
| '''+33.172'''
|-
|-
| [[29/27]]
| [[9/7]]
| +5.170
| -19.753
| +8.723
| -33.292
|-
|-
| '''[[3/1]]'''
| [[17/14]]
| '''+5.280'''
| +19.868
| '''+8.908'''
| +33.486
|-
|-
| [[13/5]]
| [[18/1]]
| -5.377
| -19.940
| -9.072
| -33.606
|-
|-
| ''[[23/4]]''
| [[29/19]]
| ''+5.448''
| -20.068
| ''+9.192''
| -33.823
|-
|-
| ''[[24/13]]''
| [[9/4]]
| ''-5.453''
| +20.082
| ''-9.199''
| +33.845
|-
|-
| [[25/21]]
| [[13/10]]
| +5.491
| +20.450
| +9.264
| +34.466
|-
|-
| [[14/9]]
| [[17/15]]
| -5.608
| +20.645
| -9.462
| +34.796
|-
|-
| [[19/15]]
| [[22/13]]
| -5.653
| -20.796
| -9.538
| -35.049
|-
|-
| [[15/1]]
| [[21/10]]
| +5.851
| +20.858
| +9.872
| +35.155
|-
|-
| [[29/10]]
| [[33/17]]
| +5.859
| -20.991
| +9.885
| -35.378
|-
|-
| ''[[8/7]]''
| [[20/3]]
| ''-5.910''
| -21.045
| ''-9.972''
| -35.469
|-
|-
| [[25/13]]
| [[31/13]]
| +5.949
| -21.183
| +10.037
| -35.703
|-
|-
| [[27/26]]
| [[22/21]]
| +6.066
| -21.204
| +10.235
| -35.737
|-
|-
| ''[[16/3]]''
| [[25/6]]
| ''-6.239''
| +21.313
| ''-10.526''
| +35.921
|-
|-
| [[22/9]]
| [[31/21]]
| +6.359
| -21.592
| +10.729
| -36.391
|-
|-
| [[29/2]]
| [[19/6]]
| +6.431
| +21.763
| +10.850
| +36.680
|-
|-
| [[21/11]]
| [[18/11]]
| -6.688
| -21.930
| -11.284
| -36.961
|-
|-
| ''[[16/15]]''
| [[18/5]]
| ''-6.811''
| -22.276
| ''-11.491''
| -37.544
|-
|-
| [[13/11]]
| [[23/9]]
| -7.146
| -22.374
| -12.056
| -37.709
|-
|-
| [[31/18]]
| [[13/2]]
| -7.212
| +22.786
| -12.168
| +38.404
|-
|-
| [[31/9]]
| [[28/13]]
| +7.366
| -22.973
| +12.427
| -38.718
|-
|-
| ''[[32/29]]''
| [[17/3]]
| ''-7.391''
| +22.982
| ''-12.469''
| +38.733
|-
|-
| [[26/11]]
| [[33/20]]
| +7.432
| +23.035
| +12.539
| +38.824
|-
|-
| ''[[32/15]]''
| [[27/7]]
| ''+7.767''
| -23.053
| ''+13.104''
| -38.853
|-
|-
| [[29/4]]
| [[21/2]]
| -8.147
| +23.195
| -13.745
| +39.093
|-
|-
| [[31/26]]
| [[4/3]]
| +8.152
| -23.381
| +13.754
| -39.407
|-
|-
| [[11/9]]
| [[26/17]]
| -8.219
| -23.576
| -13.866
| -39.736
|-
|-
| ''[[32/3]]''
| [[30/13]]
| ''+8.339''
| -23.750
| ''+14.069''
| -40.028
|-
|-
| [[26/25]]
| [[10/7]]
| +8.629
| -24.158
| +14.559
| -40.716
|-
|-
| ''[[16/7]]''
| [[20/1]]
| ''+8.668''
| -24.344
| ''+14.624''
| -41.030
|-
|-
| [[29/20]]
| [[23/16]]
| -8.719
| +24.388
| -14.710
| +41.104
|-
|-
| [[15/2]]
| [[29/13]]
| -8.726
| -24.391
| -14.723
| -41.109
|-
|-
| [[28/9]]
| [[22/7]]
| +8.969
| -24.504
| +15.133
| -41.299
|-
|-
| ''[[23/8]]''
| [[25/18]]
| ''-9.130''
| +24.612
| ''-15.404''
| +41.482
|-
|-
| [[26/5]]
| [[29/21]]
| +9.201
| -24.799
| +15.523
| -41.797
|-
|-
| [[3/2]]
| [[31/7]]
| -9.298
| -24.891
| -15.688
| -41.952
|-
|-
| [[25/9]]
| [[19/18]]
| -9.416
| +25.063
| -15.886
| +42.241
|-
|-
| ''[[23/18]]''
| [[29/8]]
| ''+9.467''
| +25.076
| ''+15.972''
| +42.263
|-
|-
| [[26/19]]
| [[26/23]]
| +9.575
| +25.079
| +16.154
| +42.268
|-
|-
| '''[[7/1]]'''
| [[33/4]]
| '''-9.627'''
| +25.372
| '''-16.242'''
| +42.762
|-
|-
| [[17/13]]
| [[23/3]]
| -9.741
| -25.673
| -16.435
| -43.270
|-
|-
| [[14/13]]
| [[15/4]]
| +9.756
| +25.718
| +16.460
| +43.344
|-
|-
| [[26/1]]
| [[13/6]]
| +9.773
| +26.086
| +16.488
| +43.965
|-
|-
| [[19/7]]
| [[17/9]]
| +9.825
| +26.281
| +16.576
| +44.294
|-
|-
| [[10/3]]
| [[20/11]]
| +9.870
| -26.335
| +16.652
| -44.385
|-
|-
| [[9/5]]
| [[7/2]]
| +9.988
| +26.494
| +16.851
| +44.654
|-
|-
| [[13/3]]
| [[4/1]]
| -10.085
| -26.681
| -17.015
| -44.968
|-
|-
| [[23/17]]
| [[30/7]]
| -10.121
| -27.458
| -17.076
| -46.277
|-
|-
| [[7/5]]
| [[33/23]]
| -10.199
| +27.664
| -17.207
| +46.625
|-
|-
| [[21/17]]
| [[23/15]]
| +10.199
| -28.010
| +17.207
| -47.208
|-
|-
| ''[[24/1]]''
| [[29/7]]
| ''-10.258''
| -28.099
| ''-17.307''
| -47.358
|-
|-
| ''[[17/12]]''
| [[31/8]]
| ''+10.289''
| +28.284
| ''+17.360''
| +47.669
|-
|-
| [[19/9]]
| [[29/24]]
| -10.361
| +28.376
| -17.481
| +47.824
|-
|-
| [[29/9]]
| [[11/4]]
| +10.450
| +28.671
| +17.630
| +48.323
|-
|-
| ''[[24/19]]''
| [[23/14]]
| ''-10.456''
| -28.787
| ''-17.641''
| -48.517
|-
|-
| [[9/1]]
| '''[[23/1]]'''
| +10.559
| '''-28.973'''
| +17.815
| '''-48.831'''
|-
|-
| [[15/13]]
| [[5/4]]
| +10.657
| +29.017
| +17.979
| +48.906
|-
|-
| ''[[13/8]]''
| [[18/13]]
| ''+10.732''
| -29.386
| ''+18.107''
| -49.526
|-
|-
| [[25/7]]
| [[20/19]]
| +10.771
| -29.468
| +18.172
| -49.665
|-
|-
| ''[[24/5]]''
| [[27/17]]
| ''-10.830''
| -29.581
| ''-18.271''
| -49.856
|-
|- style="background-color: #cccccc;"
| [[27/14]]
| ''[[7/6]]''
| +10.888
| ''+29.794''
| +18.370
| ''+50.215''
|-
|- style="background-color: #cccccc;"
| [[22/15]]
| ''[[12/1]]''
| +11.067
| ''-29.980''
| +18.672
| ''-50.529''
|-
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''[[27/8]]''
| ''+11.190''
| ''+30.122''
| ''+18.879''
| ''+50.768''
|-
|- style="background-color: #cccccc;"
| [[31/4]]
| ''[[17/10]]''
| -11.231
| ''+30.686''
| -18.948
| ''+51.718''
|-
|- style="background-color: #cccccc;"
| [[29/26]]
| ''[[23/11]]''
| +11.236
| ''-30.964''
| +18.957
| ''-52.187''
|-
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''[[22/17]]''
| ''+11.278''
| ''-31.032''
| ''+19.027''
| ''-52.301''
|-
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''[[23/5]]''
| ''+11.401''
| ''-31.309''
| ''+19.236''
| ''-52.769''
|-
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''[[25/4]]''
| ''-11.519''
| ''+31.354''
| ''-19.434''
| ''+52.843''
|-
|- style="background-color: #cccccc;"
| [[22/3]]
| ''[[31/17]]''
| +11.639
| ''-31.419''
| +19.637
| ''-52.955''
|-
|- style="background-color: #cccccc;"
| [[31/20]]
| ''[[31/24]]''
| -11.803
| ''+31.583''
| -19.913
| ''+53.231''
|-
|- style="background-color: #cccccc;"
| [[11/7]]
| ''[[19/4]]''
| +11.968
| ''+31.804''
| +20.191
| ''+53.603''
|-
|- style="background-color: #cccccc;"
| [[31/15]]
| ''[[12/11]]''
| +12.074
| ''-31.971''
| +20.370
| ''-53.884''
|-
|- style="background-color: #cccccc;"
| [[11/2]]
| ''[[12/5]]''
| -12.237
| ''-32.317''
| -20.646
| ''-54.467''
|-
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''[[17/2]]''
| ''+12.475''
| ''+33.022''
| ''+21.047''
| ''+55.656''
|-
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''[[18/7]]''
| ''-12.598''
| ''-33.094''
| ''-21.255''
| ''-55.776''
|-
|- style="background-color: #cccccc;"
| [[31/3]]
| ''[[28/17]]''
| +12.645
| ''-33.209''
| +21.335
| ''-55.970''
|-
|- style="background-color: #cccccc;"
| [[11/10]]
| ''[[9/8]]''
| -12.809
| ''+33.422''
| -21.611
| ''+56.329''
|-
|- style="background-color: #cccccc;"
| [[31/14]]
| ''[[25/23]]''
| +12.974
| ''+33.646''
| +21.890
| ''+56.707''
|-
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''[[20/13]]''
| ''+13.047''
| ''-33.790''
| ''+22.012''
| ''-56.950''
|-
|- style="background-color: #cccccc;"
| [[27/4]]
| ''[[30/17]]''
| -13.317
| ''-33.986''
| -22.468
| ''-57.279''
|-
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''[[23/19]]''
| ''+13.420''
| ''-34.096''
| ''+22.642''
| ''-57.466''
|-
|- style="background-color: #cccccc;"
| [[29/12]]
| ''[[21/20]]''
| -13.427
| ''+34.199''
| -22.653
| ''+57.639''
|-
|- style="background-color: #cccccc;"
| [[25/2]]
| ''[[29/17]]''
| -13.434
| ''-34.627''
| -22.666
| ''-58.361''
|-
|- style="background-color: #cccccc;"
| [[27/11]]
| ''[[25/12]]''
| +13.498
| ''+34.653''
| +22.774
| ''+58.405''
|-
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''[[19/12]]''
| ''-13.587''
| ''+35.104''
| ''-22.923''
| ''+59.164''
|-
|- style="background-color: #cccccc;"
| ''[[29/23]]''
| ''[[13/4]]''
| ''-13.595''
| ''+36.127''
| ''-22.937''
| ''+60.888''
|-
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''[[17/6]]''
| ''+13.618''
| ''+36.322''
| ''+22.976''
| ''+61.217''
|-
|- style="background-color: #cccccc;"
| [[28/15]]
| ''[[21/4]]''
| +13.677
| ''+36.535''
| +23.076
| ''+61.576''
|-
|- style="background-color: #cccccc;"
| [[27/20]]
| ''[[8/3]]''
| -13.889
| ''-36.722''
| -23.432
| ''-61.891''
|-
|- style="background-color: #cccccc;"
| [[5/2]]
| ''[[20/7]]''
| -14.006
| ''-37.498''
| -23.631
| ''-63.200''
|-
|- style="background-color: #cccccc;"
| [[26/21]]
| ''[[32/23]]''
| +14.120
| ''-37.729''
| +23.823
| ''-63.588''
|-
|- style="background-color: #cccccc;"
| ''[[30/23]]''
| ''[[29/16]]''
| ''-14.174''
| ''+38.416''
| ''-23.915''
| ''+64.747''
|-
|- style="background-color: #cccccc;"
| [[28/3]]
| ''[[23/13]]''
| +14.249
| ''-38.419''
| +24.041
| ''-64.751''
|-
|- style="background-color: #cccccc;"
| [[19/2]]
| ''[[33/8]]''
| -14.380
| ''+38.712''
| -24.261
| ''+65.246''
|-
|- style="background-color: #cccccc;"
| ''[[24/23]]''
| ''[[23/21]]''
| ''+14.410''
| ''-38.827''
| ''+24.311''
| ''-65.440''
|-
|- style="background-color: #cccccc;"
| '''[[17/1]]'''
| ''[[15/8]]''
| '''-14.546'''
| ''+39.058''
| '''-24.542'''
| ''+65.828''
|-
|- style="background-color: #cccccc;"
| '''[[2/1]]'''
| ''[[13/12]]''
| '''+14.578'''
| ''+39.426''
| '''+24.595'''
| ''+66.449''
|- style="background-color: #cccccc;"
| ''[[18/17]]''
| ''-39.622''
| ''-66.778''
|- style="background-color: #cccccc;"
| ''[[7/4]]''
| ''+39.835''
| ''+67.138''
|- style="background-color: #cccccc;"
| ''[[8/1]]''
| ''-40.021''
| ''-67.452''
|- style="background-color: #cccccc;"
| ''[[31/16]]''
| ''+41.624''
| ''+70.153''
|- style="background-color: #cccccc;"
| ''[[11/8]]''
| ''+42.012''
| ''+70.807''
|- style="background-color: #cccccc;"
| ''[[23/7]]''
| ''-42.127''
| ''-71.001''
|- style="background-color: #cccccc;"
| ''[[8/5]]''
| ''-42.358''
| ''-71.390''
|- style="background-color: #cccccc;"
| ''[[12/7]]''
| ''-43.134''
| ''-72.699''
|- style="background-color: #cccccc;"
| ''[[24/1]]''
| ''-43.321''
| ''-73.013''
|- style="background-color: #cccccc;"
| ''[[27/16]]''
| ''+43.463''
| ''+73.252''
|- style="background-color: #cccccc;"
| ''[[20/17]]''
| ''-44.026''
| ''-74.202''
|- style="background-color: #cccccc;"
| ''[[25/8]]''
| ''+44.694''
| ''+75.327''
|- style="background-color: #cccccc;"
| ''[[19/8]]''
| ''+45.144''
| ''+76.087''
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''-45.311''
| ''-76.368''
|- style="background-color: #cccccc;"
| ''[[24/5]]''
| ''-45.657''
| ''-76.951''
|- style="background-color: #cccccc;"
| ''[[17/4]]''
| ''+46.363''
| ''+78.140''
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''-46.762''
| ''-78.813''
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''+47.994''
| ''+80.888''
|- style="background-color: #cccccc;"
| ''[[24/19]]''
| ''-48.444''
| ''-81.648''
|- style="background-color: #cccccc;"
| ''[[23/17]]''
| ''-48.655''
| ''-82.003''
|- style="background-color: #cccccc;"
| ''[[13/8]]''
| ''+49.467''
| ''+83.372''
|- style="background-color: #cccccc;"
| ''[[17/12]]''
| ''+49.662''
| ''+83.701''
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''+49.876''
| ''+84.060''
|- style="background-color: #cccccc;"
| ''[[16/3]]''
| ''-50.062''
| ''-84.375''
|- style="background-color: #cccccc;"
| ''[[32/29]]''
| ''-51.757''
| ''-87.231''
|- style="background-color: #cccccc;"
| ''[[33/16]]''
| ''+52.053''
| ''+87.730''
|- style="background-color: #cccccc;"
| ''[[16/15]]''
| ''-52.398''
| ''-88.312''
|- style="background-color: #cccccc;"
| ''[[24/13]]''
| ''-52.767''
| ''-88.933''
|- style="background-color: #cccccc;"
| ''[[8/7]]''
| ''-53.175''
| ''-89.622''
|- style="background-color: #cccccc;"
| ''[[16/1]]''
| ''-53.362''
| ''-89.936''
|- style="background-color: #cccccc;"
| ''[[32/31]]''
| ''-54.964''
| ''-92.637''
|- style="background-color: #cccccc;"
| ''[[16/11]]''
| ''-55.352''
| ''-93.291''
|- style="background-color: #cccccc;"
| ''[[16/5]]''
| ''-55.698''
| ''-93.873''
|- style="background-color: #cccccc;"
| ''[[24/7]]''
| ''-56.475''
| ''-95.183''
|- style="background-color: #cccccc;"
| ''[[32/27]]''
| ''-56.803''
| ''-95.736''
|- style="background-color: #cccccc;"
| ''[[25/16]]''
| ''+58.034''
| ''+97.811''
|- style="background-color: #cccccc;"
| ''[[19/16]]''
| ''+58.485''
| ''+98.571''
|- style="background-color: #cccccc;"
| ''[[17/8]]''
| ''+59.703''
| ''+100.624''
|- style="background-color: #cccccc;"
| ''[[32/9]]''
| ''-60.103''
| ''-101.297''
|- style="background-color: #cccccc;"
| ''[[16/13]]''
| ''-62.807''
| ''-105.856''
|- style="background-color: #cccccc;"
| ''[[24/17]]''
| ''-63.003''
| ''-106.185''
|- style="background-color: #cccccc;"
| ''[[21/16]]''
| ''+63.216''
| ''+106.544''
|- style="background-color: #cccccc;"
| ''[[32/3]]''
| ''-63.402''
| ''-106.858''
|- style="background-color: #cccccc;"
| ''[[33/32]]''
| ''+65.393''
| ''+110.214''
|- style="background-color: #cccccc;"
| ''[[32/15]]''
| ''-65.739''
| ''-110.796''
|- style="background-color: #cccccc;"
| ''[[16/7]]''
| ''-66.516''
| ''-112.106''
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''-66.702''
| ''-112.420''
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''-68.693''
| ''-115.775''
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''-69.038''
| ''-116.357''
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''-71.375''
| ''-120.295''
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''-71.825''
| ''-121.055''
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''+73.044''
| ''+123.108''
|- style="background-color: #cccccc;"
| ''[[32/13]]''
| ''-76.148''
| ''-128.340''
|- style="background-color: #cccccc;"
| ''[[32/21]]''
| ''-76.556''
| ''-129.028''
|- style="background-color: #cccccc;"
| ''[[32/7]]''
| ''-79.856''
| ''-134.589''
|- style="background-color: #cccccc;"
| ''[[32/17]]''
| ''-86.384''
| ''-145.592''
|}
 
== Record on the Riemann zeta function with prime 2 removed ==
'''[[71zpi]]''' sets a height record on the Riemann zeta function with prime 2 removed. The previous record is [[53zpi]] and the next one is [[93zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime number 2 from the Riemann zeta function differs slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
{| class="wikitable"
! colspan="6" |Unmodified Riemann zeta function
! colspan="5" |Riemann zeta function with prime 2 removed
|-
|-
| [[27/25]]
! colspan="3" | Tuning
| +14.695
! colspan="1" |Strength
| +24.793
! colspan="2" |Closest EDO
! colspan="2" |Tuning
! colspan="1" |Strength
! colspan="2" |Closest EDO
|-
|-
| [[19/17]]
!ZPI
| +14.744
!Steps per octave
| +24.876
!Step size (cents)
|-
! colspan="1" | Height
| ''[[23/6]]''
!EDO
| ''+14.746''
!Octave (cents)
| ''+24.879''
!Steps per octave
|-
!Step size (cents)
| [[7/3]]
! colspan="1" |Height
| -14.907
!EDO
| -25.150
!Octave (cents)
|-
|-
| [[19/10]]
|[[53zpi]]
| -14.952
| 16.3979501311478
| -25.226
|73.1798786069366
|2.518818
| [[16edo]]
|1170.87805771099
| 16.4044889390925
|73.1507092025500
|4.100909
|[[16edo]]
|1170.41134724080
|-
|-
| ''[[20/17]]''
|[[71zpi]]
| ''-14.997''
|20.2248393119540
| ''-25.303''
|59.3329806724710
| 3.531097
|[[20edo]]
|1186.65961344942
|20.2459529213541
|59.2711049295348
|4.137236
|[[20edo]]
|1185.42209859070
|-
|-
| [[23/7]]
| [[93zpi]]
| -15.040
| 24.5782550666850
| -25.375
|48.8236449961234
|-
|2.810487
| ''[[28/23]]''
|[[25edo]]
| ''-15.075''
|1220.59112490308
| ''-25.434''
|24.5738316304204
|48.8324335434323
|4.665720
|[[25edo]]
|1220.81083858581
|}
 
=== Harmonic series in 71zpi with prime 2 removed ===
 
{{Harmonics in cet|59.2711049295348|columns=15|title=Approximation of harmonics in 71zpi with prime 2 removed }}
{{Harmonics in cet|59.2711049295348|columns=18|start=16|title=Approximation of harmonics in 71zpi with prime 2 removed }}
 
=== Intervals in 71zpi with prime 2 removed ===
 
{| class="wikitable center-1 right-2 left-3 center-4 center-5"
|+ style="white-space:nowrap" | Intervals in 71zpi with prime 2 removed
|-
|-
| [[17/5]]
| colspan="3" style="text-align:left;" | JI ratios are comprised of 34-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy:
| -15.118
* '''<u>Bold Underlined:</u>''' relative error < 8.333 %
| -25.507
* '''Bold:''' relative error < 16.667 %
* Normal: relative error < 25 %
* <small>Small:</small> relative error < 33.333 %
* <small><small>Small Small:</small></small> relative error < 41.667 %
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 %
| colspan="2" style="text-align:right;" | <center>'''⟨81 128] at every 4 steps'''</center><br>[[9/8|Whole tone]] = 13 steps<br>[[256/243|Limma]] = 8 steps<br>[[2187/2048|Apotome]] = 5 steps
|-
|-
| [[10/1]]
! Degree
| +15.150
! Cents
| +25.560
! Ratios
! Ups and downs notation
! Step
|-
|-
| [[29/15]]
| 0
| +15.157
| 0.000
| +25.573
|  
| P1
| 0
|-
|-
| ''[[12/7]]''
| 1
| ''-15.209''
| 59.271
| ''-25.659''
| '''[[34/33]]''', '''[[33/32]]''', '''<u>[[32/31]]'''</u>, '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''<u>[[29/28]]'''</u>, '''<u>[[28/27]]'''</u>, '''[[27/26]]''', '''[[26/25]]''', [[25/24]], [[24/23]], <small>[[23/22]]</small>, <small><small>[[22/21]]</small></small>, <small><small><small>[[21/20]]</small></small></small>, <small><small><small>[[20/19]]</small></small></small>
| vA1, ^d2
| 4
|-
|-
| [[27/5]]
| 2
| +15.267
| 118.542
| +25.758
| <small><small><small>[[19/18]]</small></small></small>, <small>[[18/17]]</small>, [[17/16]], [[33/31]], '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''<u>[[15/14]]'''</u>, '''[[29/27]]''', '''[[14/13]]''', [[27/25]], <small><small>[[13/12]]</small></small>, <small><small><small>[[25/23]]</small></small></small>
| m2
| 8
|-
|-
| [[13/9]]
| 3
| -15.364
| 177.813
| -25.922
| <small><small><small>[[12/11]]</small></small></small>, <small><small>[[23/21]]</small></small>, <small>[[34/31]]</small>, [[11/10]], '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, '''<u>[[10/9]]'''</u>, [[29/26]], [[19/17]], <small>[[28/25]]</small>, <small><small><small>[[9/8]]</small></small></small>
| vM2
| 12
|-
|-
| [[15/7]]
| 4
| +15.478
| 237.084
| +26.115
| <small><small><small>[[26/23]]</small></small></small>, <small><small>[[17/15]]</small></small>, <small>[[25/22]]</small>, [[33/29]], '''[[8/7]]''', '''<u>[[31/27]]'''</u>, '''<u>[[23/20]]'''</u>, [[15/13]], <small>[[22/19]]</small>, <small><small>[[29/25]]</small></small>
| vvA2
| 16
|-
|-
| ''[[8/1]]''
| 5
| ''-15.537''
| 296.356
| ''-26.214''
| <small><small><small>[[7/6]]</small></small></small>, <small><small>[[34/29]]</small></small>, <small>[[27/23]]</small>, <small>[[20/17]]</small>, [[33/28]], '''[[13/11]]''', '''<u>[[32/27]]'''</u>, '''<u>[[19/16]]'''</u>, '''[[25/21]]''', '''[[31/26]]''', <small>[[6/5]]</small>
| vm3
| 20
|-
|-
| ''[[17/4]]''
| 6
| ''+15.569''
| 355.627
| ''+26.267''
| <small><small><small>[[29/24]]</small></small></small>, <small><small><small>[[23/19]]</small></small></small>, <small>[[17/14]]</small>, <small>[[28/23]]</small>, '''[[11/9]]''', '''<u>[[27/22]]'''</u>, '''<u>[[16/13]]'''</u>, [[21/17]], [[26/21]], <small>[[31/25]]</small>
| vvM3
| 24
|-
|-
| [[31/11]]
| 7
| +15.584
| 414.898
| +26.294
| <small><small><small>[[5/4]]</small></small></small>, <small>[[34/27]]</small>, [[29/23]], [[24/19]], '''[[19/15]]''', '''<u>[[33/26]]'''</u>, '''<u>[[14/11]]'''</u>, '''[[23/18]]''', [[32/25]], <small><small>[[9/7]]</small></small>, <small><small><small>[[31/24]]</small></small></small>
| ^^M3
| 28
|-
|-
| [[27/19]]
| 8
| +15.641
| 474.169
| +26.389
| <small><small><small>[[22/17]]</small></small></small>, <small><small>[[13/10]]</small></small>, [[30/23]], '''[[17/13]]''', '''<u>[[21/16]]'''</u>, '''<u>[[25/19]]'''</u>, '''<u>[[29/22]]'''</u>, '''[[33/25]]''', <small><small>[[4/3]]</small></small>
|-
| vv4
| [[25/17]]
| 32
| +15.690
| +26.471
|-
|-
| [[29/3]]
| 9
| +15.729
| 533.440
| +26.538
| <small>[[31/23]]</small>, [[27/20]], [[23/17]], '''<u>[[19/14]]'''</u>, '''<u>[[34/25]]'''</u>, '''<u>[[15/11]]'''</u>, '''[[26/19]]''', <small>[[11/8]]</small>, <small><small><small>[[29/21]]</small></small></small>
| ^^4
| 36
|-
|-
| ''[[19/8]]''
| 10
| ''+15.735''
| 592.711
| ''+26.548''
| <small><small><small>[[18/13]]</small></small></small>, <small><small>[[25/18]]</small></small>, <small><small>[[32/23]]</small></small>, [[7/5]], '''<u>[[31/22]]'''</u>, '''<u>[[24/17]]'''</u>, [[17/12]], <small>[[27/19]]</small>, <small><small><small>[[10/7]]</small></small></small>
| ^A4
| 40
|-
|-
| [[25/22]]
| 11
| -15.775
| 651.982
| -26.615
| <small><small><small>[[33/23]]</small></small></small>, <small><small>[[23/16]]</small></small>, <small>[[13/9]]</small>, '''[[29/20]]''', '''<u>[[16/11]]'''</u>, '''[[19/13]]''', [[22/15]], <small>[[25/17]]</small>, <small>[[28/19]]</small>, <small><small>[[31/21]]</small></small>, <small><small><small>[[34/23]]</small></small></small>
| ^^d5
| 44
|-
|-
| [[27/1]]
| 12
| +15.839
| 711.253
| +26.723
| '''[[3/2]]''', <small>[[32/21]]</small>, <small><small>[[29/19]]</small></small>, <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small>
| ^5
| 48
|-
|-
| [[29/14]]
| 13
| +16.058
| 770.524
| +27.093
| <small><small><small>[[20/13]]</small></small></small>, <small>[[17/11]]</small>, [[31/20]], '''[[14/9]]''', '''<u>[[25/16]]'''</u>, [[11/7]], <small><small>[[30/19]]</small></small>, <small><small><small>[[19/12]]</small></small></small>
| ^^d6
| 52
|-
|-
| ''[[8/5]]''
| 14
| ''-16.109''
| 829.795
| ''-27.179''
| <small><small><small>[[27/17]]</small></small></small>, <small>[[8/5]]</small>, '''<u>[[29/18]]'''</u>, '''<u>[[21/13]]'''</u>, '''<u>[[34/21]]'''</u>, [[13/8]], <small>[[31/19]]</small>, <small><small>[[18/11]]</small></small>
| ^m6
| 56
|-
|-
| [[22/5]]
| 15
| +16.347
| 889.067
| +27.580
| <small><small><small>[[23/14]]</small></small></small>, <small><small><small>[[28/17]]</small></small></small>, <small><small>[[33/20]]</small></small>, '''<u>[[5/3]]'''</u>, [[32/19]], <small>[[27/16]]</small>, <small><small>[[22/13]]</small></small>, <small><small><small>[[17/10]]</small></small></small>
| M6
| 60
|-
|-
| [[31/12]]
| 16
| -16.510
| 948.338
| -27.856
| <small><small>[[29/17]]</small></small>, <small>[[12/7]]</small>, '''[[31/18]]''', '''<u>[[19/11]]'''</u>, '''<u>[[26/15]]'''</u>, '''[[33/19]]''', <small><small>[[7/4]]</small></small>
| vA6, ^d7
| 64
|-
|-
| ''[[31/23]]''
| 17
| ''-16.679''
| 1007.609
| ''-28.140''
| <small><small>[[30/17]]</small></small>, <small><small>[[23/13]]</small></small>, [[16/9]], '''<u>[[25/14]]'''</u>, '''<u>[[34/19]]'''</u>, [[9/5]], <small><small>[[29/16]]</small></small>, <small><small><small>[[20/11]]</small></small></small>
| m7
| 68
|-
|-
| ''[[25/8]]''
| 18
| ''+16.681''
| 1066.880
| ''+28.144''
| <small><small><small>[[31/17]]</small></small></small>, <small>[[11/6]]</small>, '''[[24/13]]''', '''<u>[[13/7]]'''</u>, [[28/15]], <small><small>[[15/8]]</small></small>, <small><small><small>[[32/17]]</small></small></small>
| vM7
| 72
|-
|-
| [[22/19]]
| 19
| +16.721
| 1126.151
| +28.210
| <small><small><small>[[17/9]]</small></small></small>, <small>[[19/10]]</small>, '''[[21/11]]''', '''<u>[[23/12]]'''</u>, '''[[25/13]]''', [[27/14]], <small>[[29/15]]</small>, <small>[[31/16]]</small>, <small><small>[[33/17]]</small></small>
| vvA7
| 76
|-
|-
| [[31/25]]
| 20
| +16.782
| 1185.422
| +28.313
| [[2/1]]
| v1 +1 oct
| 80
|-
|-
| ''[[27/16]]''
| 21
| ''+16.798''
| 1244.693
| ''+28.342''
| '''[[33/16]]''', [[31/15]], <small>[[29/14]]</small>, <small><small>[[27/13]]</small></small>, <small><small><small>[[25/12]]</small></small></small>
| vvA1 +1 oct
| 84
|-
|-
| [[17/11]]
| 22
| -16.887
| 1303.964
| -28.491
| <small><small><small>[[23/11]]</small></small></small>, <small>[[21/10]]</small>, [[19/9]], '''<u>[[17/8]]'''</u>, '''[[32/15]]''', <small>[[15/7]]</small>, <small><small>[[28/13]]</small></small>
| vm2 +1 oct
| 88
|-
|-
| [[22/1]]
| 23
| +16.918
| 1363.235
| +28.544
| <small><small>[[13/6]]</small></small>, [[24/11]], '''<u>[[11/5]]'''</u>, [[31/14]], <small>[[20/9]]</small>, <small><small><small>[[29/13]]</small></small></small>
| vvM2 +1 oct
| 92
|-
|-
| [[28/11]]
| 24
| +17.188
| 1422.507
| +28.999
| <small>[[9/4]]</small>, '''[[34/15]]''', '''<u>[[25/11]]'''</u>, '''[[16/7]]''', <small>[[23/10]]</small>, <small><small><small>[[30/13]]</small></small></small>
| ^^M2 +1 oct
| 96
|-
|-
| [[31/5]]
| 25
| +17.353
| 1481.778
| +29.278
| <small>[[7/3]]</small>, '''<u>[[33/14]]'''</u>, '''[[26/11]]''', <small>[[19/8]]</small>, <small><small>[[31/13]]</small></small>
| vvm3 +1 oct
| 100
|-
|-
| [[11/6]]
| 26
| -17.517
| 1541.049
| -29.554
| <small><small><small>[[12/5]]</small></small></small>, [[29/12]], '''<u>[[17/7]]'''</u>, '''[[22/9]]''', [[27/11]], <small>[[32/13]]</small>
| ^^m3 +1 oct
| 104
|-
|-
| ''[[23/22]]''
| 27
| ''+17.685''
| 1600.320
| ''+29.838''
| [[5/2]], [[33/13]], <small>[[28/11]]</small>, <small><small>[[23/9]]</small></small>
| ^M3 +1 oct
| 108
|-
|-
| [[31/19]]
| 28
| +17.727
| 1659.591
| +29.908
| <small><small>[[18/7]]</small></small>, <small>[[31/12]]</small>, '''[[13/5]]''', '''<u>[[34/13]]'''</u>, [[21/8]], <small>[[29/11]]</small>
|-
| ^^d4 +1 oct
| ''[[11/8]]''
| 112
| ''+17.878''
| ''+30.163''
|-
|-
| '''[[31/1]]'''
| 29
| '''+17.925'''
| 1718.862
| '''+30.243'''
| <small><small>[[8/3]]</small></small>, '''<u>[[27/10]]'''</u>, '''[[19/7]]''', <small>[[30/11]]</small>
| ^4 +1 oct
| 116
|-
|-
| ''[[32/21]]''
| 30
| ''+17.966''
| 1778.133
| ''+30.311''
| <small><small><small>[[11/4]]</small></small></small>, '''[[25/9]]''', '''<u>[[14/5]]'''</u>, <small>[[31/11]]</small>, <small><small><small>[[17/6]]</small></small></small>
| A4 +1 oct
| 120
|-
|-
| [[30/11]]
| 31
| +18.089
| 1837.404
| +30.519
| <small><small>[[20/7]]</small></small>, '''[[23/8]]''', '''<u>[[26/9]]'''</u>, '''[[29/10]]''', [[32/11]]
| ^d5 +1 oct
| 124
|-
|-
| [[28/25]]
| 32
| +18.385
| 1896.675
| +31.019
| '''[[3/1]]'''
| P5 +1 oct
| 128
|-
|-
| ''[[32/13]]''
| 33
| ''+18.424''
| 1955.946
| ''+31.084''
| '''<u>[[34/11]]'''</u>, '''<u>[[31/10]]'''</u>, '''[[28/9]]''', <small>[[25/8]]</small>, <small><small><small>[[22/7]]</small></small></small>
| vA5 +1 oct, ^d6 +1 oct
| 132
|-
|-
| [[9/4]]
| 34
| -18.597
| 2015.218
| -31.375
| <small>[[19/6]]</small>, '''<u>[[16/5]]'''</u>, [[29/9]], <small><small><small>[[13/4]]</small></small></small>
|-
| m6 +1 oct
| [[29/11]]
| 136
| +18.668
| +31.496
|-
|-
| [[25/6]]
| 35
| -18.714
| 2074.489
| -31.574
| <small>[[23/7]]</small>, '''[[33/10]]''', '''[[10/3]]'''
| vM6 +1 oct
| 140
|-
|-
| ''[[27/23]]''
| 36
| ''-18.765''
| 2133.760
| ''-31.659''
| <small><small><small>[[27/8]]</small></small></small>, <small>[[17/5]]</small>, '''<u>[[24/7]]'''</u>, '''[[31/9]]'''
| vvA6 +1 oct
| 144
|-
|-
| ''[[31/16]]''
| 37
| ''+18.885''
| 2193.031
| ''+31.861''
| <small><small>[[7/2]]</small></small>, '''<u>[[32/9]]'''</u>, [[25/7]], <small><small>[[18/5]]</small></small>
| vm7 +1 oct
| 148
|-
|-
| [[21/2]]
| 38
| -18.925
| 2252.302
| -31.930
| <small><small>[[29/8]]</small></small>, '''<u>[[11/3]]'''</u>, <small>[[26/7]]</small>
| vvM7 +1 oct
| 152
|-
|-
| [[28/5]]
| 39
| +18.957
| 2311.573
| +31.983
| <small><small>[[15/4]]</small></small>, [[34/9]], '''<u>[[19/5]]'''</u>, [[23/6]], <small><small><small>[[27/7]]</small></small></small>
| ^^M7 +1 oct
| 156
|-
|-
| [[20/9]]
| 40
| +19.168
| 2370.844
| +32.340
| <small><small><small>[[31/8]]</small></small></small>, <small><small><small>[[4/1]]</small></small></small>
| vv1 +2 oct
| 160
|-
|-
| [[6/5]]
| 41
| +19.286
| 2430.115
| +32.538
| <small><small>[[33/8]]</small></small>
| ^^1 +2 oct
| 164
|-
|-
| [[28/19]]
| 42
| +19.331
| 2489.386
| +32.614
| <small><small><small>[[29/7]]</small></small></small>, <small>[[25/6]]</small>, '''<u>[[21/5]]'''</u>, <small>[[17/4]]</small>
| vvm2 +2 oct
| 168
|-
|-
| [[13/2]]
| 43
| -19.383
| 2548.658
| -32.702
| <small><small><small>[[30/7]]</small></small></small>, [[13/3]], <small>[[22/5]]</small>, <small><small><small>[[31/7]]</small></small></small>
| ^^m2 +2 oct
| 172
|-
|-
| [[26/7]]
| 44
| +19.400
| 2607.929
| +32.731
| '''<u>[[9/2]]'''</u>, <small><small>[[32/7]]</small></small>
| ^M2 +2 oct
| 176
|-
|-
| ''[[23/10]]''
| 45
| ''+19.454''
| 2667.200
| ''+32.822''
| <small><small><small>[[23/5]]</small></small></small>, '''<u>[[14/3]]'''</u>, <small>[[33/7]]</small>
| ^^d3 +2 oct
| 180
|-
|-
| [[21/10]]
| 46
| -19.497
| 2726.471
| -32.895
| <small><small><small>[[19/4]]</small></small></small>, [[24/5]], '''<u>[[29/6]]'''</u>, '''[[34/7]]'''
| ^m3 +2 oct
| 184
|-
|-
| [[17/14]]
| 47
| -19.497
| 2785.742
| -32.895
| '''<u>[[5/1]]'''</u>
|-
| M3 +2 oct
| [[28/1]]
| 188
| +19.529
| +32.948
|-
|-
| ''[[18/17]]''
| 48
| ''-19.588''
| 2845.013
| ''-33.047''
| '''<u>[[31/6]]'''</u>, '''[[26/5]]''', <small><small><small>[[21/4]]</small></small></small>
| vA3 +2 oct, ^d4 +2 oct
| 192
|-
|-
| [[19/6]]
| 49
| -19.660
| 2904.284
| -33.169
| '''[[16/3]]''', <small>[[27/5]]</small>
| P4 +2 oct
| 196
|-
|-
| [[17/3]]
| 50
| -19.826
| 2963.555
| -33.450
| [[11/2]], <small>[[28/5]]</small>
| vA4 +2 oct
| 200
|-
|-
| [[6/1]]
| 51
| +19.858
| 3022.826
| +33.503
| <small><small>[[17/3]]</small></small>, '''[[23/4]]''', <small><small>[[29/5]]</small></small>
| d5 +2 oct
| 204
|-
|-
| [[23/13]]
| 52
| -19.862
| 3082.097
| -33.511
| <small><small>[[6/1]]</small></small>
| v5 +2 oct
| 208
|-
|-
| [[29/25]]
| 53
| +19.865
| 3141.369
| +33.516
| <small>[[31/5]]</small>
| vvA5 +2 oct
| 212
|-
|-
| ''[[20/7]]''
| 54
| ''-19.916''
| 3200.640
| ''-33.602''
| <small><small><small>[[25/4]]</small></small></small>, '''[[19/3]]''', [[32/5]]
| vm6 +2 oct
| 216
|-
|-
| [[13/10]]
| 55
| -19.955
| 3259.911
| -33.667
| <small>[[13/2]]</small>, '''[[33/5]]''', <small><small>[[20/3]]</small></small>
| vvM6 +2 oct
| 220
|-
|-
| ''[[23/2]]''
| 56
| ''+20.026''
| 3319.182
| ''+33.787''
| [[27/4]], '''<u>[[34/5]]'''</u>
| ^^M6 +2 oct
| 224
|-
|-
| ''[[13/12]]''
| 57
| ''+20.030''
| 3378.453
| ''+33.795''
| '''[[7/1]]'''
| vvm7 +2 oct
| 228
|-
|-
| [[9/7]]
| 58
| +20.186
| 3437.724
| +34.058
| '''[[29/4]]''', [[22/3]]
| ^^m7 +2 oct
| 232
|-
|-
| [[30/19]]
| 59
| +20.231
| 3496.995
| +34.134
| '''[[15/2]]''', <small><small><small>[[23/3]]</small></small></small>
| ^M7 +2 oct
| 236
|-
|-
| [[23/21]]
| 60
| -20.320
| 3556.266
| -34.283
| [[31/4]]
| ^^d1 +3 oct
| 240
|-
|-
| [[17/15]]
| 61
| -20.398
| 3615.537
| -34.414
| <small>[[8/1]]</small>
| ^1 +3 oct
| 244
|-
|-
| [[30/1]]
| 62
| +20.429
| 3674.809
| +34.468
| <small><small>[[33/4]]</small></small>, '''<u>[[25/3]]'''</u>
| ^^d2 +3 oct
| 248
|-
|-
| [[29/5]]
| 63
| +20.437
| 3734.080
| +34.481
| <small><small><small>[[17/2]]</small></small></small>, '''<u>[[26/3]]'''</u>
| ^m2 +3 oct
| 252
|-
|-
| ''[[7/4]]''
| 64
| ''+20.488''
| 3793.351
| ''+34.567''
| [[9/1]]
| M2 +3 oct
| 256
|-
|-
| [[27/13]]
| 65
| +20.644
| 3852.622
| +34.830
| [[28/3]]
| vA2 +3 oct, ^d3 +3 oct
| 260
|-
|-
| [[29/19]]
| 66
| +20.811
| 3911.893
| +35.111
| [[19/2]], <small>[[29/3]]</small>
| m3 +3 oct
| 264
|-
|-
| ''[[8/3]]''
| 67
| ''-20.817''
| 3971.164
| ''-35.122''
| <small>[[10/1]]</small>
| vM3 +3 oct
| 268
|-
|-
| ''[[32/23]]''
| 68
| ''-20.985''
| 4030.435
| ''-35.406''
| [[31/3]]
| vvA3 +3 oct
| 272
|-
|-
| '''[[29/1]]'''
| 69
| '''+21.009'''
| 4089.706
| '''+35.445'''
| <small>[[21/2]]</small>, '''[[32/3]]'''
| v4 +3 oct
| 276
|-
|-
| [[22/21]]
| 70
| +21.266
| 4148.977
| +35.879
| '''<u>[[11/1]]'''</u>
| vvA4 +3 oct
| 280
|-
|-
| ''[[15/8]]''
| 71
| ''+21.389''
| 4208.248
| ''+36.086''
| '''[[34/3]]''', <small><small>[[23/2]]</small></small>
| vd5 +3 oct
| 284
|-
|-
| [[22/13]]
| 72
| +21.724
| 4267.520
| +36.651
|  
|-
| vv5 +3 oct
| ''[[29/16]]''
| 288
| ''+21.968''
| ''+37.064''
|-
|-
| [[31/21]]
| 73
| +22.273
| 4326.791
| +37.577
| <small><small><small>[[12/1]]</small></small></small>
| ^^5 +3 oct
| 292
|-
|-
| [[29/8]]
| 74
| -22.725
| 4386.062
| -38.340
| [[25/2]]
| vvm6 +3 oct
| 296
|-
|-
| [[31/13]]
| 75
| +22.730
| 4445.333
| +38.350
| '''<u>[[13/1]]'''</u>
| ^^m6 +3 oct
| 300
|-
|-
| [[18/11]]
| 76
| +22.797
| 4504.604
| +38.462
| '''<u>[[27/2]]'''</u>
| ^M6 +3 oct
| 304
|-
|-
| ''[[32/7]]''
| 77
| ''+23.245''
| 4563.875
| ''+39.219''
| '''[[14/1]]'''
| ^^d7 +3 oct
| 308
|-
|-
| [[15/4]]
| 78
| -23.304
| 4623.146
| -39.318
| '''[[29/2]]'''
| ^m7 +3 oct
| 312
|-
|-
| ''[[23/16]]''
| 79
| ''-23.708''
| 4682.417
| ''-39.999''
| '''[[15/1]]'''
| M7 +3 oct
| 316
|-
|-
| ''[[29/17]]''
| 80
| ''-23.716''
| 4741.688
| ''-40.013''
| '''<u>[[31/2]]'''</u>
| vA7 +3 oct, ^d1 +4 oct
| 320
|-
|-
| [[4/3]]
| 81
| +23.876
| 4800.959
| +40.283
| '''<u>[[16/1]]'''</u>
| P1 +4 oct
| 324
|-
|-
| [[25/18]]
| 82
| -23.994
| 4860.231
| -40.481
| '''[[33/2]]'''
| vA1 +4 oct, ^d2 +4 oct
| 328
|-
|-
| ''[[23/9]]''
| 83
| ''+24.045''
| 4919.502
| ''+40.567''
| [[17/1]]
| m2 +4 oct
| 332
|-
|-
| [[7/2]]
| 84
| -24.205
| 4978.773
| -40.838
| <small><small><small>[[18/1]]</small></small></small>
|-
| vM2 +4 oct
| ''[[30/17]]''
| 336
| ''-24.295''
| ''-40.990''
|-
|-
| [[26/17]]
| 85
| +24.319
| 5038.044
| +41.030
|
| vvA2 +4 oct
| 340
|-
|-
| [[28/13]]
| 86
| +24.334
| 5097.315
| +41.055
| '''<u>[[19/1]]'''</u>
| vm3 +4 oct
| 344
|-
|-
| [[20/3]]
| 87
| +24.448
| 5156.586
| +41.248
|
| vvM3 +4 oct
| 348
|-
|-
| ''[[18/7]]''
| 88
| ''-24.507''
| 5215.857
| ''-41.347''
| <small><small><small>[[20/1]]</small></small></small>
| ^^M3 +4 oct
| 352
|-
|-
| [[18/5]]
| 89
| +24.565
| 5275.128
| +41.446
| '''<u>[[21/1]]'''</u>
| vv4 +4 oct
| 356
|-
|-
| [[13/6]]
| 90
| -24.663
| 5334.399
| -41.610
| <small>[[22/1]]</small>
|-
| ^^4 +4 oct
| '''[[23/1]]'''
| 360
| '''-24.667'''
| '''-41.618'''
|-
|-
| ''[[20/13]]''
| 91
| ''-24.738''
| 5393.671
| ''-41.738''
|  
| ^A4 +4 oct
| 364
|-
|-
| [[10/7]]
| 92
| +24.777
| 5452.942
| +41.802
| <small><small>[[23/1]]</small></small>
| ^^d5 +4 oct
| 368
|-
|-
| ''[[26/23]]''
| 93
| ''-24.831''
| 5512.213
| ''-41.894''
| [[24/1]]
| ^5 +4 oct
| 372
|-
|-
| ''[[12/1]]''
| 94
| ''-24.836''
| 5571.484
| ''-41.902''
| '''<u>[[25/1]]'''</u>
| ^^d6 +4 oct
| 376
|-
|-
| [[23/19]]
| 95
| -24.865
| 5630.755
| -41.952
| '''[[26/1]]'''
| ^m6 +4 oct
| 380
|-
|-
| ''[[17/6]]''
| 96
| ''+24.867''
| 5690.026
| ''+41.955''
| <small>[[27/1]]</small>
| M6 +4 oct
| 384
|-
| 97
| 5749.297
| <small>[[28/1]]</small>
| vA6 +4 oct, ^d7 +4 oct
| 388
|-
|-
| [[19/18]]
| 98
| -24.939
| 5808.568
| -42.076
| <small><small>[[29/1]]</small></small>
| m7 +4 oct
| 392
|-
|-
| ''[[19/12]]''
| 99
| ''+25.034''
| 5867.839
| ''+42.236''
| <small><small>[[30/1]]</small></small>
| vM7 +4 oct
| 396
|-
|-
| [[17/9]]
| 100
| -25.106
| 5927.110
| -42.357
| <small>[[31/1]]</small>
| vvA7 +4 oct
| 400
|-
|-
| [[18/1]]
| 101
| +25.137
| 5986.382
| +42.411
| [[32/1]]
| v1 +5 oct
| 404
|-
|-
| ''[[28/17]]''
| 102
| ''-25.196''
| 6045.653
| ''-42.510''
| '''[[33/1]]'''
| vvA1 +5 oct
| 408
|-
|-
| ''[[21/20]]''
| 103
| ''+25.196''
| 6104.924
| ''+42.510''
| '''<u>[[34/1]]'''</u>
| vm2 +5 oct
| 412
|}
 
=== Approximation to JI in 71zpi with prime 2 removed ===
 
==== Interval mappings in 71zpi with prime 2 removed ====
 
The following tables show how 34-integer-limit intervals are represented in 71zpi with prime 2 removed. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''.
 
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
|+ style="white-space: nowrap;" | 34-integer-limit intervals in 71zpi with prime 2 removed (by direct approximation)
|-
|-
| [[30/13]]
! Ratio
| +25.235
! Error (abs, [[Cent|¢]])
| +42.575
! Error (rel, [[Relative cent|%]])
|-
|-
| [[23/5]]
| [[34/1]]
| -25.239
| -0.032
| -42.582
| -0.053
|-
|-
| ''[[13/4]]''
| [[34/19]]
| ''+25.310''
| +0.166
| ''+42.702''
| +0.281
|- style="background-color: #cccccc;"
| ''[[23/12]]''
| ''-0.168''
| ''-0.284''
|-
|-
| [[29/21]]
| '''[[19/1]]'''
| +25.356
| '''-0.198'''
| +42.780
| '''-0.334'''
|-
|-
| ''[[12/5]]''
| [[14/3]]
| ''-25.407''
| +0.329
| ''-42.866''
| +0.555
|-
|-
| [[27/7]]
| [[19/5]]
| +25.466
| +0.374
| +42.965
| +0.631
|-
|-
| ''[[21/4]]''
| [[21/13]]
| ''+25.768''
| -0.458
| ''+43.475''
| -0.772
|-
|-
| [[31/8]]
| [[34/5]]
| -25.809
| +0.540
| -43.543
| +0.911
|-
|-
| [[25/23]]
| '''[[5/1]]'''
| +25.811
| '''-0.572'''
| +43.547
| '''-0.965'''
|-
|-
| [[29/13]]
| [[30/29]]
| +25.814
| +0.580
| +43.553
| +0.978
|- style="background-color: #cccccc;"
| ''[[24/7]]''
| ''+0.631''
| ''+1.064''
|-
|-
| ''[[25/12]]''
| [[27/10]]
| ''+25.979''
| -0.689
| ''+43.831''
| -1.163
|-
|-
| ''[[9/8]]''
| [[26/9]]
| ''+26.097''
| +0.787
| ''+44.029''
| +1.327
|-
|-
| [[22/7]]
| [[15/14]]
| +26.546
| -0.901
| +44.787
| -1.519
|-
|-
| ''[[31/17]]''
| [[25/19]]
| ''-26.800''
| -0.946
| ''-45.215''
| -1.595
|- style="background-color: #cccccc;"
| ''[[16/1]]''
| ''+0.959''
| ''+1.619''
|- style="background-color: #cccccc;"
| ''[[17/8]]''
| ''-0.991''
| ''-1.672''
|-
|-
| [[11/4]]
| [[31/22]]
| -26.815
| -1.007
| -45.242
| -1.698
|-
|-
| [[23/11]]
| [[27/22]]
| -27.008
| +1.080
| -45.567
| +1.821
|-
|-
| ''[[12/11]]''
| [[34/25]]
| ''-27.176''
| +1.112
| ''-45.851''
| +1.876
|-
|-
| [[20/11]]
| [[25/1]]
| +27.387
| -1.144
| +46.206
| -1.929
|-
|-
| [[31/7]]
| [[29/6]]
| +27.552
| -1.151
| +46.485
| -1.943
|- style="background-color: #cccccc;"
| ''[[19/16]]''
| ''-1.157''
| ''-1.953''
|-
|-
| ''[[22/17]]''
| [[25/11]]
| ''-27.806''
| +1.197
| ''-46.914''
| +2.020
|-
|-
| [[27/8]]
| [[27/2]]
| -27.895
| -1.261
| -47.063
| -2.128
|-
|-
| [[29/24]]
| [[29/28]]
| -28.004
| -1.480
| -47.248
| -2.497
|- style="background-color: #cccccc;"
| ''[[16/5]]''
| ''+1.531''
| ''+2.584''
|-
|-
| [[25/4]]
| [[31/28]]
| -28.012
| +1.604
| -47.261
| +2.706
|-
|-
| ''[[32/17]]''
| [[11/5]]
| ''+28.165''
| -1.769
| ''+47.518''
| -2.984
|-
|-
| ''[[31/24]]''
| [[31/6]]
| ''+28.183''
| +1.932
| ''+47.549''
| +3.260
|-
|-
| [[5/4]]
| [[31/27]]
| -28.584
| -2.086
| -48.226
| -3.520
|- style="background-color: #cccccc;"
| ''[[25/16]]''
| ''-2.103''
| ''-3.548''
|-
|-
| ''[[29/7]]''
| [[19/11]]
| ''-28.635''
| +2.143
| ''-48.312''
| +3.615
|-
|-
| ''[[23/15]]''
| [[33/26]]
| ''+28.752''
| +2.152
| ''+48.510''
| +3.632
|- style="background-color: #cccccc;"
| ''[[32/27]]''
| ''+2.221''
| ''+3.746''
|-
|-
| ''[[27/17]]''
| [[34/11]]
| ''-28.886''
| +2.309
| ''-48.735''
| +3.896
|-
|-
| [[19/4]]
| '''[[11/1]]'''
| -28.958
| '''-2.341'''
| -48.857
| '''-3.949'''
|-
| [[31/30]]
| +2.504
| +4.225
|-
| [[14/11]]
| -2.610
| -4.404
|-
| [[33/14]]
| -2.669
| -4.504
|-
| [[31/10]]
| -2.775
| -4.683
|-
| [[11/3]]
| +2.939
| +4.959
|- style="background-color: #cccccc;"
| ''[[32/9]]''
| ''-3.059''
| ''-5.161''
|-
| [[31/29]]
| +3.084
| +5.203
|- style="background-color: #cccccc;"
| ''[[16/11]]''
| ''+3.300''
| ''+5.568''
|-
|-
| [[17/2]]
| [[31/2]]
| -29.124
| -3.347
| -49.137
| -5.647
|- style="background-color: #cccccc;"
| ''[[21/16]]''
| ''+3.388''
| ''+5.716''
|-
|-
| [[4/1]]
| [[15/11]]
| +29.156
| -3.511
| +49.191
| -5.923
|-
|-
| ''[[30/7]]''
| [[28/27]]
| ''-29.215''
| -3.690
| ''-49.290''
| -6.225
|-
|-
| ''[[23/3]]''
| [[25/14]]
| ''+29.324''
| +3.807
| ''+49.475''
| +6.423
|- style="background-color: #cccccc;"
| ''[[16/13]]''
| ''-3.846''
| ''-6.488''
|-
|-
| ''[[18/13]]''
| [[26/15]]
| ''-29.329''
| -3.921
| ''-49.482''
| -6.616
|-
|-
| [[7/6]]
| [[9/2]]
| -29.485
| +4.019
| -49.745
| +6.780
|-
|-
| [[20/19]]
| [[29/22]]
| +29.530
| -4.090
| +49.821
| -6.901
|-
|-
| ''[[20/1]]''
| [[29/18]]
| ''-29.544''
| +4.128
| ''-49.845''
| +6.965
|-
|-
| ''[[17/10]]''
| [[25/3]]
| ''+29.575''
| +4.136
| ''+49.898''
| +6.978
|- style="background-color: #cccccc;"
| ''[[24/17]]''
| ''-4.289''
| ''-7.235''
|- style="background-color: #cccccc;"
| ''[[32/31]]''
| ''+4.307''
| ''+7.266''
|-
| [[21/1]]
| +4.347
| +7.335
|-
| [[34/21]]
| -4.379
| -7.388
|-
| [[14/5]]
| -4.379
| -7.388
|-
| [[26/3]]
| -4.493
| -7.581
|-
| [[21/19]]
| +4.545
| +7.669
|-
| [[10/9]]
| -4.590
| -7.745
|-
| [[5/3]]
| +4.708
| +7.943
|-
| [[19/14]]
| +4.753
| +8.019
|-
| '''[[13/1]]'''
| '''+4.805'''
| '''+8.107'''
|-
| [[13/7]]
| -4.822
| -8.135
|-
| [[34/13]]
| -4.837
| -8.160
|- style="background-color: #cccccc;"
| ''[[23/20]]''
| ''-4.876''
| ''-8.227''
|-
| [[21/5]]
| +4.919
| +8.300
|-
| [[17/7]]
| +4.919
| +8.300
|-
| [[14/1]]
| -4.951
| -8.353
|-
| [[19/13]]
| -5.003
| -8.441
|-
| [[19/3]]
| +5.082
| +8.574
|-
| [[29/27]]
| -5.170
| -8.723
|-
| [[34/3]]
| +5.248
| +8.854
|-
| '''[[3/1]]'''
| '''-5.280'''
| '''-8.908'''
|-
| [[13/5]]
| +5.377
| +9.072
|- style="background-color: #cccccc;"
| ''[[23/4]]''
| ''-5.448''
| ''-9.192''
|- style="background-color: #cccccc;"
| ''[[24/13]]''
| ''+5.453''
| ''+9.199''
|-
| [[25/21]]
| -5.491
| -9.264
|-
| [[14/9]]
| +5.608
| +9.462
|-
| [[19/15]]
| +5.653
| +9.538
|-
| [[34/15]]
| +5.820
| +9.819
|-
| [[15/1]]
| -5.851
| -9.872
|-
| [[29/10]]
| -5.859
| -9.885
|- style="background-color: #cccccc;"
| ''[[8/7]]''
| ''+5.910''
| ''+9.972''
|-
| [[25/13]]
| -5.949
| -10.037
|- style="background-color: #cccccc;"
| ''[[33/32]]''
| ''+5.998''
| ''+10.120''
|-
| [[27/26]]
| -6.066
| -10.235
|- style="background-color: #cccccc;"
| ''[[16/3]]''
| ''+6.239''
| ''+10.526''
|-
| [[22/9]]
| -6.359
| -10.729
|-
| [[29/2]]
| -6.431
| -10.850
|-
| [[33/25]]
| -6.477
| -10.927
|-
| [[21/11]]
| +6.688
| +11.284
|- style="background-color: #cccccc;"
| ''[[16/15]]''
| ''+6.811''
| ''+11.491''
|-
| [[33/2]]
| +6.958
| +11.739
|-
| [[33/5]]
| -7.048
| -11.892
|-
| [[13/11]]
| +7.146
| +12.056
|-
| [[31/18]]
| +7.212
| +12.168
|-
| [[31/9]]
| -7.366
| -12.427
|- style="background-color: #cccccc;"
| ''[[32/29]]''
| ''+7.391''
| ''+12.469''
|-
| [[33/19]]
| -7.422
| -12.523
|-
| [[26/11]]
| -7.432
| -12.539
|-
| [[33/10]]
| +7.529
| +12.703
|-
| [[34/33]]
| +7.589
| +12.803
|-
| [[33/1]]
| -7.620
| -12.857
|- style="background-color: #cccccc;"
| ''[[32/15]]''
| ''-7.767''
| ''-13.104''
|-
| [[29/4]]
| +8.147
| +13.745
|-
| [[31/26]]
| -8.152
| -13.754
|-
| [[11/9]]
| +8.219
| +13.866
|- style="background-color: #cccccc;"
| ''[[32/3]]''
| ''-8.339''
| ''-14.069''
|- style="background-color: #cccccc;"
| ''[[33/16]]''
| ''-8.580''
| ''-14.475''
|-
| [[26/25]]
| -8.629
| -14.559
|- style="background-color: #cccccc;"
| ''[[16/7]]''
| ''-8.668''
| ''-14.624''
|-
| [[29/20]]
| +8.719
| +14.710
|-
| [[15/2]]
| +8.726
| +14.723
|-
| [[28/9]]
| -8.969
| -15.133
|- style="background-color: #cccccc;"
| ''[[23/8]]''
| ''+9.130''
| ''+15.404''
|-
| [[26/5]]
| -9.201
| -15.523
|-
| [[3/2]]
| +9.298
| +15.688
|-
| [[25/9]]
| +9.416
| +15.886
|- style="background-color: #cccccc;"
| ''[[23/18]]''
| ''-9.467''
| ''-15.972''
|-
| [[26/19]]
| -9.575
| -16.154
|-
| '''[[7/1]]'''
| '''+9.627'''
| '''+16.242'''
|-
| [[34/7]]
| -9.659
| -16.296
|-
| [[17/13]]
| +9.741
| +16.435
|-
| [[14/13]]
| -9.756
| -16.460
|-
| [[26/1]]
| -9.773
| -16.488
|-
| [[19/7]]
| -9.825
| -16.576
|-
| [[10/3]]
| -9.870
| -16.652
|-
| [[9/5]]
| -9.988
| -16.851
|-
| [[13/3]]
| +10.085
| +17.015
|-
| [[23/17]]
| +10.121
| +17.076
|-
| [[7/5]]
| +10.199
| +17.207
|-
| [[21/17]]
| -10.199
| -17.207
|- style="background-color: #cccccc;"
| ''[[24/1]]''
| ''+10.258''
| ''+17.307''
|- style="background-color: #cccccc;"
| ''[[17/12]]''
| ''-10.289''
| ''-17.360''
|-
| [[33/31]]
| +10.305
| +17.386
|-
| [[19/9]]
| +10.361
| +17.481
|-
| [[29/9]]
| -10.450
| -17.630
|- style="background-color: #cccccc;"
| ''[[24/19]]''
| ''+10.456''
| ''+17.641''
|-
| [[34/9]]
| +10.528
| +17.762
|-
| [[9/1]]
| -10.559
| -17.815
|-
| [[15/13]]
| -10.657
| -17.979
|- style="background-color: #cccccc;"
| ''[[13/8]]''
| ''-10.732''
| ''-18.107''
|-
| [[25/7]]
| -10.771
| -18.172
|- style="background-color: #cccccc;"
| ''[[24/5]]''
| ''+10.830''
| ''+18.271''
|-
| [[27/14]]
| -10.888
| -18.370
|-
| [[22/15]]
| -11.067
| -18.672
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''-11.190''
| ''-18.879''
|-
| [[31/4]]
| +11.231
| +18.948
|-
| [[29/26]]
| -11.236
| -18.957
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''-11.278''
| ''-19.027''
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''-11.401''
| ''-19.236''
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''+11.519''
| ''+19.434''
|-
| [[22/3]]
| -11.639
| -19.637
|-
| [[31/20]]
| +11.803
| +19.913
|-
| [[33/28]]
| +11.908
| +20.092
|-
| [[11/7]]
| -11.968
| -20.191
|-
| [[31/15]]
| -12.074
| -20.370
|-
| [[11/2]]
| +12.237
| +20.646
|-
| [[33/13]]
| -12.425
| -20.964
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''-12.475''
| ''-21.047''
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''+12.598''
| ''+21.255''
|-
| [[31/3]]
| -12.645
| -21.335
|-
| [[11/10]]
| +12.809
| +21.611
|-
| [[31/14]]
| -12.974
| -21.890
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''-13.047''
| ''-22.012''
|-
| [[27/4]]
| +13.317
| +22.468
|-
| [[33/29]]
| +13.389
| +22.589
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''-13.420''
| ''-22.642''
|-
| [[29/12]]
| +13.427
| +22.653
|-
| [[25/2]]
| +13.434
| +22.666
|-
| [[27/11]]
| -13.498
| -22.774
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''+13.587''
| ''+22.923''
|- style="background-color: #cccccc;"
| ''[[29/23]]''
| ''+13.595''
| ''+22.937''
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''-13.618''
| ''-22.976''
|-
| [[28/15]]
| -13.677
| -23.076
|-
| [[27/20]]
| +13.889
| +23.432
|-
| [[5/2]]
| +14.006
| +23.631
|-
| [[26/21]]
| -14.120
| -23.823
|- style="background-color: #cccccc;"
| ''[[30/23]]''
| ''+14.174''
| ''+23.915''
|-
| [[28/3]]
| -14.249
| -24.041
|-
| [[19/2]]
| +14.380
| +24.261
|- style="background-color: #cccccc;"
| ''[[24/23]]''
| ''-14.410''
| ''-24.311''
|-
| '''[[17/1]]'''
| '''+14.546'''
| '''+24.542'''
|-
| '''[[2/1]]'''
| '''-14.578'''
| '''-24.595'''
|-
| [[27/25]]
| -14.695
| -24.793
|-
| [[19/17]]
| -14.744
| -24.876
|- style="background-color: #cccccc;"
| ''[[23/6]]''
| ''-14.746''
| ''-24.879''
|-
| [[7/3]]
| +14.907
| +25.150
|-
| [[19/10]]
| +14.952
| +25.226
|- style="background-color: #cccccc;"
| ''[[20/17]]''
| ''+14.997''
| ''+25.303''
|-
| [[23/7]]
| +15.040
| +25.375
|- style="background-color: #cccccc;"
| ''[[28/23]]''
| ''+15.075''
| ''+25.434''
|-
| [[17/5]]
| +15.118
| +25.507
|-
| [[10/1]]
| -15.150
| -25.560
|-
| [[29/15]]
| -15.157
| -25.573
|- style="background-color: #cccccc;"
| ''[[12/7]]''
| ''+15.209''
| ''+25.659''
|-
| [[27/5]]
| -15.267
| -25.758
|-
| [[13/9]]
| +15.364
| +25.922
|-
| [[15/7]]
| -15.478
| -26.115
|- style="background-color: #cccccc;"
| ''[[8/1]]''
| ''+15.537''
| ''+26.214''
|- style="background-color: #cccccc;"
| ''[[17/4]]''
| ''-15.569''
| ''-26.267''
|-
| [[31/11]]
| -15.584
| -26.294
|-
| [[27/19]]
| -15.641
| -26.389
|-
| [[25/17]]
| -15.690
| -26.471
|-
| [[29/3]]
| -15.729
| -26.538
|- style="background-color: #cccccc;"
| ''[[19/8]]''
| ''-15.735''
| ''-26.548''
|-
| [[25/22]]
| +15.775
| +26.615
|-
| [[34/27]]
| +15.807
| +26.670
|-
| [[27/1]]
| -15.839
| -26.723
|-
| [[29/14]]
| -16.058
| -27.093
|- style="background-color: #cccccc;"
| ''[[8/5]]''
| ''+16.109''
| ''+27.179''
|-
| [[22/5]]
| -16.347
| -27.580
|-
| [[31/12]]
| +16.510
| +27.856
|- style="background-color: #cccccc;"
| ''[[31/23]]''
| ''+16.679''
| ''+28.140''
|- style="background-color: #cccccc;"
| ''[[25/8]]''
| ''-16.681''
| ''-28.144''
|-
| [[22/19]]
| -16.721
| -28.210
|-
| [[31/25]]
| -16.782
| -28.313
|- style="background-color: #cccccc;"
| ''[[27/16]]''
| ''-16.798''
| ''-28.342''
|-
| [[17/11]]
| +16.887
| +28.491
|-
| [[22/1]]
| -16.918
| -28.544
|-
| [[28/11]]
| -17.188
| -28.999
|-
| [[33/7]]
| -17.247
| -29.099
|-
| [[31/5]]
| -17.353
| -29.278
|-
| [[11/6]]
| +17.517
| +29.554
|- style="background-color: #cccccc;"
| ''[[23/22]]''
| ''-17.685''
| ''-29.838''
|-
| [[31/19]]
| -17.727
| -29.908
|- style="background-color: #cccccc;"
| ''[[11/8]]''
| ''-17.878''
| ''-30.163''
|-
| [[34/31]]
| +17.893
| +30.189
|-
| '''[[31/1]]'''
| '''-17.925'''
| '''-30.243'''
|- style="background-color: #cccccc;"
| ''[[32/21]]''
| ''-17.966''
| ''-30.311''
|-
| [[30/11]]
| -18.089
| -30.519
|-
| [[28/25]]
| -18.385
| -31.019
|- style="background-color: #cccccc;"
| ''[[32/13]]''
| ''-18.424''
| ''-31.084''
|-
| [[9/4]]
| +18.597
| +31.375
|-
| [[29/11]]
| -18.668
| -31.496
|-
| [[25/6]]
| +18.714
| +31.574
|- style="background-color: #cccccc;"
| ''[[27/23]]''
| ''+18.765''
| ''+31.659''
|- style="background-color: #cccccc;"
| ''[[31/16]]''
| ''-18.885''
| ''-31.861''
|-
| [[21/2]]
| +18.925
| +31.930
|-
| [[28/5]]
| -18.957
| -31.983
|-
| [[20/9]]
| -19.168
| -32.340
|-
| [[6/5]]
| -19.286
| -32.538
|-
| [[28/19]]
| -19.331
| -32.614
|-
| [[13/2]]
| +19.383
| +32.702
|-
| [[26/7]]
| -19.400
| -32.731
|- style="background-color: #cccccc;"
| ''[[23/10]]''
| ''-19.454''
| ''-32.822''
|-
| [[21/10]]
| +19.497
| +32.895
|-
| [[17/14]]
| +19.497
| +32.895
|-
| [[28/1]]
| -19.529
| -32.948
|- style="background-color: #cccccc;"
| ''[[18/17]]''
| ''+19.588''
| ''+33.047''
|-
| [[19/6]]
| +19.660
| +33.169
|-
| [[17/3]]
| +19.826
| +33.450
|-
| [[6/1]]
| -19.858
| -33.503
|-
| [[23/13]]
| +19.862
| +33.511
|-
| [[29/25]]
| -19.865
| -33.516
|- style="background-color: #cccccc;"
| ''[[20/7]]''
| ''+19.916''
| ''+33.602''
|-
| [[13/10]]
| +19.955
| +33.667
|- style="background-color: #cccccc;"
| ''[[23/2]]''
| ''-20.026''
| ''-33.787''
|- style="background-color: #cccccc;"
| ''[[13/12]]''
| ''-20.030''
| ''-33.795''
|-
| [[9/7]]
| -20.186
| -34.058
|-
| [[30/19]]
| -20.231
| -34.134
|-
| [[23/21]]
| +20.320
| +34.283
|-
| [[17/15]]
| +20.398
| +34.414
|-
| [[30/1]]
| -20.429
| -34.468
|-
| [[29/5]]
| -20.437
| -34.481
|- style="background-color: #cccccc;"
| ''[[7/4]]''
| ''-20.488''
| ''-34.567''
|-
| [[27/13]]
| -20.644
| -34.830
|-
| [[29/19]]
| -20.811
| -35.111
|- style="background-color: #cccccc;"
| ''[[8/3]]''
| ''+20.817''
| ''+35.122''
|-
| [[34/29]]
| +20.977
| +35.392
|- style="background-color: #cccccc;"
| ''[[32/23]]''
| ''+20.985''
| ''+35.406''
|-
| '''[[29/1]]'''
| '''-21.009'''
| '''-35.445'''
|-
| [[22/21]]
| -21.266
| -35.879
|- style="background-color: #cccccc;"
| ''[[15/8]]''
| ''-21.389''
| ''-36.086''
|-
| [[33/4]]
| +21.536
| +36.334
|-
| [[22/13]]
| -21.724
| -36.651
|- style="background-color: #cccccc;"
| ''[[29/16]]''
| ''-21.968''
| ''-37.064''
|-
| [[33/20]]
| +22.107
| +37.299
|-
| [[33/17]]
| -22.167
| -37.399
|-
| [[31/21]]
| -22.273
| -37.577
|-
| [[29/8]]
| +22.725
| +38.340
|-
| [[31/13]]
| -22.730
| -38.350
|-
| [[18/11]]
| -22.797
| -38.462
|- style="background-color: #cccccc;"
| ''[[33/8]]''
| ''-23.158''
| ''-39.071''
|- style="background-color: #cccccc;"
| ''[[32/7]]''
| ''-23.245''
| ''-39.219''
|-
| [[15/4]]
| +23.304
| +39.318
|- style="background-color: #cccccc;"
| ''[[23/16]]''
| ''+23.708''
| ''+39.999''
|- style="background-color: #cccccc;"
| ''[[29/17]]''
| ''+23.716''
| ''+40.013''
|-
| [[4/3]]
| -23.876
| -40.283
|-
| [[25/18]]
| +23.994
| +40.481
|- style="background-color: #cccccc;"
| ''[[23/9]]''
| ''-24.045''
| ''-40.567''
|-
| [[7/2]]
| +24.205
| +40.838
|- style="background-color: #cccccc;"
| ''[[30/17]]''
| ''+24.295''
| ''+40.990''
|-
| [[26/17]]
| -24.319
| -41.030
|-
| [[28/13]]
| -24.334
| -41.055
|-
| [[20/3]]
| -24.448
| -41.248
|- style="background-color: #cccccc;"
| ''[[18/7]]''
| ''+24.507''
| ''+41.347''
|-
| [[18/5]]
| -24.565
| -41.446
|-
| [[13/6]]
| +24.663
| +41.610
|-
| '''[[23/1]]'''
| '''+24.667'''
| '''+41.618'''
|-
| [[34/23]]
| -24.699
| -41.671
|- style="background-color: #cccccc;"
| ''[[20/13]]''
| ''+24.738''
| ''+41.738''
|-
| [[10/7]]
| -24.777
| -41.802
|- style="background-color: #cccccc;"
| ''[[26/23]]''
| ''+24.831''
| ''+41.894''
|- style="background-color: #cccccc;"
| ''[[12/1]]''
| ''+24.836''
| ''+41.902''
|-
| [[23/19]]
| +24.865
| +41.952
|- style="background-color: #cccccc;"
| ''[[17/6]]''
| ''-24.867''
| ''-41.955''
|-
| [[19/18]]
| +24.939
| +42.076
|- style="background-color: #cccccc;"
| ''[[19/12]]''
| ''-25.034''
| ''-42.236''
|-
| [[17/9]]
| +25.106
| +42.357
|-
| [[18/1]]
| -25.137
| -42.411
|- style="background-color: #cccccc;"
| ''[[28/17]]''
| ''+25.196''
| ''+42.510''
|- style="background-color: #cccccc;"
| ''[[21/20]]''
| ''-25.196''
| ''-42.510''
|-
| [[30/13]]
| -25.235
| -42.575
|-
| [[23/5]]
| +25.239
| +42.582
|- style="background-color: #cccccc;"
| ''[[13/4]]''
| ''-25.310''
| ''-42.702''
|-
| [[29/21]]
| -25.356
| -42.780
|- style="background-color: #cccccc;"
| ''[[12/5]]''
| ''+25.407''
| ''+42.866''
|-
| [[27/7]]
| -25.466
| -42.965
|- style="background-color: #cccccc;"
| ''[[21/4]]''
| ''-25.768''
| ''-43.475''
|-
| [[31/8]]
| +25.809
| +43.543
|-
| [[25/23]]
| -25.811
| -43.547
|-
| [[29/13]]
| -25.814
| -43.553
|- style="background-color: #cccccc;"
| ''[[25/12]]''
| ''-25.979''
| ''-43.831''
|- style="background-color: #cccccc;"
| ''[[9/8]]''
| ''-26.097''
| ''-44.029''
|-
| [[22/7]]
| -26.546
| -44.787
|- style="background-color: #cccccc;"
| ''[[31/17]]''
| ''+26.800''
| ''+45.215''
|-
| [[11/4]]
| +26.815
| +45.242
|- style="background-color: #cccccc;"
| ''[[33/23]]''
| ''+26.984''
| ''+45.526''
|-
| [[23/11]]
| +27.008
| +45.567
|- style="background-color: #cccccc;"
| ''[[12/11]]''
| ''+27.176''
| ''+45.851''
|-
| [[20/11]]
| -27.387
| -46.206
|-
| [[31/7]]
| -27.552
| -46.485
|- style="background-color: #cccccc;"
| ''[[22/17]]''
| ''+27.806''
| ''+46.914''
|-
| [[27/8]]
| +27.895
| +47.063
|-
| [[29/24]]
| +28.004
| +47.248
|-
| [[25/4]]
| +28.012
| +47.261
|- style="background-color: #cccccc;"
| ''[[32/17]]''
| ''-28.165''
| ''-47.518''
|- style="background-color: #cccccc;"
| ''[[31/24]]''
| ''-28.183''
| ''-47.549''
|-
| [[5/4]]
| +28.584
| +48.226
|- style="background-color: #cccccc;"
| ''[[29/7]]''
| ''+28.635''
| ''+48.312''
|- style="background-color: #cccccc;"
| ''[[23/15]]''
| ''-28.752''
| ''-48.510''
|- style="background-color: #cccccc;"
| ''[[27/17]]''
| ''+28.886''
| ''+48.735''
|-
| [[19/4]]
| +28.958
| +48.857
|-
| [[17/2]]
| +29.124
| +49.137
|-
| [[4/1]]
| -29.156
| -49.191
|- style="background-color: #cccccc;"
| ''[[30/7]]''
| ''+29.215''
| ''+49.290''
|- style="background-color: #cccccc;"
| ''[[23/3]]''
| ''-29.324''
| ''-49.475''
|- style="background-color: #cccccc;"
| ''[[18/13]]''
| ''+29.329''
| ''+49.482''
|-
| [[7/6]]
| +29.485
| +49.745
|-
| [[20/19]]
| -29.530
| -49.821
|- style="background-color: #cccccc;"
| ''[[20/1]]''
| ''+29.544''
| ''+49.845''
|- style="background-color: #cccccc;"
| ''[[17/10]]''
| ''-29.575''
| ''-49.898''
|-
|-
| [[23/14]]
| [[23/14]]
| -29.618
| +29.618
| -49.971
| +49.971
|}
 
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
|+ style="white-space: nowrap;" | 34-integer-limit intervals in 71zpi with prime 2 removed (by patent val mapping)
|-
! Ratio
! Error (abs, [[Cent|¢]])
! Error (rel, [[Relative cent|%]])
|-
| [[34/1]]
| -0.032
| -0.053
|-
| [[34/19]]
| +0.166
| +0.281
|-
| '''[[19/1]]'''
| '''-0.198'''
| '''-0.334'''
|-
| [[14/3]]
| +0.329
| +0.555
|-
| [[19/5]]
| +0.374
| +0.631
|-
| [[21/13]]
| -0.458
| -0.772
|-
| [[34/5]]
| +0.540
| +0.911
|-
| '''[[5/1]]'''
| '''-0.572'''
| '''-0.965'''
|-
| [[30/29]]
| +0.580
| +0.978
|-
| [[27/10]]
| -0.689
| -1.163
|-
| [[26/9]]
| +0.787
| +1.327
|-
| [[15/14]]
| -0.901
| -1.519
|-
| [[25/19]]
| -0.946
| -1.595
|-
| [[31/22]]
| -1.007
| -1.698
|-
| [[27/22]]
| +1.080
| +1.821
|-
| [[34/25]]
| +1.112
| +1.876
|-
| [[25/1]]
| -1.144
| -1.929
|-
| [[29/6]]
| -1.151
| -1.943
|-
| [[25/11]]
| +1.197
| +2.020
|-
| [[27/2]]
| -1.261
| -2.128
|-
| [[29/28]]
| -1.480
| -2.497
|-
| [[31/28]]
| +1.604
| +2.706
|-
| [[11/5]]
| -1.769
| -2.984
|-
| [[31/6]]
| +1.932
| +3.260
|-
| [[31/27]]
| -2.086
| -3.520
|-
| [[19/11]]
| +2.143
| +3.615
|-
| [[33/26]]
| +2.152
| +3.632
|-
| [[34/11]]
| +2.309
| +3.896
|-
| '''[[11/1]]'''
| '''-2.341'''
| '''-3.949'''
|-
| [[31/30]]
| +2.504
| +4.225
|-
| [[14/11]]
| -2.610
| -4.404
|-
| [[33/14]]
| -2.669
| -4.504
|-
| [[31/10]]
| -2.775
| -4.683
|-
| [[11/3]]
| +2.939
| +4.959
|-
| [[31/29]]
| +3.084
| +5.203
|-
| [[31/2]]
| -3.347
| -5.647
|-
| [[15/11]]
| -3.511
| -5.923
|-
| [[28/27]]
| -3.690
| -6.225
|-
| [[25/14]]
| +3.807
| +6.423
|-
| [[26/15]]
| -3.921
| -6.616
|-
| [[9/2]]
| +4.019
| +6.780
|-
| [[29/22]]
| -4.090
| -6.901
|-
| [[29/18]]
| +4.128
| +6.965
|-
| [[25/3]]
| +4.136
| +6.978
|-
| [[21/1]]
| +4.347
| +7.335
|-
| [[34/21]]
| -4.379
| -7.388
|-
| [[14/5]]
| -4.379
| -7.388
|-
| [[26/3]]
| -4.493
| -7.581
|-
| [[21/19]]
| +4.545
| +7.669
|-
| [[10/9]]
| -4.590
| -7.745
|-
| [[5/3]]
| +4.708
| +7.943
|-
| [[19/14]]
| +4.753
| +8.019
|-
| '''[[13/1]]'''
| '''+4.805'''
| '''+8.107'''
|-
| [[13/7]]
| -4.822
| -8.135
|-
| [[34/13]]
| -4.837
| -8.160
|-
| [[21/5]]
| +4.919
| +8.300
|-
| [[17/7]]
| +4.919
| +8.300
|-
| [[14/1]]
| -4.951
| -8.353
|-
| [[19/13]]
| -5.003
| -8.441
|-
| [[19/3]]
| +5.082
| +8.574
|-
| [[29/27]]
| -5.170
| -8.723
|-
| [[34/3]]
| +5.248
| +8.854
|-
| '''[[3/1]]'''
| '''-5.280'''
| '''-8.908'''
|-
| [[13/5]]
| +5.377
| +9.072
|-
| [[25/21]]
| -5.491
| -9.264
|-
| [[14/9]]
| +5.608
| +9.462
|-
| [[19/15]]
| +5.653
| +9.538
|-
| [[34/15]]
| +5.820
| +9.819
|-
| [[15/1]]
| -5.851
| -9.872
|-
| [[29/10]]
| -5.859
| -9.885
|-
| [[25/13]]
| -5.949
| -10.037
|-
| [[27/26]]
| -6.066
| -10.235
|-
| [[22/9]]
| -6.359
| -10.729
|-
| [[29/2]]
| -6.431
| -10.850
|-
| [[33/25]]
| -6.477
| -10.927
|-
| [[21/11]]
| +6.688
| +11.284
|-
| [[33/2]]
| +6.958
| +11.739
|-
| [[33/5]]
| -7.048
| -11.892
|-
| [[13/11]]
| +7.146
| +12.056
|-
| [[31/18]]
| +7.212
| +12.168
|-
| [[31/9]]
| -7.366
| -12.427
|-
| [[33/19]]
| -7.422
| -12.523
|-
| [[26/11]]
| -7.432
| -12.539
|-
| [[33/10]]
| +7.529
| +12.703
|-
| [[34/33]]
| +7.589
| +12.803
|-
| [[33/1]]
| -7.620
| -12.857
|-
| [[29/4]]
| +8.147
| +13.745
|-
| [[31/26]]
| -8.152
| -13.754
|-
| [[11/9]]
| +8.219
| +13.866
|-
| [[26/25]]
| -8.629
| -14.559
|-
| [[29/20]]
| +8.719
| +14.710
|-
| [[15/2]]
| +8.726
| +14.723
|-
| [[28/9]]
| -8.969
| -15.133
|-
| [[26/5]]
| -9.201
| -15.523
|-
| [[3/2]]
| +9.298
| +15.688
|-
| [[25/9]]
| +9.416
| +15.886
|-
| [[26/19]]
| -9.575
| -16.154
|-
| '''[[7/1]]'''
| '''+9.627'''
| '''+16.242'''
|-
| [[34/7]]
| -9.659
| -16.296
|-
| [[17/13]]
| +9.741
| +16.435
|-
| [[14/13]]
| -9.756
| -16.460
|-
| [[26/1]]
| -9.773
| -16.488
|-
| [[19/7]]
| -9.825
| -16.576
|-
| [[10/3]]
| -9.870
| -16.652
|-
| [[9/5]]
| -9.988
| -16.851
|-
| [[13/3]]
| +10.085
| +17.015
|-
| [[23/17]]
| +10.121
| +17.076
|-
| [[7/5]]
| +10.199
| +17.207
|-
| [[21/17]]
| -10.199
| -17.207
|-
| [[33/31]]
| +10.305
| +17.386
|-
| [[19/9]]
| +10.361
| +17.481
|-
| [[29/9]]
| -10.450
| -17.630
|-
| [[34/9]]
| +10.528
| +17.762
|-
| [[9/1]]
| -10.559
| -17.815
|-
| [[15/13]]
| -10.657
| -17.979
|-
| [[25/7]]
| -10.771
| -18.172
|-
| [[27/14]]
| -10.888
| -18.370
|-
| [[22/15]]
| -11.067
| -18.672
|-
| [[31/4]]
| +11.231
| +18.948
|-
| [[29/26]]
| -11.236
| -18.957
|-
| [[22/3]]
| -11.639
| -19.637
|-
| [[31/20]]
| +11.803
| +19.913
|-
| [[33/28]]
| +11.908
| +20.092
|-
| [[11/7]]
| -11.968
| -20.191
|-
| [[31/15]]
| -12.074
| -20.370
|-
| [[11/2]]
| +12.237
| +20.646
|-
| [[33/13]]
| -12.425
| -20.964
|-
| [[31/3]]
| -12.645
| -21.335
|-
| [[11/10]]
| +12.809
| +21.611
|-
| [[31/14]]
| -12.974
| -21.890
|-
| [[27/4]]
| +13.317
| +22.468
|-
| [[33/29]]
| +13.389
| +22.589
|-
| [[29/12]]
| +13.427
| +22.653
|-
| [[25/2]]
| +13.434
| +22.666
|-
| [[27/11]]
| -13.498
| -22.774
|-
| [[28/15]]
| -13.677
| -23.076
|-
| [[27/20]]
| +13.889
| +23.432
|-
| [[5/2]]
| +14.006
| +23.631
|-
| [[26/21]]
| -14.120
| -23.823
|-
| [[28/3]]
| -14.249
| -24.041
|-
| [[19/2]]
| +14.380
| +24.261
|-
| '''[[17/1]]'''
| '''+14.546'''
| '''+24.542'''
|-
| '''[[2/1]]'''
| '''-14.578'''
| '''-24.595'''
|-
| [[27/25]]
| -14.695
| -24.793
|-
| [[19/17]]
| -14.744
| -24.876
|-
| [[7/3]]
| +14.907
| +25.150
|-
| [[19/10]]
| +14.952
| +25.226
|-
| [[23/7]]
| +15.040
| +25.375
|-
| [[17/5]]
| +15.118
| +25.507
|-
| [[10/1]]
| -15.150
| -25.560
|-
| [[29/15]]
| -15.157
| -25.573
|-
| [[27/5]]
| -15.267
| -25.758
|-
| [[13/9]]
| +15.364
| +25.922
|-
| [[15/7]]
| -15.478
| -26.115
|-
| [[31/11]]
| -15.584
| -26.294
|-
| [[27/19]]
| -15.641
| -26.389
|-
| [[25/17]]
| -15.690
| -26.471
|-
| [[29/3]]
| -15.729
| -26.538
|-
| [[25/22]]
| +15.775
| +26.615
|-
| [[34/27]]
| +15.807
| +26.670
|-
| [[27/1]]
| -15.839
| -26.723
|-
| [[29/14]]
| -16.058
| -27.093
|-
| [[22/5]]
| -16.347
| -27.580
|-
| [[31/12]]
| +16.510
| +27.856
|-
| [[22/19]]
| -16.721
| -28.210
|-
| [[31/25]]
| -16.782
| -28.313
|-
| [[17/11]]
| +16.887
| +28.491
|-
| [[22/1]]
| -16.918
| -28.544
|-
| [[28/11]]
| -17.188
| -28.999
|-
| [[33/7]]
| -17.247
| -29.099
|-
| [[31/5]]
| -17.353
| -29.278
|-
| [[11/6]]
| +17.517
| +29.554
|-
| [[31/19]]
| -17.727
| -29.908
|-
| [[34/31]]
| +17.893
| +30.189
|-
| '''[[31/1]]'''
| '''-17.925'''
| '''-30.243'''
|-
| [[30/11]]
| -18.089
| -30.519
|-
| [[28/25]]
| -18.385
| -31.019
|-
| [[9/4]]
| +18.597
| +31.375
|-
| [[29/11]]
| -18.668
| -31.496
|-
| [[25/6]]
| +18.714
| +31.574
|-
| [[21/2]]
| +18.925
| +31.930
|-
| [[28/5]]
| -18.957
| -31.983
|-
| [[20/9]]
| -19.168
| -32.340
|-
| [[6/5]]
| -19.286
| -32.538
|-
| [[28/19]]
| -19.331
| -32.614
|-
| [[13/2]]
| +19.383
| +32.702
|-
| [[26/7]]
| -19.400
| -32.731
|-
| [[21/10]]
| +19.497
| +32.895
|-
| [[17/14]]
| +19.497
| +32.895
|-
| [[28/1]]
| -19.529
| -32.948
|-
| [[19/6]]
| +19.660
| +33.169
|-
| [[17/3]]
| +19.826
| +33.450
|-
| [[6/1]]
| -19.858
| -33.503
|-
| [[23/13]]
| +19.862
| +33.511
|-
| [[29/25]]
| -19.865
| -33.516
|-
| [[13/10]]
| +19.955
| +33.667
|-
| [[9/7]]
| -20.186
| -34.058
|-
| [[30/19]]
| -20.231
| -34.134
|-
| [[23/21]]
| +20.320
| +34.283
|-
| [[17/15]]
| +20.398
| +34.414
|-
| [[30/1]]
| -20.429
| -34.468
|-
| [[29/5]]
| -20.437
| -34.481
|-
| [[27/13]]
| -20.644
| -34.830
|-
| [[29/19]]
| -20.811
| -35.111
|-
| [[34/29]]
| +20.977
| +35.392
|-
| '''[[29/1]]'''
| '''-21.009'''
| '''-35.445'''
|-
| [[22/21]]
| -21.266
| -35.879
|-
| [[33/4]]
| +21.536
| +36.334
|-
| [[22/13]]
| -21.724
| -36.651
|-
| [[33/20]]
| +22.107
| +37.299
|-
| [[33/17]]
| -22.167
| -37.399
|-
| [[31/21]]
| -22.273
| -37.577
|-
| [[29/8]]
| +22.725
| +38.340
|-
| [[31/13]]
| -22.730
| -38.350
|-
| [[18/11]]
| -22.797
| -38.462
|-
| [[15/4]]
| +23.304
| +39.318
|-
| [[4/3]]
| -23.876
| -40.283
|-
| [[25/18]]
| +23.994
| +40.481
|-
| [[7/2]]
| +24.205
| +40.838
|-
| [[26/17]]
| -24.319
| -41.030
|-
| [[28/13]]
| -24.334
| -41.055
|-
| [[20/3]]
| -24.448
| -41.248
|-
| [[18/5]]
| -24.565
| -41.446
|-
| [[13/6]]
| +24.663
| +41.610
|-
| '''[[23/1]]'''
| '''+24.667'''
| '''+41.618'''
|-
| [[34/23]]
| -24.699
| -41.671
|-
| [[10/7]]
| -24.777
| -41.802
|-
| [[23/19]]
| +24.865
| +41.952
|-
| [[19/18]]
| +24.939
| +42.076
|-
| [[17/9]]
| +25.106
| +42.357
|-
| [[18/1]]
| -25.137
| -42.411
|-
| [[30/13]]
| -25.235
| -42.575
|-
| [[23/5]]
| +25.239
| +42.582
|-
| [[29/21]]
| -25.356
| -42.780
|-
| [[27/7]]
| -25.466
| -42.965
|-
| [[31/8]]
| +25.809
| +43.543
|-
| [[25/23]]
| -25.811
| -43.547
|-
| [[29/13]]
| -25.814
| -43.553
|-
| [[22/7]]
| -26.546
| -44.787
|-
| [[11/4]]
| +26.815
| +45.242
|-
| [[23/11]]
| +27.008
| +45.567
|-
| [[20/11]]
| -27.387
| -46.206
|-
| [[31/7]]
| -27.552
| -46.485
|-
| [[27/8]]
| +27.895
| +47.063
|-
| [[29/24]]
| +28.004
| +47.248
|-
| [[25/4]]
| +28.012
| +47.261
|-
| [[5/4]]
| +28.584
| +48.226
|-
| [[19/4]]
| +28.958
| +48.857
|-
| [[17/2]]
| +29.124
| +49.137
|-
| [[4/1]]
| -29.156
| -49.191
|-
| [[7/6]]
| +29.485
| +49.745
|-
| [[20/19]]
| -29.530
| -49.821
|-
| [[23/14]]
| +29.618
| +49.971
|- style="background-color: #cccccc;"
| ''[[17/10]]''
| ''+29.696''
| ''+50.102''
|- style="background-color: #cccccc;"
| ''[[20/1]]''
| ''-29.728''
| ''-50.155''
|- style="background-color: #cccccc;"
| ''[[18/13]]''
| ''-29.942''
| ''-50.518''
|- style="background-color: #cccccc;"
| ''[[23/3]]''
| ''+29.947''
| ''+50.525''
|- style="background-color: #cccccc;"
| ''[[30/7]]''
| ''-30.056''
| ''-50.710''
|- style="background-color: #cccccc;"
| ''[[27/17]]''
| ''-30.385''
| ''-51.265''
|- style="background-color: #cccccc;"
| ''[[23/15]]''
| ''+30.519''
| ''+51.490''
|- style="background-color: #cccccc;"
| ''[[29/7]]''
| ''-30.636''
| ''-51.688''
|- style="background-color: #cccccc;"
| ''[[31/24]]''
| ''+31.088''
| ''+52.451''
|- style="background-color: #cccccc;"
| ''[[22/17]]''
| ''-31.465''
| ''-53.086''
|- style="background-color: #cccccc;"
| ''[[12/11]]''
| ''-32.095''
| ''-54.149''
|- style="background-color: #cccccc;"
| ''[[33/23]]''
| ''-32.288''
| ''-54.474''
|- style="background-color: #cccccc;"
| ''[[31/17]]''
| ''-32.471''
| ''-54.785''
|- style="background-color: #cccccc;"
| ''[[9/8]]''
| ''+33.174''
| ''+55.971''
|- style="background-color: #cccccc;"
| ''[[25/12]]''
| ''+33.292''
| ''+56.169''
|- style="background-color: #cccccc;"
| ''[[21/4]]''
| ''+33.503''
| ''+56.525''
|- style="background-color: #cccccc;"
| ''[[12/5]]''
| ''-33.864''
| ''-57.134''
|- style="background-color: #cccccc;"
| ''[[13/4]]''
| ''+33.961''
| ''+57.298''
|- style="background-color: #cccccc;"
| ''[[21/20]]''
| ''+34.075''
| ''+57.490''
|- style="background-color: #cccccc;"
| ''[[28/17]]''
| ''-34.075''
| ''-57.490''
|- style="background-color: #cccccc;"
| ''[[19/12]]''
| ''+34.237''
| ''+57.764''
|- style="background-color: #cccccc;"
| ''[[17/6]]''
| ''+34.404''
| ''+58.045''
|- style="background-color: #cccccc;"
| ''[[12/1]]''
| ''-34.435''
| ''-58.098''
|- style="background-color: #cccccc;"
| ''[[26/23]]''
| ''-34.440''
| ''-58.106''
|- style="background-color: #cccccc;"
| ''[[20/13]]''
| ''-34.533''
| ''-58.262''
|- style="background-color: #cccccc;"
| ''[[18/7]]''
| ''-34.764''
| ''-58.653''
|- style="background-color: #cccccc;"
| ''[[30/17]]''
| ''-34.976''
| ''-59.010''
|- style="background-color: #cccccc;"
| ''[[23/9]]''
| ''+35.227''
| ''+59.433''
|- style="background-color: #cccccc;"
| ''[[29/17]]''
| ''-35.555''
| ''-59.987''
|- style="background-color: #cccccc;"
| ''[[33/8]]''
| ''+36.113''
| ''+60.929''
|- style="background-color: #cccccc;"
| ''[[29/16]]''
| ''+37.303''
| ''+62.936''
|- style="background-color: #cccccc;"
| ''[[15/8]]''
| ''+37.882''
| ''+63.914''
|- style="background-color: #cccccc;"
| ''[[8/3]]''
| ''-38.454''
| ''-64.878''
|- style="background-color: #cccccc;"
| ''[[7/4]]''
| ''+38.783''
| ''+65.433''
|- style="background-color: #cccccc;"
| ''[[13/12]]''
| ''+39.241''
| ''+66.205''
|- style="background-color: #cccccc;"
| ''[[23/2]]''
| ''+39.245''
| ''+66.213''
|- style="background-color: #cccccc;"
| ''[[20/7]]''
| ''-39.355''
| ''-66.398''
|- style="background-color: #cccccc;"
| ''[[18/17]]''
| ''-39.683''
| ''-66.953''
|- style="background-color: #cccccc;"
| ''[[23/10]]''
| ''+39.817''
| ''+67.178''
|- style="background-color: #cccccc;"
| ''[[31/16]]''
| ''+40.387''
| ''+68.139''
|- style="background-color: #cccccc;"
| ''[[27/23]]''
| ''-40.506''
| ''-68.341''
|- style="background-color: #cccccc;"
| ''[[11/8]]''
| ''+41.393''
| ''+69.837''
|- style="background-color: #cccccc;"
| ''[[23/22]]''
| ''+41.586''
| ''+70.162''
|- style="background-color: #cccccc;"
| ''[[27/16]]''
| ''+42.473''
| ''+71.658''
|- style="background-color: #cccccc;"
| ''[[25/8]]''
| ''+42.590''
| ''+71.856''
|- style="background-color: #cccccc;"
| ''[[31/23]]''
| ''-42.592''
| ''-71.860''
|- style="background-color: #cccccc;"
| ''[[8/5]]''
| ''-43.162''
| ''-72.821''
|- style="background-color: #cccccc;"
| ''[[19/8]]''
| ''+43.536''
| ''+73.452''
|- style="background-color: #cccccc;"
| ''[[17/4]]''
| ''+43.702''
| ''+73.733''
|- style="background-color: #cccccc;"
| ''[[8/1]]''
| ''-43.734''
| ''-73.786''
|- style="background-color: #cccccc;"
| ''[[12/7]]''
| ''-44.063''
| ''-74.341''
|- style="background-color: #cccccc;"
| ''[[28/23]]''
| ''-44.196''
| ''-74.566''
|- style="background-color: #cccccc;"
| ''[[20/17]]''
| ''-44.274''
| ''-74.697''
|- style="background-color: #cccccc;"
| ''[[23/6]]''
| ''+44.525''
| ''+75.121''
|- style="background-color: #cccccc;"
| ''[[30/23]]''
| ''-45.097''
| ''-76.085''
|- style="background-color: #cccccc;"
| ''[[29/23]]''
| ''-45.676''
| ''-77.063''
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''-46.673''
| ''-78.745''
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''-47.752''
| ''-80.566''
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''+47.870''
| ''+80.764''
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''+48.081''
| ''+81.121''
|- style="background-color: #cccccc;"
| ''[[24/5]]''
| ''-48.442''
| ''-81.729''
|- style="background-color: #cccccc;"
| ''[[13/8]]''
| ''+48.539''
| ''+81.893''
|- style="background-color: #cccccc;"
| ''[[24/19]]''
| ''-48.815''
| ''-82.359''
|- style="background-color: #cccccc;"
| ''[[17/12]]''
| ''+48.982''
| ''+82.640''
|- style="background-color: #cccccc;"
| ''[[24/1]]''
| ''-49.013''
| ''-82.693''
|- style="background-color: #cccccc;"
| ''[[23/18]]''
| ''+49.804''
| ''+84.028''
|- style="background-color: #cccccc;"
| ''[[33/16]]''
| ''+50.691''
| ''+85.525''
|- style="background-color: #cccccc;"
| ''[[32/29]]''
| ''-51.881''
| ''-87.531''
|- style="background-color: #cccccc;"
| ''[[16/15]]''
| ''-52.460''
| ''-88.509''
|- style="background-color: #cccccc;"
| ''[[16/3]]''
| ''-53.032''
| ''-89.474''
|- style="background-color: #cccccc;"
| ''[[8/7]]''
| ''-53.361''
| ''-90.028''
|- style="background-color: #cccccc;"
| ''[[24/13]]''
| ''-53.819''
| ''-90.801''
|- style="background-color: #cccccc;"
| ''[[23/4]]''
| ''+53.823''
| ''+90.808''
|- style="background-color: #cccccc;"
| ''[[23/20]]''
| ''+54.395''
| ''+91.773''
|- style="background-color: #cccccc;"
| ''[[32/31]]''
| ''-54.964''
| ''-92.734''
|- style="background-color: #cccccc;"
| ''[[16/11]]''
| ''-55.971''
| ''-94.432''
|- style="background-color: #cccccc;"
| ''[[32/27]]''
| ''-57.051''
| ''-96.254''
|- style="background-color: #cccccc;"
| ''[[25/16]]''
| ''+57.168''
| ''+96.452''
|- style="background-color: #cccccc;"
| ''[[16/5]]''
| ''-57.740''
| ''-97.416''
|- style="background-color: #cccccc;"
| ''[[19/16]]''
| ''+58.114''
| ''+98.047''
|- style="background-color: #cccccc;"
| ''[[17/8]]''
| ''+58.280''
| ''+98.328''
|- style="background-color: #cccccc;"
| ''[[16/1]]''
| ''-58.312''
| ''-98.381''
|- style="background-color: #cccccc;"
| ''[[24/7]]''
| ''-58.640''
| ''-98.936''
|- style="background-color: #cccccc;"
| ''[[23/12]]''
| ''+59.103''
| ''+99.716''
|- style="background-color: #cccccc;"
| ''[[32/9]]''
| ''-62.330''
| ''-105.161''
|- style="background-color: #cccccc;"
| ''[[21/16]]''
| ''+62.659''
| ''+105.716''
|- style="background-color: #cccccc;"
| ''[[16/13]]''
| ''-63.117''
| ''-106.488''
|- style="background-color: #cccccc;"
| ''[[24/17]]''
| ''-63.560''
| ''-107.235''
|- style="background-color: #cccccc;"
| ''[[33/32]]''
| ''+65.269''
| ''+110.120''
|- style="background-color: #cccccc;"
| ''[[32/15]]''
| ''-67.038''
| ''-113.104''
|- style="background-color: #cccccc;"
| ''[[32/3]]''
| ''-67.610''
| ''-114.069''
|- style="background-color: #cccccc;"
| ''[[16/7]]''
| ''-67.939''
| ''-114.624''
|- style="background-color: #cccccc;"
| ''[[23/8]]''
| ''+68.401''
| ''+115.404''
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''-70.549''
| ''-119.027''
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''-71.746''
| ''-121.047''
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''-72.318''
| ''-122.012''
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''-72.692''
| ''-122.642''
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''+72.858''
| ''+122.923''
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''-72.890''
| ''-122.976''
|- style="background-color: #cccccc;"
| ''[[24/23]]''
| ''-73.681''
| ''-124.311''
|- style="background-color: #cccccc;"
| ''[[32/21]]''
| ''-77.237''
| ''-130.311''
|- style="background-color: #cccccc;"
| ''[[32/13]]''
| ''-77.695''
| ''-131.084''
|- style="background-color: #cccccc;"
| ''[[32/7]]''
| ''-82.517''
| ''-139.219''
|- style="background-color: #cccccc;"
| ''[[23/16]]''
| ''+82.979''
| ''+139.999''
|- style="background-color: #cccccc;"
| ''[[32/17]]''
| ''-87.436''
| ''-147.518''
|- style="background-color: #cccccc;"
| ''[[32/23]]''
| ''-97.557''
| ''-164.594''
|}
|}


[[Category:Zeta peak indexes]]
[[Category:Zeta peak indexes]]