186zpi: Difference between revisions

Contribution (talk | contribs)
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(28 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''186 zeta peak index''' (abbreviated '''186zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 186st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]].
'''186 zeta peak index''' (abbreviated '''186zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 186st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]].


{| class="wikitable"
{{ZPI
! colspan="3" | Tuning
| zpi = 186
! colspan="3" | Strength
| steps = 41.3438354846780
! colspan="2" | Closest EDO
| step size = 29.0248832971658
! colspan="2" | Integer limit
| height = 1.876590
|-
| integral = 0.241233
! ZPI
| gap = 11.567493
! Steps per octave
| edo = 41edo
! Step size (cents)
| octave = 1190.02021518380
! Height
| consistent = 2
! Integral
| distinct = 2
! Gap
}}
! EDO
! Octave (cents)
! Consistent
! Distinct
|-
| [[186zpi]]
| 41.3438354846780
| 29.0248832971658
| 1.876590
| 0.241233
| 11.567493
| [[41edo]]
| 1190.02021518380
| 2
| 2
|}


== Theory ==
== Theory ==
=== Record on the Riemann zeta function with primes 2 and 3 removed ===
=== Record on the Riemann zeta function with primes 2 and 3 removed ===
'''186zpi''' sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is [[125zpi]] and the next one is [[565zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
'''186zpi''' sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is [[125zpi]] and the next one is [[565zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.


{| class="wikitable"
{| class="wikitable"
! colspan="6" |Unmodified Riemann zeta function
|-
! colspan="5" |Riemann zeta function with primes 2 and 3 removed
! colspan="6" | Unmodified Riemann zeta function
! colspan="5" | Riemann zeta function with primes 2 and 3 removed
|-
|-
! colspan="3" | Tuning
! colspan="3" | Tuning
Line 61: Line 45:
| 30.6006474885974
| 30.6006474885974
| 39.2148564976330
| 39.2148564976330
|1.468164
| 1.468164
| [[31edo]]
| [[31edo]]
| 1215.66055142662
| 1215.66055142662
| 30.5974484926723
| 30.5974484926723
| 39.2189564527704
| 39.2189564527704
|3.769318
| 3.769318
| [[31edo]]
| [[31edo]]
| 1215.78765003588
| 1215.78765003588
|-
|-
|[[186zpi]]
| [[186zpi]]
|41.3438354846780
| 41.3438354846780
|29.0248832971658
| 29.0248832971658
|1.876590
| 1.876590
|[[41edo]]
| [[41edo]]
|1190.02021518380
| 1190.02021518380
|41.3477989230936
| 41.3477989230936
|29.0221010852836
| 29.0221010852836
|4.469823
| 4.469823
|[[41edo]]
| [[41edo]]
|1189.90614449663
| 1189.90614449663
|-
|-
|[[565zpi]]
| [[565zpi]]
|98.6209462564991
| 98.6209462564991
|12.1678005084130
| 12.1678005084130
|2.305330
| 2.305330
|[[99edo]]
| [[99edo]]
|1204.61225033289
| 1204.61225033289
|98.6257548378926
| 98.6257548378926
|12.1672072570942
| 12.1672072570942
|4.883729
| 4.883729
|[[99edo]]
| [[99edo]]
|1204.55351845233
| 1204.55351845233
|}
|}


Line 107: Line 91:
It is important to note that [[124edo]] provides two possible [[3/2|fifths (3/2)]]. The closest one, from the [[val]] <124 197] (i.e. the [[patent val]]), is the [[3/2|fifth]] mapped to 73 steps of [[124edo]] with a [[relative error]] of +46.465%. The second closest, from the [[val]] <124 196] (i.e. the [[val]] 124b), is mapped to 72 steps of [[124edo]] with a [[relative error]] of -53.535%. This second [[3/2|fifth]], which appears in [[124ed8]], also corresponds to the [[3/2|fifth]] of [[31edo]]. Therefore, we choose to use the [[ups and downs notation]] of the 124b temperament, denoted as <124 196].
It is important to note that [[124edo]] provides two possible [[3/2|fifths (3/2)]]. The closest one, from the [[val]] <124 197] (i.e. the [[patent val]]), is the [[3/2|fifth]] mapped to 73 steps of [[124edo]] with a [[relative error]] of +46.465%. The second closest, from the [[val]] <124 196] (i.e. the [[val]] 124b), is mapped to 72 steps of [[124edo]] with a [[relative error]] of -53.535%. This second [[3/2|fifth]], which appears in [[124ed8]], also corresponds to the [[3/2|fifth]] of [[31edo]]. Therefore, we choose to use the [[ups and downs notation]] of the 124b temperament, denoted as <124 196].


{{Todo|complete table|inline=1|comment=Incorporate 3 new columns for ups and downs notation from 124b at every 3-degree. column 1 = ups and downs notation in full, column 2 = ups and downs notation abbreviated, column 3 = octave }}
{| class="wikitable center-1 right-2 left-3 center-4 center-5"
 
|+ style="font-size: 105%; white-space: nowrap;" | Intervals in 186zpi
{| class="wikitable center-all left-1 right-2 left-3"
|-
|-
|colspan="3"|
| colspan="3" style="text-align:left;" | JI ratios are comprised of [[32-integer-limit]] ratios,<br>and are stylized as follows to indicate their accuracy:
JI ratios are comprised of 32-integer limit ratios,<br>
and are stylized as follows to indicate their accuracy:
* '''<u>Bold Underlined:</u>''' relative error < 8.333 %
* '''<u>Bold Underlined:</u>''' relative error < 8.333 %
* '''Bold:''' relative error < 16.667 %
* '''Bold:''' relative error < 16.667 %
Line 120: Line 101:
* <small><small>Small Small:</small></small> relative error < 41.667 %
* <small><small>Small Small:</small></small> relative error < 41.667 %
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 %
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 %
| colspan="2" |
| colspan="2" style="text-align:right;" | <center>'''⟨124 196] at every 3 steps'''</center><br>[[9/8|Whole tone]] = 20 steps<br>[[256/243|Limma]] = 12 steps<br>[[2187/2048|Apotome]] = 8 steps
124b at every 3-degree<br>
Pythagorean limma = 12 steps<br>
whole tone = 20 steps<br>
|-
|-
! Degree
! Cents
! Ratios
! Ups and downs notation
! Step
! Step
!Cents
!Ratios
!Ups and Downs Notation
!Step
|-
|-
|0
| 0
|0.000
| 0.000
|
|  
|P1
| P1
|0
| 0
|-
|-
|1
| 1
|29.025
| 29.025
|
|  
|^^^1
| ^^^1
|3
| 3
|-
|-
|2
| 2
|58.050
| 58.050
|'''[[32/31]]''', '''<u>[[31/30]]''', '''<u>[[30/29]]''', '''[[29/28]]''', [[28/27]], <small>[[27/26]]</small>, <small><small>[[26/25]]</small></small>, <small><small><small>[[25/24]]</small></small></small>
| '''[[32/31]]''', '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''[[29/28]]''', [[28/27]], <small>[[27/26]]</small>, <small><small>[[26/25]]</small></small>, <small><small><small>[[25/24]]</small></small></small>
| vvA1, ^^d2
| vvA1, ^^d2
|6
| 6
|-
|-
|3
| 3
|87.075
| 87.075
|<small><small><small>[[24/23]]</small></small></small>, <small><small>[[23/22]]</small></small>, [[22/21]], '''[[21/20]]''', '''<u>[[20/19]]''', [[19/18]], <small><small>[[18/17]]</small></small>
| <small><small><small>[[24/23]]</small></small></small>, <small><small>[[23/22]]</small></small>, [[22/21]], '''[[21/20]]''', '''<u>[[20/19]]'''</u>, [[19/18]], <small><small>[[18/17]]</small></small>
|vvvm2
| vvvm2
|9
| 9
|-
|-
|4
| 4
|116.100
| 116.100
|<small><small>[[17/16]]</small></small>, '''[[16/15]]''', '''<u>[[31/29]]''', '''[[15/14]]''', <small>[[29/27]]</small>, <small><small><small>[[14/13]]</small></small></small>
| <small><small>[[17/16]]</small></small>, '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''[[15/14]]''', <small>[[29/27]]</small>, <small><small><small>[[14/13]]</small></small></small>
|m2
| m2
|12
| 12
|-
|-
|5
| 5
|145.124
| 145.124
|<small><small>[[27/25]]</small></small>, [[13/12]], '''<u>[[25/23]]''', [[12/11]], <small><small><small>[[23/21]]</small></small></small>
| <small><small>[[27/25]]</small></small>, [[13/12]], '''<u>[[25/23]]'''</u>, [[12/11]], <small><small><small>[[23/21]]</small></small></small>
|^^^m2
| ^^^m2
|15
| 15
|-
|-
|6
| 6
|174.149
| 174.149
|<small>[[11/10]]</small>, '''[[32/29]]''', '''<u>[[21/19]]''', '''<u>[[31/28]]''', <small>[[10/9]]</small>
| <small>[[11/10]]</small>, '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, <small>[[10/9]]</small>
|vvM2
| vvM2
|18
| 18
|-
|-
|7
| 7
|203.174
| 203.174
|<small><small><small>[[29/26]]</small></small></small>, <small><small>[[19/17]]</small></small>, [[28/25]], '''<u>[[9/8]]''', <small>[[26/23]]</small>, <small><small><small>[[17/15]]</small></small></small>
| <small><small><small>[[29/26]]</small></small></small>, <small><small>[[19/17]]</small></small>, [[28/25]], '''<u>[[9/8]]'''</u>, <small>[[26/23]]</small>, <small><small><small>[[17/15]]</small></small></small>
|^M2
| ^M2
|21
| 21
|-
|-
|8
| 8
|232.199
| 232.199
|<small><small>[[25/22]]</small></small>, '''<u>[[8/7]]''', [[31/27]], <small><small>[[23/20]]</small></small>
| <small><small>[[25/22]]</small></small>, '''<u>[[8/7]]'''</u>, [[31/27]], <small><small>[[23/20]]</small></small>
|^<sup>4</sup>M2
| ^<sup>4</sup>M2
|24
| 24
|-
|-
|9
| 9
|261.224
| 261.224
|<small><small><small>[[15/13]]</small></small></small>, <small>[[22/19]]</small>, '''[[29/25]]''', [[7/6]]
| <small><small><small>[[15/13]]</small></small></small>, <small>[[22/19]]</small>, '''[[29/25]]''', [[7/6]]
|^^^d3
| ^^^d3
|27
| 27
|-
|-
|10
| 10
|290.249
| 290.249
|<small><small><small>[[27/23]]</small></small></small>, <small>[[20/17]]</small>, '''<u>[[13/11]]''', '''[[32/27]]''', <small>[[19/16]]</small>, <small><small>[[25/21]]</small></small>, <small><small><small>[[31/26]]</small></small></small>
| <small><small><small>[[27/23]]</small></small></small>, <small>[[20/17]]</small>, '''<u>[[13/11]]'''</u>, '''[[32/27]]''', <small>[[19/16]]</small>, <small><small>[[25/21]]</small></small>, <small><small><small>[[31/26]]</small></small></small>
|vvm3
| vvm3
|30
| 30
|-
|-
|11
| 11
|319.274
| 319.274
|'''[[6/5]]''', <small>[[29/24]]</small>, <small><small>[[23/19]]</small></small>
| '''[[6/5]]''', <small>[[29/24]]</small>, <small><small>[[23/19]]</small></small>
|^m3
| ^m3
|33
| 33
|-
|-
|12
| 12
|348.299
| 348.299
|<small><small><small>[[17/14]]</small></small></small>, <small>[[28/23]]</small>, '''<u>[[11/9]]''', [[27/22]], <small><small>[[16/13]]</small></small>
| <small><small><small>[[17/14]]</small></small></small>, <small>[[28/23]]</small>, '''<u>[[11/9]]'''</u>, [[27/22]], <small><small>[[16/13]]</small></small>
|~3
| ~3
|36
| 36
|-
|-
|13
| 13
|377.323
| 377.323
|<small><small>[[21/17]]</small></small>, <small>[[26/21]]</small>, [[31/25]], <small>[[5/4]]</small>
| <small><small>[[21/17]]</small></small>, <small>[[26/21]]</small>, [[31/25]], <small>[[5/4]]</small>
|vM3
| vM3
|39
| 39
|-
|-
|14
| 14
|406.348
| 406.348
|[[29/23]], '''<u>[[24/19]]''', '''[[19/15]]''', <small><small>[[14/11]]</small></small>
| [[29/23]], '''<u>[[24/19]]'''</u>, '''[[19/15]]''', <small><small>[[14/11]]</small></small>
|^^M3
| ^^M3
|42
| 42
|-
|-
|15
| 15
|435.373
| 435.373
|<small><small>[[23/18]]</small></small>, <small>[[32/25]]</small>, '''<u>[[9/7]]''', <small>[[31/24]]</small>, <small><small>[[22/17]]</small></small>
| <small><small>[[23/18]]</small></small>, <small>[[32/25]]</small>, '''<u>[[9/7]]'''</u>, <small>[[31/24]]</small>, <small><small>[[22/17]]</small></small>
|vvvA3
| vvvA3
|45
| 45
|-
|-
|16
| 16
|464.398
| 464.398
|<small><small>[[13/10]]</small></small>, '''[[30/23]]''', '''<u>[[17/13]]''', [[21/16]], <small><small>[[25/19]]</small></small>, <small><small><small>[[29/22]]</small></small></small>
| <small><small>[[13/10]]</small></small>, '''[[30/23]]''', '''<u>[[17/13]]'''</u>, [[21/16]], <small><small>[[25/19]]</small></small>, <small><small><small>[[29/22]]</small></small></small>
|v<sup>4</sup>4
| v<sup>4</sup>4
|48
| 48
|-
|-
|17
| 17
|493.423
| 493.423
|
| '''[[4/3]]'''
'''[[4/3]]'''
| v4
|v4
| 51
|51
|-
|-
|18
| 18
|522.448
| 522.448
|[[31/23]], '''[[27/20]]''', '''<u>[[23/17]]''', [[19/14]], <small><small><small>[[15/11]]</small></small></small>
| [[31/23]], '''[[27/20]]''', '''<u>[[23/17]]'''</u>, [[19/14]], <small><small><small>[[15/11]]</small></small></small>
|^^4
| ^^4
|54
| 54
|-
|-
|19
| 19
|551.473
| 551.473
|<small>[[26/19]]</small>, '''<u>[[11/8]]''', <small>[[29/21]]</small>, <small><small>[[18/13]]</small></small>
| <small>[[26/19]]</small>, '''<u>[[11/8]]'''</u>, <small>[[29/21]]</small>, <small><small>[[18/13]]</small></small>
|vvvA4
| vvvA4
|57
| 57
|-
|-
|20
| 20
|580.498
| 580.498
|<small><small>[[25/18]]</small></small>, <small>[[32/23]]</small>, '''<u>[[7/5]]''', <small><small><small>[[31/22]]</small></small></small>
| <small><small>[[25/18]]</small></small>, <small>[[32/23]]</small>, '''<u>[[7/5]]'''</u>, <small><small><small>[[31/22]]</small></small></small>
|A4
| A4
|60
| 60
|-
|-
|21
| 21
|609.523
| 609.523
|<small><small><small>[[24/17]]</small></small></small>, [[17/12]], '''<u>[[27/19]]''', <small>[[10/7]]</small>
| <small><small><small>[[24/17]]</small></small></small>, [[17/12]], '''<u>[[27/19]]'''</u>, <small>[[10/7]]</small>
|vd5
| vd5
|63
| 63
|-
|-
|22
| 22
|638.547
| 638.547
|<small><small>[[23/16]]</small></small>, '''<u>[[13/9]]''', '''[[29/20]]''', <small><small>[[16/11]]</small></small>
| <small><small>[[23/16]]</small></small>, '''<u>[[13/9]]'''</u>, '''[[29/20]]''', <small><small>[[16/11]]</small></small>
|^^d5
| ^^d5
|66
| 66
|-
|-
|23
| 23
|667.572
| 667.572
|<small><small>[[19/13]]</small></small>, '''[[22/15]]''', '''<u>[[25/17]]''', '''[[28/19]]''', [[31/21]]
| <small><small>[[19/13]]</small></small>, '''[[22/15]]''', '''<u>[[25/17]]'''</u>, '''[[28/19]]''', [[31/21]]
|vvv5
| vvv5
|69
| 69
|-
|-
|24
| 24
|696.597
| 696.597
|[[3/2]]
| [[3/2]]
|P5
| P5
|72
| 72
|-
|-
|25
| 25
|725.622
| 725.622
|'''[[32/21]]''', [[29/19]], <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small>
| '''[[32/21]]''', [[29/19]], <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small>
|^^^5
| ^^^5
|75
| 75
|-
|-
|26
| 26
|754.647
| 754.647
|<small>[[20/13]]</small>, '''<u>[[17/11]]''', '''[[31/20]]''', <small><small>[[14/9]]</small></small>
| <small>[[20/13]]</small>, '''<u>[[17/11]]'''</u>, '''[[31/20]]''', <small><small>[[14/9]]</small></small>
|vvA5, ^^d6
| vvA5, ^^d6
|78
| 78
|-
|-
|27
| 27
|783.672
| 783.672
|<small><small>[[25/16]]</small></small>, '''<u>[[11/7]]''', [[30/19]], <small><small>[[19/12]]</small></small>
| <small><small>[[25/16]]</small></small>, '''<u>[[11/7]]'''</u>, [[30/19]], <small><small>[[19/12]]</small></small>
|vvvm6
| vvvm6
|81
| 81
|-
|-
|28
| 28
|812.697
| 812.697
|<small><small>[[27/17]]</small></small>, '''<u>[[8/5]]''', <small><small><small>[[29/18]]</small></small></small>
| <small><small>[[27/17]]</small></small>, '''<u>[[8/5]]'''</u>, <small><small><small>[[29/18]]</small></small></small>
|m6
| m6
|84
| 84
|-
|-
|29
| 29
|841.722
| 841.722
|<small><small>[[21/13]]</small></small>, '''<u>[[13/8]]''', [[31/19]], <small><small>[[18/11]]</small></small>
| <small><small>[[21/13]]</small></small>, '''<u>[[13/8]]'''</u>, [[31/19]], <small><small>[[18/11]]</small></small>
|^^^m6
| ^^^m6
|87
| 87
|-
|-
|30
| 30
|870.746
| 870.746
|<small><small>[[23/14]]</small></small>, [[28/17]], <small><small><small>[[5/3]]</small></small></small>
| <small><small>[[23/14]]</small></small>, [[28/17]], <small><small><small>[[5/3]]</small></small></small>
|vvM6
| vvM6
|90
| 90
|-
|-
|31
| 31
|899.771
| 899.771
|'''[[32/19]]''', [[27/16]], <small><small>[[22/13]]</small></small>
| '''[[32/19]]''', [[27/16]], <small><small>[[22/13]]</small></small>
|^M6
| ^M6
|93
| 93
|-
|-
|32
| 32
|928.796
| 928.796
|<small><small>[[17/10]]</small></small>, '''[[29/17]]''', '''[[12/7]]''', <small><small><small>[[31/18]]</small></small></small>
| <small><small>[[17/10]]</small></small>, '''[[29/17]]''', '''[[12/7]]''', <small><small><small>[[31/18]]</small></small></small>
|^<sup>4</sup>M6
| ^<sup>4</sup>M6
|96
| 96
|-
|-
|33
| 33
|957.821
| 957.821
|<small><small>[[19/11]]</small></small>, [[26/15]], <small><small>[[7/4]]</small></small>
| <small><small>[[19/11]]</small></small>, [[26/15]], <small><small>[[7/4]]</small></small>
|^^^d7
| ^^^d7
|99
| 99
|-
|-
|34
| 34
|986.846
| 986.846
|'''[[30/17]]''', '''<u>[[23/13]]''', <small>[[16/9]]</small>
| '''[[30/17]]''', '''<u>[[23/13]]'''</u>, <small>[[16/9]]</small>
|vvm7
| vvm7
|102
| 102
|-
|-
|35
| 35
|1015.871
| 1015.871
|<small><small>[[25/14]]</small></small>, '''<u>[[9/5]]''', <small><small><small>[[29/16]]</small></small></small>
| <small><small>[[25/14]]</small></small>, '''<u>[[9/5]]'''</u>, <small><small><small>[[29/16]]</small></small></small>
|^m7
| ^m7
|105
| 105
|-
|-
|36
| 36
|1044.896
| 1044.896
|<small><small>[[20/11]]</small></small>, '''[[31/17]]''', '''[[11/6]]'''
| <small><small>[[20/11]]</small></small>, '''[[31/17]]''', '''[[11/6]]'''
|~7
| ~7
|108
| 108
|-
|-
|37
| 37
|1073.921
| 1073.921
|<small><small><small>[[24/13]]</small></small></small>, '''<u>[[13/7]]''', [[28/15]], <small><small><small>[[15/8]]</small></small></small>
| <small><small><small>[[24/13]]</small></small></small>, '''<u>[[13/7]]'''</u>, [[28/15]], <small><small><small>[[15/8]]</small></small></small>
|vM7
| vM7
|111
| 111
|-
|-
|38
| 38
|1102.946
| 1102.946
|<small>[[32/17]]</small>, '''<u>[[17/9]]''', <small>[[19/10]]</small>
| <small>[[32/17]]</small>, '''<u>[[17/9]]'''</u>, <small>[[19/10]]</small>
|^^M7
| ^^M7
|114
| 114
|-
|-
|39
| 39
|1131.970
| 1131.970
|<small><small><small>[[21/11]]</small></small></small>, [[23/12]], '''<u>[[25/13]]''', [[27/14]], <small>[[29/15]]</small>, <small><small><small>[[31/16]]</small></small></small>
| <small><small><small>[[21/11]]</small></small></small>, [[23/12]], '''<u>[[25/13]]'''</u>, [[27/14]], <small>[[29/15]]</small>, <small><small><small>[[31/16]]</small></small></small>
|vvvA7
| vvvA7
|117
| 117
|-
|-
|40
| 40
|1160.995
| 1160.995
|
|  
|v<sup>4</sup>1 +1oct
| v<sup>4</sup>1 +1 oct
|120
| 120
|-
|-
|41
| 41
|1190.020
| 1190.020
|<small><small>[[2/1]]</small></small>
| <small><small>[[2/1]]</small></small>
|v1 +1oct
| v1 +1 oct
|123
| 123
|-
|-
|42
| 42
|1219.045
| 1219.045
|  
|  
|^^1 +1oct
| ^^1 +1 oct
|126
| 126
|-
|-
|43
| 43
|1248.070
| 1248.070
|<small>[[31/15]]</small>, <small><small><small>[[29/14]]</small></small></small>
| <small>[[31/15]]</small>, <small><small><small>[[29/14]]</small></small></small>
|vvvA1 +1oct
| vvvA1 +1 oct
|129
| 129
|-
|-
|44
| 44
|1277.095
| 1277.095
|<small><small>[[27/13]]</small></small>, [[25/12]], '''<u>[[23/11]]''', <small>[[21/10]]</small>
| <small><small>[[27/13]]</small></small>, [[25/12]], '''<u>[[23/11]]'''</u>, <small>[[21/10]]</small>
| v<sup>4</sup>m2 +1oct
| v<sup>4</sup>m2 +1 oct
|132
| 132
|-
|-
|45
| 45
|1306.120
| 1306.120
|<small><small><small>[[19/9]]</small></small></small>, '''<u>[[17/8]]''', [[32/15]], <small><small><small>[[15/7]]</small></small></small>
| <small><small><small>[[19/9]]</small></small></small>, '''<u>[[17/8]]'''</u>, [[32/15]], <small><small><small>[[15/7]]</small></small></small>
|vm2 +1oct
| vm2 +1 oct
|135
| 135
|-
|-
|46
| 46
|1335.145
| 1335.145
|[[28/13]], '''[[13/6]]'''
| [[28/13]], '''[[13/6]]'''
|^^m2 +1oct
| ^^m2 +1 oct
|138
| 138
|-
|-
|47
| 47
|1364.170
| 1364.170
|<small><small><small>[[24/11]]</small></small></small>, '''<u>[[11/5]]''', <small><small>[[31/14]]</small></small>
| <small><small><small>[[24/11]]</small></small></small>, '''<u>[[11/5]]'''</u>, <small><small>[[31/14]]</small></small>
|vvvM2 +1oct
| vvvM2 +1 oct
|141
| 141
|-
|-
|48
| 48
|1393.194
| 1393.194
|<small><small>[[20/9]]</small></small>, '''[[29/13]]''', <small><small>[[9/4]]</small></small>
| <small><small>[[20/9]]</small></small>, '''[[29/13]]''', <small><small>[[9/4]]</small></small>
|M2 +1oct
| M2 +1 oct
|144
| 144
|-
|-
|49
| 49
|1422.219
| 1422.219
| '''<u>[[25/11]]''', <small>[[16/7]]</small>
| '''<u>[[25/11]]'''</u>, <small>[[16/7]]</small>
|^^^M2 +1oct
| ^^^M2 +1 oct
|147
| 147
|-
|-
|50
| 50
|1451.244
| 1451.244
|<small>[[23/10]]</small>, '''[[30/13]]'''
| <small>[[23/10]]</small>, '''[[30/13]]'''
|vvA2 +1oct, ^^d3 +1oct
| vvA2 +1 oct, ^^d3 +1 oct
|150
| 150
|-
|-
|51
| 51
|1480.269
| 1480.269
|<small><small><small>[[7/3]]</small></small></small>, <small>[[26/11]]</small>
| <small><small><small>[[7/3]]</small></small></small>, <small>[[26/11]]</small>
|vvvm3 +1oct
| vvvm3 +1 oct
|153
| 153
|-
|-
|52
| 52
|1509.294
| 1509.294
|<small><small>[[19/8]]</small></small>, '''[[31/13]]''', [[12/5]]
| <small><small>[[19/8]]</small></small>, '''[[31/13]]''', [[12/5]]
|m3 +1oct
| m3 +1 oct
|156
| 156
|-
|-
|53
| 53
|1538.319
| 1538.319
|<small><small>[[29/12]]</small></small>, '''<u>[[17/7]]''', <small>[[22/9]]</small>
| <small><small>[[29/12]]</small></small>, '''<u>[[17/7]]'''</u>, <small>[[22/9]]</small>
|^^^m3 +1oct
| ^^^m3 +1 oct
|159
| 159
|-
|-
|54
| 54
|1567.344
| 1567.344
|<small><small><small>[[27/11]]</small></small></small>, <small>[[32/13]]</small>
| <small><small><small>[[27/11]]</small></small></small>, <small>[[32/13]]</small>
|vvM3 +1oct
| vvM3 +1 oct
|162
| 162
|-
|-
|55
| 55
|1596.369
| 1596.369
|<small><small>[[5/2]]</small></small>
| <small><small>[[5/2]]</small></small>
|^M3 +1oct
| ^M3 +1 oct
|165
| 165
|-
|-
|56
| 56
|1625.393
| 1625.393
|<small>[[28/11]]</small>, '''<u>[[23/9]]''', <small><small>[[18/7]]</small></small>
| <small>[[28/11]]</small>, '''<u>[[23/9]]'''</u>, <small><small>[[18/7]]</small></small>
| ^<sup>4</sup>M3 +1oct
| ^<sup>4</sup>M3 +1 oct
|168
| 168
|-
|-
|57
| 57
|1654.418
| 1654.418
|<small><small>[[31/12]]</small></small>, '''<u>[[13/5]]'''
| <small><small>[[31/12]]</small></small>, '''<u>[[13/5]]'''</u>
|^^^d4 +1oct
| ^^^d4 +1 oct
|171
| 171
|-
|-
|58
| 58
|1683.443
| 1683.443
|<small><small><small>[[21/8]]</small></small></small>, [[29/11]]
| <small><small><small>[[21/8]]</small></small></small>, [[29/11]]
|vv4 +1oct
| vv4 +1 oct
|174
| 174
|-
|-
|59
| 59
|1712.468
| 1712.468
|<small><small><small>[[8/3]]</small></small></small>, [[27/10]]
| <small><small><small>[[8/3]]</small></small></small>, [[27/10]]
|^4 +1oct
| ^4 +1 oct
|177
| 177
|-
|-
|60
| 60
|1741.493
| 1741.493
|<small><small><small>[[19/7]]</small></small></small>, '''[[30/11]]''', <small><small>[[11/4]]</small></small>
| <small><small><small>[[19/7]]</small></small></small>, '''[[30/11]]''', <small><small>[[11/4]]</small></small>
|~4 +1oct
| ~4 +1 oct
|180
| 180
|-
|-
|61
| 61
|1770.518
| 1770.518
|'''<u>[[25/9]]''', <small><small>[[14/5]]</small></small>
| '''<u>[[25/9]]'''</u>, <small><small>[[14/5]]</small></small>
|vA4 +1oct
| vA4 +1 oct
|183
| 183
|-
|-
|62
| 62
|1799.543
| 1799.543
|[[31/11]], '''[[17/6]]'''
| [[31/11]], '''[[17/6]]'''
|^^A4 +1oct, vvd5 +1oct
| ^^A4 +1 oct, vvd5 +1 oct
|186
| 186
|-
|-
|63
| 63
|1828.568
| 1828.568
|<small><small>[[20/7]]</small></small>, '''<u>[[23/8]]''', <small>[[26/9]]</small>
| <small><small>[[20/7]]</small></small>, '''<u>[[23/8]]'''</u>, <small>[[26/9]]</small>
|^d5 +1oct
| ^d5 +1 oct
|189
| 189
|-
|-
|64
| 64
|1857.593
| 1857.593
|<small><small><small>[[29/10]]</small></small></small>, <small>[[32/11]]</small>
| <small><small><small>[[29/10]]</small></small></small>, <small>[[32/11]]</small>
|~5 +1oct
| ~5 +1 oct
|192
| 192
|-
|-
|65
| 65
|1886.617
| 1886.617
|
|  
|v5 +1oct
| v5 +1 oct
|195
| 195
|-
|-
|66
| 66
|1915.642
| 1915.642
|<small><small><small>[[3/1]]</small></small></small>
| <small><small><small>[[3/1]]</small></small></small>
|^^5 +1oct
| ^^5 +1 oct
|198
| 198
|-
|-
|67
| 67
|1944.667
| 1944.667
|<small><small><small>[[31/10]]</small></small></small>
| <small><small><small>[[31/10]]</small></small></small>
|vvvA5 +1oct
| vvvA5 +1 oct
|201
| 201
|-
|-
|68
| 68
|1973.692
| 1973.692
|<small>[[28/9]]</small>, '''<u>[[25/8]]''', <small>[[22/7]]</small>
| <small>[[28/9]]</small>, '''<u>[[25/8]]'''</u>, <small>[[22/7]]</small>
| v<sup>4</sup>m6 +1oct
| v<sup>4</sup>m6 +1 oct
|204
| 204
|-
|-
|69
| 69
|2002.717
| 2002.717
|[[19/6]], <small><small>[[16/5]]</small></small>
| [[19/6]], <small><small>[[16/5]]</small></small>
|vm6 +1oct
| vm6 +1 oct
|207
| 207
|-
|-
|70
| 70
|2031.742
| 2031.742
|[[29/9]], <small>[[13/4]]</small>
| [[29/9]], <small>[[13/4]]</small>
|^^m6 +1oct
| ^^m6 +1 oct
|210
| 210
|-
|-
|71
| 71
|2060.767
| 2060.767
| '''<u>[[23/7]]'''
| '''<u>[[23/7]]'''</u>
|vvvM6 +1oct
| vvvM6 +1 oct
|213
| 213
|-
|-
|72
| 72
|2089.792
| 2089.792
|[[10/3]]
| [[10/3]]
|M6 +1oct
| M6 +1 oct
|216
| 216
|-
|-
|73
| 73
|2118.816
| 2118.816
|<small><small><small>[[27/8]]</small></small></small>, '''<u>[[17/5]]''', <small><small><small>[[24/7]]</small></small></small>
| <small><small><small>[[27/8]]</small></small></small>, '''<u>[[17/5]]'''</u>, <small><small><small>[[24/7]]</small></small></small>
|^^^M6 +1oct
| ^^^M6 +1 oct
|219
| 219
|-
|-
|74
| 74
|2147.841
| 2147.841
|[[31/9]]
| [[31/9]]
|vvA6 +1oct, ^^d7 +1oct
| vvA6 +1 oct, ^^d7 +1 oct
|222
| 222
|-
|-
|75
| 75
|2176.866
| 2176.866
|<small>[[7/2]]</small>
| <small>[[7/2]]</small>
|vvvm7 +1oct
| vvvm7 +1 oct
|225
| 225
|-
|-
|76
| 76
|2205.891
| 2205.891
|<small><small>[[32/9]]</small></small>, '''<u>[[25/7]]''', <small><small>[[18/5]]</small></small>
| <small><small>[[32/9]]</small></small>, '''<u>[[25/7]]'''</u>, <small><small>[[18/5]]</small></small>
|m7 +1oct
| m7 +1 oct
|228
| 228
|-
|-
|77
| 77
|2234.916
| 2234.916
|[[29/8]], <small><small><small>[[11/3]]</small></small></small>
| [[29/8]], <small><small><small>[[11/3]]</small></small></small>
|^^^m7 +1oct
| ^^^m7 +1 oct
|231
| 231
|-
|-
|78
| 78
|2263.941
| 2263.941
|
| <small>[[26/7]]</small>
<small>[[26/7]]</small>
| vvM7 +1 oct
|vvM7 +1oct
| 234
|234
|-
|-
|79
| 79
|2292.966
| 2292.966
|'''[[15/4]]'''
| '''[[15/4]]'''
|^M7 +1oct
| ^M7 +1 oct
|237
| 237
|-
|-
|80
| 80
|2321.991
| 2321.991
|<small><small>[[19/5]]</small></small>, '''[[23/6]]'''
| <small><small>[[19/5]]</small></small>, '''[[23/6]]'''
| ^<sup>4</sup>M7 +1oct
| ^<sup>4</sup>M7 +1 oct
|240
| 240
|-
|-
|81
| 81
|2351.016
| 2351.016
|<small><small><small>[[27/7]]</small></small></small>, [[31/8]]
| <small><small><small>[[27/7]]</small></small></small>, [[31/8]]
|^^^d1 +2oct
| ^^^d1 +2 oct
|243
| 243
|-
|-
|82
| 82
|2380.040
| 2380.040
|  
|  
|vv1 +2oct
| vv1 +2 oct
|246
| 246
|-
|-
|83
| 83
|2409.065
| 2409.065
|<small>[[4/1]]</small>
| <small>[[4/1]]</small>
|^1 +2oct
| ^1 +2 oct
|249
| 249
|-
|-
|84
| 84
|2438.090
| 2438.090
|
|  
|^<sup>4</sup>1 +2oct
| ^<sup>4</sup>1 +2 oct
|252
| 252
|-
|-
|85
| 85
|2467.115
| 2467.115
|[[29/7]], '''[[25/6]]'''
| [[29/7]], '''[[25/6]]'''
|^^^d2 +2oct
| ^^^d2 +2 oct
|255
| 255
|-
|-
|86
| 86
|2496.140
| 2496.140
|<small><small>[[21/5]]</small></small>, <small>[[17/4]]</small>
| <small><small>[[21/5]]</small></small>, <small>[[17/4]]</small>
|vvm2 +2oct
| vvm2 +2 oct
|258
| 258
|-
|-
|87
| 87
|2525.165
| 2525.165
|[[30/7]], <small><small><small>[[13/3]]</small></small></small>
| [[30/7]], <small><small><small>[[13/3]]</small></small></small>
|^m2 +2oct
| ^m2 +2 oct
|261
| 261
|-
|-
|88
| 88
|2554.190
| 2554.190
|<small><small>[[22/5]]</small></small>
| <small><small>[[22/5]]</small></small>
|~2 +2oct
| ~2 +2 oct
|264
| 264
|-
|-
|89
| 89
|2583.215
| 2583.215
|[[31/7]]
| [[31/7]]
|vM2 +2oct
| vM2 +2 oct
|267
| 267
|-
|-
|90
| 90
|2612.239
| 2612.239
|<small>[[9/2]]</small>
| <small>[[9/2]]</small>
|^^M2 +2oct
| ^^M2 +2 oct
|270
| 270
|-
|-
|91
| 91
|2641.264
| 2641.264
|<small><small>[[32/7]]</small></small>, '''<u>[[23/5]]'''
| <small><small>[[32/7]]</small></small>, '''<u>[[23/5]]'''</u>
|vvvA2 +2oct
| vvvA2 +2 oct
|273
| 273
|-
|-
|92
| 92
|2670.289
| 2670.289
|'''[[14/3]]'''
| '''[[14/3]]'''
| v<sup>4</sup>m3 +2oct
| v<sup>4</sup>m3 +2 oct
|276
| 276
|-
|-
|93
| 93
|2699.314
| 2699.314
| '''<u>[[19/4]]'''
| '''<u>[[19/4]]'''</u>
|vm3 +2oct
| vm3 +2 oct
|279
| 279
|-
|-
|94
| 94
|2728.339
| 2728.339
|<small><small><small>[[24/5]]</small></small></small>, '''<u>[[29/6]]'''
| <small><small><small>[[24/5]]</small></small></small>, '''<u>[[29/6]]'''</u>
|^^m3 +2oct
| ^^m3 +2 oct
|282
| 282
|-
|-
|95
| 95
|2757.364
| 2757.364
|
|  
|vvvM3 +2oct
| vvvM3 +2 oct
|285
| 285
|-
|-
|96
| 96
|2786.389
| 2786.389
|'''<u>[[5/1]]'''
| '''<u>[[5/1]]'''</u>
|M3 +2oct
| M3 +2 oct
|288
| 288
|-
|-
|97
| 97
|2815.414
| 2815.414
|
|  
|^^^M3 +2oct
| ^^^M3 +2 oct
|291
| 291
|-
|-
|98
| 98
|2844.439
| 2844.439
|'''<u>[[31/6]]''', <small><small>[[26/5]]</small></small>
| '''<u>[[31/6]]'''</u>, <small><small>[[26/5]]</small></small>
|vvA3 +2oct, ^^d4 +2oct
| vvA3 +2 oct, ^^d4 +2 oct
|294
| 294
|-
|-
|99
| 99
|2873.463
| 2873.463
|'''[[21/4]]'''
| '''[[21/4]]'''
|vvv4 +2oct
| vvv4 +2 oct
|297
| 297
|-
|-
|100
| 100
|2902.488
| 2902.488
|'''[[16/3]]'''
| '''[[16/3]]'''
|P4 +2oct
| P4 +2 oct
|300
| 300
|-
|-
|101
| 101
|2931.513
| 2931.513
|<small><small>[[27/5]]</small></small>
| <small><small>[[27/5]]</small></small>
|^^^4 +2oct
| ^^^4 +2 oct
|303
| 303
|-
|-
|102
| 102
|2960.538
| 2960.538
|
| <small>[[11/2]]</small>
<small>[[11/2]]</small>
| vvA4 +2 oct
|vvA4 +2oct
| 306
|306
|-
|-
|103
| 103
|2989.563
| 2989.563
|[[28/5]], <small><small><small>[[17/3]]</small></small></small>
| [[28/5]], <small><small><small>[[17/3]]</small></small></small>
|^A4 +2oct
| ^A4 +2 oct
|309
| 309
|-
|-
|104
| 104
|3018.588
| 3018.588
|<small><small>[[23/4]]</small></small>
| <small><small>[[23/4]]</small></small>
|d5 +2oct
| d5 +2 oct
|312
| 312
|-
|-
|105
| 105
|3047.613
| 3047.613
|'''[[29/5]]'''
| '''[[29/5]]'''
|^^^d5 +2oct
| ^^^d5 +2 oct
|315
| 315
|-
|-
| 106
| 106
|3076.638
| 3076.638
|  
|  
|vv5 +2oct
| vv5 +2 oct
|318
| 318
|-
|-
|107
| 107
|3105.663
| 3105.663
|'''[[6/1]]'''
| '''[[6/1]]'''
|^5 +2oct
| ^5 +2 oct
|321
| 321
|-
|-
|108
| 108
|3134.687
| 3134.687
|
|  
|^<sup>4</sup>5 +2oct
| ^<sup>4</sup>5 +2 oct
|324
| 324
|-
|-
|109
| 109
|3163.712
| 3163.712
|[[31/5]], <small>[[25/4]]</small>
| [[31/5]], <small>[[25/4]]</small>
|^^^d6 +2oct
| ^^^d6 +2 oct
|327
| 327
|-
|-
|110
| 110
|3192.737
| 3192.737
|'''[[19/3]]'''
| '''[[19/3]]'''
|vvm6 +2oct
| vvm6 +2 oct
|330
| 330
|-
|-
|111
| 111
|3221.762
| 3221.762
|
| <small>[[32/5]]</small>
<small>[[32/5]]</small>
| ^m6 +2 oct
|^m6 +2oct
| 333
|333
|-
|-
|112
| 112
|3250.787
| 3250.787
|<small><small>[[13/2]]</small></small>
| <small><small>[[13/2]]</small></small>
|~6 +2oct
| ~6 +2 oct
|336
| 336
|-
|-
|113
| 113
|3279.812
| 3279.812
|'''[[20/3]]'''
| '''[[20/3]]'''
|vM6 +2oct
| vM6 +2 oct
|339
| 339
|-
|-
|114
| 114
|3308.837
| 3308.837
|'''[[27/4]]'''
| '''[[27/4]]'''
|^^M6 +2oct
| ^^M6 +2 oct
|342
| 342
|-
|-
|115
| 115
|3337.862
| 3337.862
|
|  
|vvvA6 +2oct
| vvvA6 +2 oct
|345
| 345
|-
|-
|116
| 116
|3366.886
| 3366.886
|'''<u>[[7/1]]'''
| '''<u>[[7/1]]'''</u>
| v<sup>4</sup>m7 +2oct
| v<sup>4</sup>m7 +2 oct
|348
| 348
|-
|-
| 117
| 117
|3395.911
| 3395.911
|  
|  
|vm7 +2oct
| vm7 +2 oct
|351
| 351
|-
|-
|118
| 118
|3424.936
| 3424.936
|'''[[29/4]]'''
| '''[[29/4]]'''
|^^m7 +2oct
| ^^m7 +2 oct
|354
| 354
|-
|-
|119
| 119
|3453.961
| 3453.961
|'''[[22/3]]'''
| '''[[22/3]]'''
|vvvM7 +2oct
| vvvM7 +2 oct
|357
| 357
|-
|-
|120
| 120
|3482.986
| 3482.986
|[[15/2]]
| [[15/2]]
|M7 +2oct
| M7 +2 oct
|360
| 360
|-
|-
|121
| 121
|3512.011
| 3512.011
|<small><small><small>[[23/3]]</small></small></small>
| <small><small><small>[[23/3]]</small></small></small>
|^^^M7 +2oct
| ^^^M7 +2 oct
|363
| 363
|-
|-
|122
| 122
|3541.036
| 3541.036
|'''[[31/4]]'''
| '''[[31/4]]'''
|vvA7 +2oct, ^^d1 +3oct
| vvA7 +2 oct, ^^d1 +3 oct
|366
| 366
|-
|-
|123
| 123
|3570.061
| 3570.061
|
|  
|vvv1 +3oct
| vvv1 +3 oct
|369
| 369
|-
|-
|124
| 124
|3599.086
| 3599.086
|'''<u>[[8/1]]'''
| '''<u>[[8/1]]'''</u>
|P1 +3oct
| P1 +3 oct
|372
| 372
|-
|-
|125
| 125
|3628.110
| 3628.110
|
|  
|^^^1 +3oct
| ^^^1 +3 oct
|375
| 375
|-
|-
|126
| 126
|3657.135
| 3657.135
|<small><small><small>[[25/3]]</small></small></small>
| <small><small><small>[[25/3]]</small></small></small>
|vvA1 +3oct, ^^d2 +3oct
| vvA1 +3 oct, ^^d2 +3 oct
|378
| 378
|-
|-
|127
| 127
|3686.160
| 3686.160
|
|  
|vvvm2 +3oct
| vvvm2 +3 oct
|381
| 381
|-
|-
|128
| 128
|3715.185
| 3715.185
|<small><small>[[17/2]]</small></small>
| <small><small>[[17/2]]</small></small>
|m2 +3oct
| m2 +3 oct
|384
| 384
|-
|-
|129
| 129
|3744.210
| 3744.210
|[[26/3]]
| [[26/3]]
|^^^m2 +3oct
| ^^^m2 +3 oct
|387
| 387
|-
|-
|130
| 130
|3773.235
| 3773.235
|
|  
|vvM2 +3oct
| vvM2 +3 oct
|390
| 390
|-
|-
|131
| 131
|3802.260
| 3802.260
|'''<u>[[9/1]]'''
| '''<u>[[9/1]]'''</u>
|^M2 +3oct
| ^M2 +3 oct
|393
| 393
|-
|-
|132
| 132
|3831.285
| 3831.285
|
|  
| ^<sup>4</sup>M2 +3oct
| ^<sup>4</sup>M2 +3 oct
|396
| 396
|-
|-
|133
| 133
|3860.309
| 3860.309
|[[28/3]]
| [[28/3]]
|^^^d3 +3oct
| ^^^d3 +3 oct
|399
| 399
|-
|-
|134
| 134
|3889.334
| 3889.334
|
| <small>[[19/2]]</small>
<small>[[19/2]]</small>
| vvm3 +3 oct
|vvm3 +3oct
| 402
|402
|-
|-
|135
| 135
|3918.359
| 3918.359
|
| <small>[[29/3]]</small>
<small>[[29/3]]</small>
| ^m3 +3 oct
|^m3 +3oct
| 405
|405
|-
|-
|136
| 136
|3947.384
| 3947.384
|
|  
|~3 +3oct
| ~3 +3 oct
|408
| 408
|-
|-
|137
| 137
|3976.409
| 3976.409
|<small><small>[[10/1]]</small></small>
| <small><small>[[10/1]]</small></small>
|vM3 +3oct
| vM3 +3 oct
|411
| 411
|-
|-
|138
| 138
|4005.434
| 4005.434
|
|  
|^^M3 +3oct
| ^^M3 +3 oct
|414
| 414
|-
|-
|139
| 139
|4034.459
| 4034.459
|
| <small>[[31/3]]</small>
<small>[[31/3]]</small>
| vvvA3 +3 oct
|vvvA3 +3oct
| 417
|417
|-
|-
|140
| 140
|4063.484
| 4063.484
|
| <small>[[21/2]]</small>
<small>[[21/2]]</small>
| v<sup>4</sup>4 +3 oct
|v<sup>4</sup>4 +3oct
| 420
|420
|-
|-
|141
| 141
|4092.509
| 4092.509
|[[32/3]]
| [[32/3]]
|v4 +3oct
| v4 +3 oct
|423
| 423
|-
|-
| 142
| 142
|4121.533
| 4121.533
|  
|  
|^^4 +3oct
| ^^4 +3 oct
|426
| 426
|-
|-
|143
| 143
|4150.558
| 4150.558
| '''<u>[[11/1]]'''
| '''<u>[[11/1]]'''</u>
|vvvA4 +3oct
| vvvA4 +3 oct
|429
| 429
|-
|-
|144
| 144
|4179.583
| 4179.583
|
|  
|A4 +3oct
| A4 +3 oct
|432
| 432
|-
|-
| 145
| 145
|4208.608
| 4208.608
|  
|  
|vd5 +3oct
| vd5 +3 oct
|435
| 435
|-
|-
|146
| 146
|4237.633
| 4237.633
|
| <small>[[23/2]]</small>
<small>[[23/2]]</small>
| ^^d5 +3 oct
|^^d5 +3oct
| 438
|438
|-
|-
|147
| 147
|4266.658
| 4266.658
|
|  
|vvv5 +3oct
| vvv5 +3 oct
|441
| 441
|-
|-
|148
| 148
|4295.683
| 4295.683
|[[12/1]]
| [[12/1]]
|P5 +3oct
| P5 +3 oct
|444
| 444
|-
|-
|149
| 149
|4324.708
| 4324.708
|
|  
|^^^5 +3oct
| ^^^5 +3 oct
|447
| 447
|-
|-
|150
| 150
|4353.732
| 4353.732
|
|  
|vvA5 +3oct, ^^d6 +3oct
| vvA5 +3 oct, ^^d6 +3 oct
|450
| 450
|-
|-
|151
| 151
|4382.757
| 4382.757
|<small><small>[[25/2]]</small></small>
| <small><small>[[25/2]]</small></small>
|vvvm6 +3oct
| vvvm6 +3 oct
|453
| 453
|-
|-
|152
| 152
|4411.782
| 4411.782
|
|  
|m6 +3oct
| m6 +3 oct
|456
| 456
|-
|-
|153
| 153
|4440.807
| 4440.807
| '''<u>[[13/1]]'''
| '''<u>[[13/1]]'''</u>
|^^^m6 +3oct
| ^^^m6 +3 oct
|459
| 459
|-
|-
|154
| 154
|4469.832
| 4469.832
|
|  
|vvM6 +3oct
| vvM6 +3 oct
|462
| 462
|-
|-
|155
| 155
|4498.857
| 4498.857
|[[27/2]]
| [[27/2]]
|^M6 +3oct
| ^M6 +3 oct
|465
| 465
|-
|-
|156
| 156
|4527.882
| 4527.882
|
|  
| ^<sup>4</sup>M6 +3oct
| ^<sup>4</sup>M6 +3 oct
|468
| 468
|-
|-
|157
| 157
|4556.907
| 4556.907
|<small><small>[[14/1]]</small></small>
| <small><small>[[14/1]]</small></small>
|^^^d7 +3oct
| ^^^d7 +3 oct
|471
| 471
|-
|-
|158
| 158
|4585.932
| 4585.932
|
|  
|vvm7 +3oct
| vvm7 +3 oct
|474
| 474
|-
|-
| 159
| 159
|4614.956
| 4614.956
|  
|  
|^m7 +3oct
| ^m7 +3 oct
|477
| 477
|-
|-
|160
| 160
|4643.981
| 4643.981
|<small><small><small>[[29/2]]</small></small></small>
| <small><small><small>[[29/2]]</small></small></small>
|~7 +3oct
| ~7 +3 oct
|480
| 480
|-
|-
| 161
| 161
|4673.006
| 4673.006
|  
|  
|vM7 +3oct
| vM7 +3 oct
|483
| 483
|-
|-
|162
| 162
|4702.031
| 4702.031
|<small><small><small>[[15/1]]</small></small></small>
| <small><small><small>[[15/1]]</small></small></small>
|^^M7 +3oct
| ^^M7 +3 oct
|486
| 486
|-
|-
|163
| 163
|4731.056
| 4731.056
|<small><small><small>[[31/2]]</small></small></small>
| <small><small><small>[[31/2]]</small></small></small>
|vvvA7 +3oct
| vvvA7 +3 oct
|489
| 489
|-
|-
|164
| 164
|4760.081
| 4760.081
|
|  
|v<sup>4</sup>1 +4oct
| v<sup>4</sup>1 +4 oct
|492
| 492
|-
|-
|165
| 165
|4789.106
| 4789.106
|<small><small>[[16/1]]</small></small>
| <small><small>[[16/1]]</small></small>
|v1 +4oct
| v1 +4 oct
|495
| 495
|-
|-
| 166
| 166
|4818.131
| 4818.131
|  
|  
|^^1 +4oct
| ^^1 +4 oct
|498
| 498
|-
|-
|167
| 167
|4847.156
| 4847.156
|
|  
|vvvA1 +4oct
| vvvA1 +4 oct
|501
| 501
|-
|-
|168
| 168
|4876.180
| 4876.180
|
|  
| v<sup>4</sup>m2 +4oct
| v<sup>4</sup>m2 +4 oct
|504
| 504
|-
|-
|169
| 169
|4905.205
| 4905.205
| '''<u>[[17/1]]'''
| '''<u>[[17/1]]'''</u>
|vm2 +4oct
| vm2 +4 oct
|507
| 507
|-
|-
|170
| 170
|4934.230
| 4934.230
|
|  
|^^m2 +4oct
| ^^m2 +4 oct
|510
| 510
|-
|-
|171
| 171
|4963.255
| 4963.255
|
|  
|vvvM2 +4oct
| vvvM2 +4 oct
|513
| 513
|-
|-
|172
| 172
|4992.280
| 4992.280
|<small><small>[[18/1]]</small></small>
| <small><small>[[18/1]]</small></small>
|M2 +4oct
| M2 +4 oct
|516
| 516
|-
|-
|173
| 173
|5021.305
| 5021.305
|
|  
|^^^M2 +4oct
| ^^^M2 +4 oct
|519
| 519
|-
|-
|174
| 174
|5050.330
| 5050.330
|
|  
|vvA2 +4oct, ^^d3 +4oct
| vvA2 +4 oct, ^^d3 +4 oct
|522
| 522
|-
|-
|175
| 175
|5079.355
| 5079.355
|
|  
|vvvm3 +4oct
| vvvm3 +4 oct
|525
| 525
|-
|-
|176
| 176
|5108.379
| 5108.379
|<small><small>[[19/1]]</small></small>
| <small><small>[[19/1]]</small></small>
|m3 +4oct
| m3 +4 oct
|528
| 528
|-
|-
|177
| 177
|5137.404
| 5137.404
|
|  
|^^^m3 +4oct
| ^^^m3 +4 oct
|531
| 531
|-
|-
|178
| 178
|5166.429
| 5166.429
|
|  
|vvM3 +4oct
| vvM3 +4 oct
|534
| 534
|-
|-
|179
| 179
|5195.454
| 5195.454
|
| <small>[[20/1]]</small>
<small>[[20/1]]</small>
| ^M3 +4 oct
|^M3 +4oct
| 537
|537
|-
|-
|180
| 180
|5224.479
| 5224.479
|
|  
| ^<sup>4</sup>M3 +4oct
| ^<sup>4</sup>M3 +4 oct
|540
| 540
|-
|-
|181
| 181
|5253.504
| 5253.504
|
|  
|^^^d4 +4oct
| ^^^d4 +4 oct
|543
| 543
|-
|-
|182
| 182
|5282.529
| 5282.529
|<small><small>[[21/1]]</small></small>
| <small><small>[[21/1]]</small></small>
|vv4 +4oct
| vv4 +4 oct
|546
| 546
|-
|-
|183
| 183
|5311.554
| 5311.554
|
|  
|^4 +4oct
| ^4 +4 oct
|549
| 549
|-
|-
|184
| 184
|5340.579
| 5340.579
|<small><small>[[22/1]]</small></small>
| <small><small>[[22/1]]</small></small>
|~4 +4oct
| ~4 +4 oct
|552
| 552
|-
|-
| 185
| 185
|5369.603
| 5369.603
|  
|  
|vA4 +4oct
| vA4 +4 oct
|555
| 555
|-
|-
|186
| 186
|5398.628
| 5398.628
|
|  
|^^A4 +4oct, vvd5 +4oct
| ^^A4 +4 oct, vvd5 +4 oct
|558
| 558
|-
|-
|187
| 187
|5427.653
| 5427.653
| '''<u>[[23/1]]'''
| '''<u>[[23/1]]'''</u>
|^d5 +4oct
| ^d5 +4 oct
|561
| 561
|-
|-
|188
| 188
|5456.678
| 5456.678
|
|  
|~5 +4oct
| ~5 +4 oct
|564
| 564
|-
|-
|189
| 189
|5485.703
| 5485.703
|
|  
|v5 +4oct
| v5 +4 oct
|567
| 567
|-
|-
|190
| 190
|5514.728
| 5514.728
|<small><small><small>[[24/1]]</small></small></small>
| <small><small><small>[[24/1]]</small></small></small>
|^^5 +4oct
| ^^5 +4 oct
|570
| 570
|-
|-
|191
| 191
|5543.753
| 5543.753
|
|  
|vvvA5 +4oct
| vvvA5 +4 oct
|573
| 573
|-
|-
|192
| 192
|5572.778
| 5572.778
| '''<u>[[25/1]]'''
| '''<u>[[25/1]]'''</u>
| v<sup>4</sup>m6 +4oct
| v<sup>4</sup>m6 +4 oct
|576
| 576
|-
|-
| 193
| 193
|5601.802
| 5601.802
|  
|  
|vm6 +4oct
| vm6 +4 oct
|579
| 579
|-
|-
|194
| 194
|5630.827
| 5630.827
|<small><small>[[26/1]]</small></small>
| <small><small>[[26/1]]</small></small>
|^^m6 +4oct
| ^^m6 +4 oct
|582
| 582
|-
|-
|195
| 195
|5659.852
| 5659.852
|
|  
|vvvM6 +4oct
| vvvM6 +4 oct
|585
| 585
|-
|-
|196
| 196
|5688.877
| 5688.877
|
|  
|M6 +4oct
| M6 +4 oct
|588
| 588
|-
|-
|197
| 197
|5717.902
| 5717.902
|<small><small>[[27/1]]</small></small>
| <small><small>[[27/1]]</small></small>
|^^^M6 +4oct
| ^^^M6 +4 oct
|591
| 591
|-
|-
|198
| 198
|5746.927
| 5746.927
|
|  
|vvA6 +4oct, ^^d7 +4oct
| vvA6 +4 oct, ^^d7 +4 oct
|594
| 594
|-
|-
|199
| 199
|5775.952
| 5775.952
|[[28/1]]
| [[28/1]]
|vvvm7 +4oct
| vvvm7 +4 oct
|597
| 597
|-
|-
|200
| 200
|5804.977
| 5804.977
|
|  
|m7 +4oct
| m7 +4 oct
|600
| 600
|-
|-
|201
| 201
|5834.002
| 5834.002
|'''[[29/1]]'''
| '''[[29/1]]'''
|^^^m7 +4oct
| ^^^m7 +4 oct
|603
| 603
|-
|-
|202
| 202
|5863.026
| 5863.026
|
|  
|vvM7 +4oct
| vvM7 +4 oct
|606
| 606
|-
|-
|203
| 203
|5892.051
| 5892.051
|'''[[30/1]]'''
| '''[[30/1]]'''
|^M7 +4oct
| ^M7 +4 oct
|609
| 609
|-
|-
|204
| 204
|5921.076
| 5921.076
|
|  
| ^<sup>4</sup>M7 +4oct
| ^<sup>4</sup>M7 +4 oct
|612
| 612
|-
|-
|205
| 205
|5950.101
| 5950.101
|[[31/1]]
| [[31/1]]
|^^^d1 +5oct
| ^^^d1 +5 oct
|615
| 615
|-
|-
| 206
| 206
|5979.126
| 5979.126
|  
|  
|vv1 +5oct
| vv1 +5 oct
|618
| 618
|-
|-
|207
| 207
|6008.151
| 6008.151
|
| <small>[[32/1]]</small>
<small>[[32/1]]</small>
| ^1 +5 oct
|^1 +5oct
| 621
|621
|}
|}


===Approximation to JI===
== Approximation to JI ==
 
=== Interval mappings ===


The following table illustrates the representation of the 32-[[integer limit]] intervals in [[186zpi]]. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''.
The following tables show how [[32-integer-limit]] intervals are represented in 186zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''.


{| class="wikitable center-all mw-collapsible mw-collapsed"
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
|+ style="white-space: nowrap;" |Intervals by direct approximation (even if inconsistent)
|+ style="white-space: nowrap;" | 32-integer-limit intervals in 186zpi (by direct approximation)
|-
|-
!Ratio
! Ratio
!Error (abs, [[Cent| ¢]])
! Error (abs, [[Cent|¢]])
!Error (rel, [[Relative cent| %]])
! Error (rel, [[Relative cent|%]])
|-
|-
|[[17/13]]
| [[17/13]]
|0.030
| -0.030
|0.102
| -0.102
|-
|-
|'''[[5/1]]'''
| '''[[5/1]]'''
|'''0.075'''
| '''+0.075'''
|'''0.259'''
| '''+0.259'''
|-
|-
|[[25/17]]
| [[25/17]]
|0.100
| -0.100
|0.344
| -0.344
|-
|-
|[[25/13]]
| [[25/13]]
|0.129
| -0.129
|0.446
| -0.446
|-
|-
|[[23/11]]
| [[23/11]]
|0.138
| +0.138
|0.477
| +0.477
|-
|-
|[[25/1]]
| [[25/1]]
|0.150
| +0.150
|0.517
| +0.517
|- style="background-color: #cccccc;"
| ''[[11/8]]''
| ''+0.155''
| ''+0.533''
|-
|-
|''[[11/8]]''
| [[17/5]]
|''0.155''
| +0.175
|
| +0.602
''0.533''
|-
|-
|[[17/5]]
| [[13/5]]
|0.175
| +0.204
|0.602
| +0.704
|-
|-
|[[13/5]]
| '''[[17/1]]'''
|0.204
| '''+0.250'''
|0.704
| '''+0.861'''
|-
|-
|'''[[17/1]]'''
| '''[[13/1]]'''
|'''0.250'''
| '''+0.279'''
|'''0.861'''
| '''+0.963'''
|- style="background-color: #cccccc;"
| ''[[9/7]]''
| ''+0.289''
| ''+0.996''
|- style="background-color: #cccccc;"
| ''[[23/8]]''
| ''+0.293''
| ''+1.011''
|-
|-
|'''[[13/1]]'''
| '''[[23/1]]'''
|'''0.279'''
| '''-0.621'''
|'''0.963'''
| '''-2.140'''
|-
|-
|
| [[31/29]]
''[[9/7]]''
| +0.641
|''0.289''
| +2.209
|''0.996''
|-
|-
|''[[23/8]]''
| [[30/29]]
|''0.293''
| -0.642
|''1.011''
| -2.211
|-
|-
|'''[[23/1]]'''
| [[23/5]]
|'''0.621'''
| -0.696
|'''2.140'''
| -2.399
|-
|-
|[[31/29]]
| [[29/6]]
|0.641
| +0.717
|2.209
| +2.470
|- style="background-color: #cccccc;"
| ''[[9/8]]''
| ''-0.736''
| ''-2.535''
|-
|-
|[[30/29]]
| '''[[11/1]]'''
|0.642
| '''-0.760'''
|2.211
| '''-2.617'''
|-
|-
|[[23/5]]
| [[25/23]]
|0.696
| +0.771
|2.399
| +2.657
|-
|-
|[[29/6]]
| [[11/5]]
|0.717
| -0.835
|2.470
| -2.876
|-
|-
|
| [[23/17]]
''[[9/8]]''
| -0.871
|''0.736''
| -3.001
|''2.535''
|-
|-
|'''[[11/1]]'''
| [[21/19]]
|'''0.760'''
| +0.881
|'''2.617'''
| +3.037
|- style="background-color: #cccccc;"
| ''[[11/9]]''
| ''+0.891''
| ''+3.069''
|-
|-
|[[25/23]]
| [[23/13]]
|0.771
| -0.901
|2.657
| -3.103
|-
|-
|[[11/5]]
| [[25/11]]
|0.835
| +0.910
|2.876
| +3.135
|- style="background-color: #cccccc;"
| ''[[8/1]]''
| ''-0.914''
| ''-3.151''
|- style="background-color: #cccccc;"
| ''[[8/5]]''
| ''-0.990''
| ''-3.409''
|-
|-
|[[23/17]]
| [[17/11]]
|0.871
| +1.009
|3.001
| +3.478
|- style="background-color: #cccccc;"
| ''[[8/7]]''
| ''+1.025''
| ''+3.531''
|- style="background-color: #cccccc;"
| ''[[23/9]]''
| ''+1.029''
| ''+3.546''
|-
|-
|[[21/19]]
| [[13/11]]
|0.881
| +1.039
|3.037
| +3.580
|- style="background-color: #cccccc;"
| ''[[25/8]]''
| ''+1.065''
| ''+3.668''
|- style="background-color: #cccccc;"
| ''[[17/8]]''
| ''+1.164''
| ''+4.012''
|- style="background-color: #cccccc;"
| ''[[27/19]]''
| ''+1.171''
| ''+4.033''
|-
|-
|''[[11/9]]''
| [[11/7]]
|''0.891''
| +1.180
|''3.069''
| +4.065
|- style="background-color: #cccccc;"
| ''[[13/8]]''
| ''+1.194''
| ''+4.114''
|-
|-
|[[23/13]]
| [[31/30]]
|0.901
| +1.283
|3.103
| +4.420
|-
|-
|[[25/11]]
| [[23/7]]
|0.910
| +1.318
|3.135
| +4.542
|-
|-
|
| [[31/6]]
''[[8/1]]''
| +1.358
|''0.914''
| +4.679
|''3.151''
|- style="background-color: #cccccc;"
| ''[[9/1]]''
| ''-1.650''
| ''-5.686''
|- style="background-color: #cccccc;"
| ''[[9/5]]''
| ''-1.725''
| ''-5.944''
|- style="background-color: #cccccc;"
| ''[[20/19]]''
| ''-1.726''
| ''-5.947''
|- style="background-color: #cccccc;"
| ''[[25/9]]''
| ''+1.800''
| ''+6.203''
|- style="background-color: #cccccc;"
| ''[[19/4]]''
| ''+1.801''
| ''+6.205''
|- style="background-color: #cccccc;"
| ''[[17/9]]''
| ''+1.900''
| ''+6.547''
|- style="background-color: #cccccc;"
| ''[[24/19]]''
| ''+1.906''
| ''+6.568''
|- style="background-color: #cccccc;"
| ''[[13/9]]''
| ''+1.930''
| ''+6.649''
|-
|-
|
| '''[[7/1]]'''
''[[8/5]]''
| '''-1.939'''
|''0.990''
| '''-6.682'''
|''3.409''
|-
|-
|[[17/11]]
| [[7/5]]
|1.009
| -2.015
|3.478
| -6.941
|- style="background-color: #cccccc;"
| ''[[31/28]]''
| ''-2.060''
| ''-7.099''
|-
|-
|
| [[25/7]]
''[[8/7]]''
| +2.090
|''1.025''
| +7.199
|''3.531''
|-
|-
|''[[23/9]]''
| [[17/7]]
|''1.029''
| +2.189
|''3.546''
| +7.543
|-
|-
|[[13/11]]
| [[13/7]]
|1.039
| +2.219
|3.580
| +7.645
|- style="background-color: #cccccc;"
| ''[[21/20]]''
| ''+2.607''
| ''+8.984''
|- style="background-color: #cccccc;"
| ''[[21/4]]''
| ''+2.683''
| ''+9.242''
|- style="background-color: #cccccc;"
| ''[[29/28]]''
| ''-2.702''
| ''-9.308''
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''-2.716''
| ''-9.356''
|-
|-
|''[[25/8]]''
| [[19/3]]
|''1.065''
| -2.821
|''3.668''
| -9.719
|-
|-
|''[[17/8]]''
| [[19/15]]
|''1.164''
| -2.896
|''4.012''
| -9.977
|- style="background-color: #cccccc;"
| ''[[27/20]]''
| ''+2.897''
| ''+9.980''
|- style="background-color: #cccccc;"
| ''[[27/4]]''
| ''+2.972''
| ''+10.238''
|- style="background-color: #cccccc;"
| ''[[32/31]]''
| ''+3.085''
| ''+10.630''
|- style="background-color: #cccccc;"
| ''[[15/14]]''
| ''-3.343''
| ''-11.519''
|- style="background-color: #cccccc;"
| ''[[14/3]]''
| ''+3.418''
| ''+11.777''
|-
|-
|''[[27/19]]''
| [[13/6]]
|''1.171''
| -3.428
|
| -11.811
''4.033''
|-
|-
|[[11/7]]
| [[17/6]]
|1.180
| -3.458
|4.065
| -11.913
|-
|-
|''[[13/8]]''
| [[30/13]]
|''1.194''
| +3.503
|''4.114''
| +12.069
|-
|-
|[[31/30]]
| [[30/17]]
|1.283
| +3.533
|4.420
| +12.171
|-
|-
|[[23/7]]
| [[25/6]]
|1.318
| -3.557
|4.542
| -12.256
|- style="background-color: #cccccc;"
| ''[[32/21]]''
| ''-3.597''
| ''-12.393''
|-
|-
|[[31/6]]
| [[6/5]]
|1.358
| +3.632
|4.679
| +12.515
|-
|-
|
| [[6/1]]
''[[9/1]]''
| +3.708
|''1.650''
| +12.774
|''5.686''
|- style="background-color: #cccccc;"
| ''[[32/29]]''
| ''+3.726''
| ''+12.839''
|- style="background-color: #cccccc;"
| ''[[28/19]]''
| ''-3.741''
| ''-12.887''
|-
|-
|
| [[30/1]]
''[[9/5]]''
| +3.783
|''1.725''
| +13.032
|''5.944''
|- style="background-color: #cccccc;"
| ''[[32/27]]''
| ''-3.886''
| ''-13.389''
|- style="background-color: #cccccc;"
| ''[[31/4]]''
| ''-4.000''
| ''-13.781''
|- style="background-color: #cccccc;"
| ''[[31/20]]''
| ''-4.075''
| ''-14.039''
|-
|-
|''[[20/19]]''
| [[29/13]]
|''1.726''
| +4.145
|''5.947''
| +14.280
|-
|-
|''[[25/9]]''
| [[29/17]]
|''1.800''
| +4.174
|''6.203''
| +14.382
|-
|-
|''[[19/4]]''
| [[29/25]]
|''1.801''
| +4.274
|''6.205''
| +14.726
|-
|-
|''[[17/9]]''
| [[23/6]]
|''1.900''
| -4.329
|''6.547''
| -14.914
|-
|-
|''[[24/19]]''
| [[12/7]]
|''1.906''
| -4.333
|''6.568''
| -14.928
|-
|-
|''[[13/9]]''
| [[29/5]]
|''1.930''
| +4.349
|''6.649''
| +14.985
|- style="background-color: #cccccc;"
| ''[[16/15]]''
| ''+4.368''
| ''+15.050''
|-
|-
|'''[[7/1]]'''
| [[30/23]]
|'''1.939'''
| +4.404
|'''6.682'''
| +15.172
|-
|-
|
| '''[[29/1]]'''
[[7/5]]
| '''+4.424'''
|2.015
| '''+15.243'''
|6.941
|- style="background-color: #cccccc;"
| ''[[16/3]]''
| ''+4.443''
| ''+15.309''
|-
|-
|''[[31/28]]''
| [[11/6]]
|''2.060''
| -4.467
|
| -15.391
''7.099''
|- style="background-color: #cccccc;"
| ''[[22/15]]''
| ''+4.523''
| ''+15.583''
|-
|-
|[[25/7]]
| [[30/11]]
|2.090
| +4.542
|7.199
| +15.649
|- style="background-color: #cccccc;"
| ''[[20/3]]''
| ''-4.547''
| ''-15.666''
|- style="background-color: #cccccc;"
| ''[[22/3]]''
| ''+4.598''
| ''+15.842''
|- style="background-color: #cccccc;"
| ''[[4/3]]''
| ''-4.622''
| ''-15.924''
|- style="background-color: #cccccc;"
| ''[[29/4]]''
| ''-4.641''
| ''-15.990''
|- style="background-color: #cccccc;"
| ''[[15/4]]''
| ''+4.697''
| ''+16.183''
|- style="background-color: #cccccc;"
| ''[[29/20]]''
| ''-4.716''
| ''-16.248''
|-
|-
|[[17/7]]
| [[31/13]]
|2.189
| +4.786
|7.543
| +16.489
|-
|-
|[[13/7]]
| [[31/17]]
|2.219
| +4.816
|7.645
| +16.591
|- style="background-color: #cccccc;"
| ''[[28/27]]''
| ''-4.911''
| ''-16.920''
|-
|-
|''[[21/20]]''
| [[31/25]]
|''2.607''
| +4.915
|''8.984''
| +16.935
|-
|-
|''[[21/4]]''
| [[31/5]]
|''2.683''
| +4.990
|''9.242''
| +17.194
|-
|-
|''[[29/28]]''
| [[29/23]]
|''2.702''
| +5.046
|''9.308''
| +17.383
|-
|-
|''[[32/19]]''
| '''[[31/1]]'''
|''2.716''
| '''+5.066'''
|
| '''+17.452'''
''9.356''
|- style="background-color: #cccccc;"
| ''[[27/14]]''
| ''-5.069''
| ''-17.463''
|-
|-
|[[19/3]]
| [[29/11]]
|2.821
| +5.184
|9.719
| +17.860
|- style="background-color: #cccccc;"
| ''[[15/2]]''
| ''-5.283''
| ''-18.201''
|- style="background-color: #cccccc;"
| ''[[29/8]]''
| ''+5.339''
| ''+18.394''
|- style="background-color: #cccccc;"
| ''[[3/2]]''
| ''-5.358''
| ''-18.459''
|- style="background-color: #cccccc;"
| ''[[10/3]]''
| ''+5.433''
| ''+18.718''
|-
|-
|[[19/15]]
| [[12/11]]
|2.896
| -5.513
|9.977
| -18.993
|- style="background-color: #cccccc;"
| ''[[32/3]]''
| ''-5.536''
| ''-19.075''
|- style="background-color: #cccccc;"
| ''[[26/15]]''
| ''+5.562''
| ''+19.164''
|- style="background-color: #cccccc;"
| ''[[32/15]]''
| ''-5.612''
| ''-19.334''
|- style="background-color: #cccccc;"
| ''[[26/3]]''
| ''+5.637''
| ''+19.422''
|-
|-
|''[[27/20]]''
| [[7/6]]
|''2.897''
| -5.647
|''9.980''
| -19.456
|-
|-
|''[[27/4]]''
| [[23/12]]
|''2.972''
| +5.651
|''10.238''
| +19.470
|-
|-
|''[[32/31]]''
| [[31/23]]
|''3.085''
| +5.687
|''10.630''
| +19.592
|-
|-
|''[[15/14]]''
| [[30/7]]
|''3.343''
| +5.722
|''11.519''
| +19.714
|-
|-
|''[[14/3]]''
| [[31/19]]
|''3.418''
| -5.801
|''11.777''
| -19.986
|-
|-
|[[13/6]]
| [[31/11]]
|3.428
| +5.825
|11.811
| +20.069
|- style="background-color: #cccccc;"
| ''[[31/8]]''
| ''+5.980''
| ''+20.603''
|- style="background-color: #cccccc;"
| ''[[29/9]]''
| ''+6.075''
| ''+20.929''
|- style="background-color: #cccccc;"
| ''[[27/16]]''
| ''-6.094''
| ''-20.994''
|- style="background-color: #cccccc;"
| ''[[19/14]]''
| ''-6.239''
| ''-21.496''
|- style="background-color: #cccccc;"
| ''[[27/22]]''
| ''-6.248''
| ''-21.528''
|-
|-
|[[17/6]]
| [[12/1]]
|3.458
| -6.272
| 11.913
| -21.610
|-
|-
|[[30/13]]
| [[12/5]]
|3.503
| -6.347
| 12.069
| -21.869
|-
|-
|[[30/17]]
| [[29/7]]
|3.533
| +6.364
|12.171
| +21.925
|- style="background-color: #cccccc;"
| ''[[21/16]]''
| ''-6.383''
| ''-21.991''
|-
|-
|[[25/6]]
| [[25/12]]
|3.557
| +6.422
|12.256
| +22.127
|-
|-
|''[[32/21]]''
| [[29/19]]
|''3.597''
| -6.442
|
| -22.195
''12.393''
|-
|-
|[[6/5]]
| [[17/12]]
|3.632
| +6.522
|12.515
| +22.471
|-
|-
|[[6/1]]
| [[19/18]]
|3.708
| -6.528
|12.774
| -22.492
|- style="background-color: #cccccc;"
| ''[[22/21]]''
| ''+6.538''
| ''+22.524''
|-
|-
|''[[32/29]]''
| [[13/12]]
|''3.726''
| +6.552
|''12.839''
| +22.573
|- style="background-color: #cccccc;"
| ''[[28/3]]''
| ''-6.561''
| ''-22.606''
|- style="background-color: #cccccc;"
| ''[[28/15]]''
| ''-6.637''
| ''-22.865''
|-
|-
|''[[28/19]]''
| [[31/21]]
|''3.741''
| -6.682
|''12.887''
| -23.023
|- style="background-color: #cccccc;"
| ''[[31/9]]''
| ''+6.716''
| ''+23.138''
|- style="background-color: #cccccc;"
| ''[[28/13]]''
| ''+6.846''
| ''+23.588''
|- style="background-color: #cccccc;"
| ''[[28/17]]''
| ''+6.876''
| ''+23.690''
|- style="background-color: #cccccc;"
| ''[[31/27]]''
| ''-6.972''
| ''-24.019''
|- style="background-color: #cccccc;"
| ''[[28/25]]''
| ''+6.976''
| ''+24.034''
|-
|-
|[[30/1]]
| [[31/7]]
|3.783
| +7.005
|13.032
| +24.134
|- style="background-color: #cccccc;"
| ''[[27/2]]''
| ''-7.008''
| ''-24.145''
|- style="background-color: #cccccc;"
| ''[[28/5]]''
| ''+7.051''
| ''+24.292''
|- style="background-color: #cccccc;"
| ''[[27/10]]''
| ''-7.083''
| ''-24.404''
|-
|-
|''[[32/27]]''
| [[30/19]]
|''3.886''
| -7.084
|''13.389''
| -24.406
|- style="background-color: #cccccc;"
| ''[[28/1]]''
| ''+7.126''
| ''+24.551''
|-
|-
|''[[31/4]]''
| [[19/6]]
|''4.000''
| +7.159
|''13.781''
| +24.665
|- style="background-color: #cccccc;"
| ''[[19/16]]''
| ''-7.264''
| ''-25.027''
|- style="background-color: #cccccc;"
| ''[[27/26]]''
| ''-7.288''
| ''-25.108''
|- style="background-color: #cccccc;"
| ''[[21/2]]''
| ''-7.297''
| ''-25.141''
|-
|-
|''[[31/20]]''
| [[29/21]]
|''4.075''
| -7.324
|''14.039''
| -25.232
|- style="background-color: #cccccc;"
| ''[[21/10]]''
| ''-7.372''
| ''-25.400''
|- style="background-color: #cccccc;"
| ''[[22/19]]''
| ''+7.419''
| ''+25.561''
|- style="background-color: #cccccc;"
| ''[[26/21]]''
| ''+7.577''
| ''+26.104''
|- style="background-color: #cccccc;"
| ''[[29/27]]''
| ''-7.613''
| ''-26.228''
|- style="background-color: #cccccc;"
| ''[[31/24]]''
| ''-7.707''
| ''-26.554''
|- style="background-color: #cccccc;"
| ''[[28/23]]''
| ''+7.747''
| ''+26.691''
|-
|-
|[[29/13]]
| [[26/7]]
|4.145
| -7.761
| 14.280
| -26.739
|- style="background-color: #cccccc;"
| ''[[32/13]]''
| ''+7.871''
| ''+27.119''
|- style="background-color: #cccccc;"
| ''[[28/11]]''
| ''+7.886''
| ''+27.168''
|- style="background-color: #cccccc;"
| ''[[32/17]]''
| ''+7.901''
| ''+27.221''
|-
|-
|[[29/17]]
| [[10/7]]
|4.174
| -7.965
| 14.382
| -27.443
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''+8.001''
| ''+27.565''
|-
|-
|[[29/25]]
| [[7/2]]
|4.274
| +8.040
|14.726
| +27.702
|- style="background-color: #cccccc;"
| ''[[26/9]]''
| ''-8.050''
| ''-27.735''
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''+8.076''
| ''+27.824''
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''+8.151''
| ''+28.082''
|- style="background-color: #cccccc;"
| ''[[19/2]]''
| ''-8.179''
| ''-28.178''
|- style="background-color: #cccccc;"
| ''[[19/10]]''
| ''-8.254''
| ''-28.437''
|- style="background-color: #cccccc;"
| ''[[10/9]]''
| ''-8.254''
| ''-28.439''
|- style="background-color: #cccccc;"
| ''[[9/2]]''
| ''+8.329''
| ''+28.698''
|- style="background-color: #cccccc;"
| ''[[29/24]]''
| ''-8.348''
| ''-28.763''
|- style="background-color: #cccccc;"
| ''[[26/19]]''
| ''+8.458''
| ''+29.141''
|-
|-
|[[23/6]]
| [[31/3]]
|4.329
| -8.622
|14.914
| -29.705
|-
|-
|[[12/7]]
| [[31/15]]
|4.333
| -8.697
|14.928
| -29.964
|- style="background-color: #cccccc;"
| ''[[32/23]]''
| ''+8.772''
| ''+30.222''
|- style="background-color: #cccccc;"
| ''[[28/9]]''
| ''+8.776''
| ''+30.237''
|- style="background-color: #cccccc;"
| ''[[13/4]]''
| ''-8.786''
| ''-30.270''
|-
|-
|[[29/5]]
| [[22/7]]
|4.349
| -8.800
|14.985
| -30.319
|- style="background-color: #cccccc;"
| ''[[17/4]]''
| ''-8.815''
| ''-30.372''
|- style="background-color: #cccccc;"
| ''[[20/13]]''
| ''+8.861''
| ''+30.529''
|- style="background-color: #cccccc;"
| ''[[20/17]]''
| ''+8.891''
| ''+30.631''
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''+8.910''
| ''+30.699''
|- style="background-color: #cccccc;"
| ''[[25/4]]''
| ''-8.915''
| ''-30.716''
|-
|-
|''[[16/15]]''
| [[26/11]]
|''4.368''
| -8.941
|''15.050''
| -30.803
|- style="background-color: #cccccc;"
| ''[[16/7]]''
| ''-8.955''
| ''-30.852''
|- style="background-color: #cccccc;"
| ''[[5/4]]''
| ''-8.990''
| ''-30.974''
|- style="background-color: #cccccc;"
| ''[[4/1]]''
| ''+9.065''
| ''+31.233''
|-
|-
|[[30/23]]
| [[26/23]]
|4.404
| -9.079
|15.172
| -31.281
|- style="background-color: #cccccc;"
| ''[[22/9]]''
| ''-9.089''
| ''-31.315''
|- style="background-color: #cccccc;"
| ''[[20/1]]''
| ''+9.140''
| ''+31.492''
|-
|-
|'''[[29/1]]'''
| [[11/10]]
|'''4.424'''
| +9.145
|'''15.243'''
| +31.508
|-
|-
|''[[16/3]]''
| [[11/2]]
|''4.443''
| +9.220
|''15.309''
| +31.766
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''-9.244''
| ''-31.848''
|-
|-
|[[11/6]]
| [[29/3]]
|4.467
| -9.263
|15.391
| -31.914
|-
|-
|''[[22/15]]''
| [[23/10]]
|''4.523''
| +9.284
|''15.583''
| +31.985
|-
|-
|[[30/11]]
| [[29/15]]
|4.542
| -9.338
|15.649
| -32.173
|-
|-
|''[[20/3]]''
| [[23/2]]
|''4.547''
| +9.359
|''15.666''
| +32.243
|- style="background-color: #cccccc;"
| ''[[23/4]]''
| ''-9.686''
| ''-33.373''
|- style="background-color: #cccccc;"
| ''[[18/7]]''
| ''-9.691''
| ''-33.387''
|-
|-
|''[[22/3]]''
| [[26/1]]
|''4.598''
| -9.700
|''15.842''
| -33.421
|- style="background-color: #cccccc;"
| ''[[23/20]]''
| ''-9.762''
| ''-33.632''
|-
|-
|
| [[26/5]]
''[[4/3]]''
| -9.775
|''4.622''
| -33.679
|''15.924''
|- style="background-color: #cccccc;"
| ''[[32/9]]''
| ''+9.801''
| ''+33.768''
|- style="background-color: #cccccc;"
| ''[[11/4]]''
| ''-9.825''
| ''-33.850''
|-
|-
|''[[29/4]]''
| [[26/25]]
|''4.641''
| -9.850
|''15.990''
| -33.938
|- style="background-color: #cccccc;"
| ''[[20/11]]''
| ''+9.900''
| ''+34.109''
|-
|-
|''[[15/4]]''
| [[10/1]]
|''4.697''
| -9.905
|''16.183''
| -34.125
|-
|-
|''[[29/20]]''
| [[26/17]]
|''4.716''
| -9.950
|''16.248''
| -34.282
|-
|-
|[[31/13]]
| '''[[2/1]]'''
|4.786
| '''-9.980'''
| 16.489
| '''-34.384'''
|-
|-
|[[31/17]]
| [[5/2]]
|4.816
| +10.055
|16.591
| +34.642
|- style="background-color: #cccccc;"
| ''[[32/7]]''
| ''+10.090''
| ''+34.764''
|-
|-
|''[[28/27]]''
| [[23/22]]
|''4.911''
| +10.118
|''16.920''
| +34.861
|-
|-
|[[31/25]]
| [[25/2]]
|4.915
| +10.130
|16.935
| +34.901
|- style="background-color: #cccccc;"
| ''[[16/11]]''
| ''-10.135''
| ''-34.917''
|-
|-
|[[31/5]]
| [[17/10]]
|4.990
| +10.155
| 17.194
| +34.986
|-
|-
|[[29/23]]
| [[13/10]]
|5.046
| +10.184
|17.383
| +35.088
|-
|-
|'''[[31/1]]'''
| [[17/2]]
|'''5.066'''
| +10.230
|'''17.452'''
| +35.244
|-
|-
|''[[27/14]]''
| [[13/2]]
|''5.069''
| +10.259
|''17.463''
| +35.346
|- style="background-color: #cccccc;"
| ''[[14/9]]''
| ''-10.269''
| ''-35.380''
|- style="background-color: #cccccc;"
| ''[[23/16]]''
| ''+10.273''
| ''+35.394''
|-
|-
|[[29/11]]
| [[19/13]]
|5.184
| +10.587
|17.860
| +36.475
|-
|-
|''[[15/2]]''
| [[19/17]]
|''5.283''
| +10.617
|''18.201''
| +36.577
|-
|-
|''[[29/8]]''
| [[29/12]]
|''5.339''
| +10.697
|''18.394''
| +36.853
|- style="background-color: #cccccc;"
| ''[[9/4]]''
| ''-10.716''
| ''-36.919''
|-
|-
|
| [[25/19]]
''[[3/2]]''
| -10.716
|''5.358''
| -36.921
|''18.459''
|-
|-
|''[[10/3]]''
| [[22/1]]
|''5.433''
| -10.739
|''18.718''
| -37.001
|- style="background-color: #cccccc;"
| ''[[20/9]]''
| ''+10.791''
| ''+37.177''
|-
|-
|[[12/11]]
| [[19/5]]
|5.513
| +10.791
|18.993
| +37.180
|-
|-
|''[[32/3]]''
| [[22/5]]
|''5.536''
| -10.814
|''19.075''
| -37.259
|-
|-
|''[[26/15]]''
| '''[[19/1]]'''
|''5.562''
| '''+10.866'''
|''19.164''
| '''+37.438'''
|- style="background-color: #cccccc;"
| ''[[18/11]]''
| ''-10.870''
| ''-37.452''
|-
|-
|''[[32/15]]''
| [[25/22]]
|''5.612''
| +10.890
|''19.334''
| +37.518
|- style="background-color: #cccccc;"
| ''[[16/1]]''
| ''-10.894''
| ''-37.534''
|- style="background-color: #cccccc;"
| ''[[16/5]]''
| ''-10.969''
| ''-37.793''
|-
|-
|''[[26/3]]''
| [[22/17]]
|''5.637''
| -10.989
|
| -37.862
''19.422''
|- style="background-color: #cccccc;"
| ''[[7/4]]''
| ''-11.005''
| ''-37.915''
|- style="background-color: #cccccc;"
| ''[[23/18]]''
| ''+11.009''
| ''+37.929''
|-
|-
|[[7/6]]
| [[22/13]]
|5.647
| -11.019
| 19.456
| -37.964
|- style="background-color: #cccccc;"
| ''[[25/16]]''
| ''+11.044''
| ''+38.052''
|- style="background-color: #cccccc;"
| ''[[20/7]]''
| ''+11.080''
| ''+38.174''
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''+11.144''
| ''+38.395''
|-
|-
|[[23/12]]
| [[14/11]]
|5.651
| -11.160
| 19.470
| -38.448
|- style="background-color: #cccccc;"
| ''[[16/13]]''
| ''-11.174''
| ''-38.497''
|-
|-
|[[31/23]]
| [[23/14]]
|5.687
| +11.298
|19.592
| +38.925
|-
|-
|[[30/7]]
| [[31/12]]
|5.722
| +11.338
| 19.714
| +39.062
|-
|-
|[[31/19]]
| [[21/13]]
|5.801
| +11.468
| 19.986
| +39.512
|-
|-
|[[31/11]]
| [[23/19]]
|5.825
| -11.488
|20.069
| -39.579
|-
|-
|''[[31/8]]''
| [[21/17]]
|''5.980''
| +11.498
|''20.603''
| +39.614
|-
|-
|''[[29/9]]''
| [[25/21]]
|''6.075''
| -11.598
|''20.929''
| -39.958
|-
|-
|''[[27/16]]''
| [[19/11]]
|''6.094''
| +11.626
|''20.994''
| +40.056
|- style="background-color: #cccccc;"
| ''[[18/1]]''
| ''-11.630''
| ''-40.069''
|-
|-
|''[[19/14]]''
| [[21/5]]
|''6.239''
| +11.673
|''21.496''
| +40.216
|- style="background-color: #cccccc;"
| ''[[18/5]]''
| ''-11.705''
| ''-40.328''
|-
|-
|''[[27/22]]''
| [[21/1]]
|''6.248''
| +11.748
|''21.528''
| +40.475
|- style="background-color: #cccccc;"
| ''[[27/13]]''
| ''+11.758''
| ''+40.508''
|- style="background-color: #cccccc;"
| ''[[25/18]]''
| ''+11.780''
| ''+40.587''
|- style="background-color: #cccccc;"
| ''[[19/8]]''
| ''+11.781''
| ''+40.589''
|- style="background-color: #cccccc;"
| ''[[27/17]]''
| ''+11.787''
| ''+40.610''
|- style="background-color: #cccccc;"
| ''[[18/17]]''
| ''-11.880''
| ''-40.930''
|- style="background-color: #cccccc;"
| ''[[19/12]]''
| ''-11.886''
| ''-40.952''
|- style="background-color: #cccccc;"
| ''[[27/25]]''
| ''+11.887''
| ''+40.954''
|- style="background-color: #cccccc;"
| ''[[18/13]]''
| ''-11.910''
| ''-41.032''
|-
|-
|[[12/1]]
| [[14/1]]
|6.272
| -11.919
|21.610
| -41.066
|- style="background-color: #cccccc;"
| ''[[27/5]]''
| ''+11.962''
| ''+41.213''
|-
|-
|[[12/5]]
| [[14/5]]
|6.347
| -11.994
|21.869
| -41.324
|- style="background-color: #cccccc;"
| ''[[27/1]]''
| ''+12.037''
| ''+41.471''
|- style="background-color: #cccccc;"
| ''[[31/14]]''
| ''-12.040''
| ''-41.482''
|-
|-
|[[29/7]]
| [[25/14]]
|6.364
| +12.069
|21.925
| +41.583
|-
|-
|''[[21/16]]''
| [[17/14]]
|''6.383''
| +12.169
|''21.991''
| +41.926
|-
|-
|[[25/12]]
| [[14/13]]
|6.422
| -12.199
| 22.127
| -42.028
|-
|-
|[[29/19]]
| [[31/18]]
|6.442
| -12.329
| 22.195
| -42.478
|-
|-
|[[17/12]]
| [[23/21]]
|6.522
| -12.369
| 22.471
| -42.615
|- style="background-color: #cccccc;"
| ''[[24/13]]''
| ''+12.493''
| ''+43.044''
|-
|-
|[[19/18]]
| [[21/11]]
|6.528
| +12.507
|22.492
| +43.092
|- style="background-color: #cccccc;"
| ''[[19/9]]''
| ''+12.517''
| ''+43.124''
|- style="background-color: #cccccc;"
| ''[[24/17]]''
| ''+12.523''
| ''+43.146''
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''-12.623''
| ''-43.489''
|- style="background-color: #cccccc;"
| ''[[27/23]]''
| ''+12.658''
| ''+43.611''
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''+12.662''
| ''+43.626''
|- style="background-color: #cccccc;"
| ''[[29/14]]''
| ''-12.681''
| ''-43.691''
|- style="background-color: #cccccc;"
| ''[[24/5]]''
| ''+12.698''
| ''+43.748''
|- style="background-color: #cccccc;"
| ''[[24/1]]''
| ''+12.773''
| ''+44.006''
|- style="background-color: #cccccc;"
| ''[[27/11]]''
| ''+12.797''
| ''+44.089''
|-
|-
|''[[22/21]]''
| [[19/7]]
|''6.538''
| +12.806
|''22.524''
| +44.120
|- style="background-color: #cccccc;"
| ''[[27/8]]''
| ''+12.951''
| ''+44.622''
|-
|-
|[[13/12]]
| [[29/18]]
|6.552
| -12.970
|22.573
| -44.687
|- style="background-color: #cccccc;"
| ''[[31/16]]''
| ''-13.065''
| ''-45.014''
|- style="background-color: #cccccc;"
| ''[[31/22]]''
| ''-13.220''
| ''-45.547''
|- style="background-color: #cccccc;"
| ''[[15/7]]''
| ''-13.323''
| ''-45.902''
|- style="background-color: #cccccc;"
| ''[[24/23]]''
| ''+13.394''
| ''+46.147''
|- style="background-color: #cccccc;"
| ''[[7/3]]''
| ''+13.398''
| ''+46.161''
|-
|-
|''[[28/3]]''
| [[13/3]]
|''6.561''
| -13.408
|''22.606''
| -46.194
|-
|-
|''[[28/15]]''
| [[17/3]]
|''6.637''
| -13.437
|''22.865''
| -46.296
|-
|-
|[[31/21]]
| [[15/13]]
|6.682
| +13.483
|23.023
| +46.453
|-
|-
|''[[31/9]]''
| [[17/15]]
|''6.716''
| -13.513
|''23.138''
| -46.555
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''+13.532''
| ''+46.624''
|-
|-
|''[[28/13]]''
| [[25/3]]
|''6.846''
| -13.537
|''23.588''
| -46.640
|-
|-
|''[[28/17]]''
| [[5/3]]
|''6.876''
| -13.612
|''23.690''
| -46.898
|-
|-
|''[[31/27]]''
| '''[[3/1]]'''
|''6.972''
| '''+13.687'''
|''24.019''
| '''+47.157'''
|- style="background-color: #cccccc;"
| ''[[29/16]]''
| ''-13.706''
| ''-47.223''
|-
|-
|''[[28/25]]''
| [[15/1]]
|''6.976''
| +13.762
|''24.034''
| +47.416
|- style="background-color: #cccccc;"
| ''[[29/22]]''
| ''-13.861''
| ''-47.756''
|- style="background-color: #cccccc;"
| ''[[27/7]]''
| ''+13.976''
| ''+48.153''
|- style="background-color: #cccccc;"
| ''[[31/2]]''
| ''-13.980''
| ''-48.164''
|- style="background-color: #cccccc;"
| ''[[31/10]]''
| ''-14.055''
| ''-48.423''
|-
|-
|[[31/7]]
| [[29/26]]
|7.005
| +14.125
|24.134
| +48.664
|- style="background-color: #cccccc;"
| ''[[31/26]]''
| ''-14.259''
| ''-49.127''
|-
|-
|''[[27/2]]''
| [[23/3]]
|''7.008''
| -14.308
|''24.145''
| -49.297
|-
|-
|''[[28/5]]''
| [[24/7]]
|''7.051''
| -14.313
|''24.292''
| -49.312
|-
|-
|''[[27/10]]''
| [[29/10]]
|''7.083''
| +14.329
|''24.404''
| +49.368
|- style="background-color: #cccccc;"
| ''[[15/8]]''
| ''-14.348''
| ''-49.434''
|-
|-
|[[30/19]]
| [[23/15]]
|7.084
| -14.384
|24.406
| -49.556
|-
|-
|''[[28/1]]''
| [[29/2]]
|''7.126''
| +14.404
|''24.551''
| +49.627
|- style="background-color: #cccccc;"
| ''[[8/3]]''
| ''+14.423''
| ''+49.692''
|-
|-
|[[19/6]]
| [[11/3]]
|7.159
| -14.447
|24.665
| -49.774
|-
|- style="background-color: #cccccc;"
|''[[19/16]]''
| ''[[15/11]]''
|''7.264''
| ''-14.503''
|''25.027''
| ''-49.967''
|-
|}
|''[[27/26]]''
 
|''7.288''
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
|''25.108''
|+ style="white-space: nowrap;" | 32-integer-limit intervals in 186zpi (by patent val mapping)
|-
|''[[21/2]]''
|''7.297''
|''25.141''
|-
|[[29/21]]
|7.324
|25.232
|-
|''[[21/10]]''
|''7.372''
|''25.400''
|-
|''[[22/19]]''
|''7.419''
|''25.561''
|-
|''[[26/21]]''
|''7.577''
|''26.104''
|-
|''[[29/27]]''
|''7.613''
|''26.228''
|-
|''[[31/24]]''
|''7.707''
|''26.554''
|-
|''[[28/23]]''
|''7.747''
|''26.691''
|-
|[[26/7]]
|7.761
|26.739
|-
|''[[32/13]]''
|''7.871''
|''27.119''
|-
|''[[28/11]]''
|''7.886''
|''27.168''
|-
|''[[32/17]]''
|''7.901''
|''27.221''
|-
|[[10/7]]
|7.965
|27.443
|-
|''[[32/25]]''
|''8.001''
|
''27.565''
|-
|-
|[[7/2]]
! Ratio
|8.040
! Error (abs, [[Cent|¢]])
|27.702
! Error (rel, [[Relative cent|%]])
|-
|-
|''[[26/9]]''
| [[17/13]]
|''8.050''
| -0.030
|''27.735''
| -0.102
|-
|-
|''[[32/5]]''
| '''[[5/1]]'''
|''8.076''
| '''+0.075'''
|''27.824''
| '''+0.259'''
|-
|-
|''[[32/1]]''
| [[25/17]]
|''8.151''
| -0.100
|''28.082''
| -0.344
|-
|-
|''[[19/2]]''
| [[25/13]]
|''8.179''
| -0.129
|''28.178''
| -0.446
|-
|-
|''[[19/10]]''
| [[23/11]]
|''8.254''
| +0.138
|''28.437''
| +0.477
|-
|-
|''[[10/9]]''
| [[25/1]]
|''8.254''
| +0.150
|''28.439''
| +0.517
|-
|-
|
| [[17/5]]
''[[9/2]]''
| +0.175
|''8.329''
| +0.602
|''28.698''
|-
|-
|''[[29/24]]''
| [[13/5]]
|''8.348''
| +0.204
|''28.763''
| +0.704
|-
|-
|''[[26/19]]''
| '''[[17/1]]'''
|''8.458''
| '''+0.250'''
|''29.141''
| '''+0.861'''
|-
|-
|[[31/3]]
| '''[[13/1]]'''
|8.622
| '''+0.279'''
| 29.705
| '''+0.963'''
|-
|-
|[[31/15]]
| '''[[23/1]]'''
|8.697
| '''-0.621'''
|29.964
| '''-2.140'''
|-
|-
|''[[32/23]]''
| [[31/29]]
|''8.772''
| +0.641
|''30.222''
| +2.209
|-
|-
|''[[28/9]]''
| [[30/29]]
|''8.776''
| -0.642
|''30.237''
| -2.211
|-
|-
|''[[13/4]]''
| [[23/5]]
|''8.786''
| -0.696
|''30.270''
| -2.399
|-
|-
|[[22/7]]
| [[29/6]]
|8.800
| +0.717
|30.319
| +2.470
|-
|-
|''[[17/4]]''
| '''[[11/1]]'''
|''8.815''
| '''-0.760'''
|''30.372''
| '''-2.617'''
|-
|-
|''[[20/13]]''
| [[25/23]]
|''8.861''
| +0.771
|''30.529''
| +2.657
|-
|-
|''[[20/17]]''
| [[11/5]]
|''8.891''
| -0.835
|''30.631''
| -2.876
|-
|-
|''[[32/11]]''
| [[23/17]]
|''8.910''
| -0.871
|''30.699''
| -3.001
|-
|-
|''[[25/4]]''
| [[21/19]]
|''8.915''
| +0.881
|''30.716''
| +3.037
|-
|-
|[[26/11]]
| [[23/13]]
|8.941
| -0.901
|30.803
| -3.103
|-
|-
|''[[16/7]]''
| [[25/11]]
|''8.955''
| +0.910
|''30.852''
| +3.135
|-
|-
|
| [[17/11]]
''[[5/4]]''
| +1.009
|''8.990''
| +3.478
|''30.974''
|-
|-
|
| [[13/11]]
''[[4/1]]''
| +1.039
|''9.065''
| +3.580
|''31.233''
|-
|-
|[[26/23]]
| [[11/7]]
|9.079
| +1.180
|31.281
| +4.065
|-
|-
|''[[22/9]]''
| [[31/30]]
|''9.089''
| +1.283
|''31.315''
| +4.420
|-
|-
|''[[20/1]]''
| [[23/7]]
|''9.140''
| +1.318
|''31.492''
| +4.542
|-
|-
|[[11/10]]
| [[31/6]]
|9.145
| +1.358
|31.508
| +4.679
|-
|-
|[[11/2]]
| '''[[7/1]]'''
|9.220
| '''-1.939'''
|31.766
| '''-6.682'''
|-
|-
|''[[16/9]]''
| [[7/5]]
|''9.244''
| -2.015
|''31.848''
| -6.941
|-
|-
|[[29/3]]
| [[25/7]]
|9.263
| +2.090
| 31.914
| +7.199
|-
|-
|[[23/10]]
| [[17/7]]
|9.284
| +2.189
| 31.985
| +7.543
|-
|-
|[[29/15]]
| [[13/7]]
|9.338
| +2.219
|32.173
| +7.645
|-
|-
|[[23/2]]
| [[19/3]]
|9.359
| -2.821
|32.243
| -9.719
|-
|-
|''[[23/4]]''
| [[19/15]]
|''9.686''
| -2.896
|''33.373''
| -9.977
|-
|-
|''[[18/7]]''
| [[13/6]]
|''9.691''
| -3.428
|''33.387''
| -11.811
|-
|-
|[[26/1]]
| [[17/6]]
|9.700
| -3.458
|33.421
| -11.913
|-
|-
|''[[23/20]]''
| [[30/13]]
|''9.762''
| +3.503
|''33.632''
| +12.069
|-
|-
|[[26/5]]
| [[30/17]]
|9.775
| +3.533
|33.679
| +12.171
|-
|-
|''[[32/9]]''
| [[25/6]]
|''9.801''
| -3.557
|''33.768''
| -12.256
|-
|-
|''[[11/4]]''
| [[6/5]]
|''9.825''
| +3.632
|''33.850''
| +12.515
|-
|-
|[[26/25]]
| [[6/1]]
|9.850
| +3.708
|33.938
| +12.774
|-
|-
|''[[20/11]]''
| [[30/1]]
|''9.900''
| +3.783
|''34.109''
| +13.032
|-
|-
|[[10/1]]
| [[29/13]]
|9.905
| +4.145
| 34.125
| +14.280
|-
|-
|[[26/17]]
| [[29/17]]
|9.950
| +4.174
|34.282
| +14.382
|-
|-
|'''[[2/1]]'''
| [[29/25]]
|'''9.980'''
| +4.274
|'''34.384'''
| +14.726
|-
|-
|[[5/2]]
| [[23/6]]
|10.055
| -4.329
|34.642
| -14.914
|-
|-
|''[[32/7]]''
| [[12/7]]
|
| -4.333
''10.090''
| -14.928
|''34.764''
|-
|-
|[[23/22]]
| [[29/5]]
|10.118
| +4.349
|34.861
| +14.985
|-
|-
|[[25/2]]
| [[30/23]]
|10.130
| +4.404
|34.901
| +15.172
|-
|-
|''[[16/11]]''
| '''[[29/1]]'''
|
| '''+4.424'''
''10.135''
| '''+15.243'''
|''34.917''
|-
|-
|[[17/10]]
| [[11/6]]
|10.155
| -4.467
| 34.986
| -15.391
|-
|-
|[[13/10]]
| [[30/11]]
|10.184
| +4.542
|35.088
| +15.649
|-
|-
|[[17/2]]
| [[31/13]]
|10.230
| +4.786
|35.244
| +16.489
|-
|-
|[[13/2]]
| [[31/17]]
|10.259
| +4.816
|35.346
| +16.591
|-
|-
|''[[14/9]]''
| [[31/25]]
|
| +4.915
''10.269''
| +16.935
|''35.380''
|-
|-
|''[[23/16]]''
| [[31/5]]
|
| +4.990
''10.273''
| +17.194
|''35.394''
|-
|-
|[[19/13]]
| [[29/23]]
|10.587
| +5.046
| 36.475
| +17.383
|-
|-
|[[19/17]]
| '''[[31/1]]'''
|10.617
| '''+5.066'''
| 36.577
| '''+17.452'''
|-
|-
|[[29/12]]
| [[29/11]]
|10.697
| +5.184
|36.853
| +17.860
|-
|-
|''[[9/4]]''
| [[12/11]]
|
| -5.513
''10.716''
| -18.993
|''36.919''
|-
|-
|[[25/19]]
| [[7/6]]
|10.716
| -5.647
|36.921
| -19.456
|-
|-
|[[22/1]]
| [[23/12]]
|10.739
| +5.651
|37.001
| +19.470
|-
|-
|''[[20/9]]''
| [[31/23]]
|
| +5.687
''10.791''
| +19.592
|''37.177''
|-
|-
|[[19/5]]
| [[30/7]]
|10.791
| +5.722
|37.180
| +19.714
|-
|-
|[[22/5]]
| [[31/19]]
|10.814
| -5.801
|37.259
| -19.986
|-
|-
|'''[[19/1]]'''
| [[31/11]]
|'''10.866'''
| +5.825
|'''37.438'''
| +20.069
|-
|-
|''[[18/11]]''
| [[12/1]]
|
| -6.272
''10.870''
| -21.610
|''37.452''
|-
|-
|[[25/22]]
| [[12/5]]
|10.890
| -6.347
|37.518
| -21.869
|-
|-
|''[[16/1]]''
| [[29/7]]
|
| +6.364
''10.894''
| +21.925
|''37.534''
|-
|-
|''[[16/5]]''
| [[25/12]]
|
| +6.422
''10.969''
| +22.127
|''37.793''
|-
|-
|[[22/17]]
| [[29/19]]
|10.989
| -6.442
|37.862
| -22.195
|-
|-
|''[[7/4]]''
| [[17/12]]
|
| +6.522
''11.005''
| +22.471
|''37.915''
|-
|-
|''[[23/18]]''
| [[19/18]]
|
| -6.528
''11.009''
| -22.492
|''37.929''
|-
|-
|[[22/13]]
| [[13/12]]
|11.019
| +6.552
|37.964
| +22.573
|-
|-
|''[[25/16]]''
| [[31/21]]
|
| -6.682
''11.044''
| -23.023
|''38.052''
|-
|-
|''[[20/7]]''
| [[31/7]]
|
| +7.005
''11.080''
| +24.134
|''38.174''
|-
|-
|''[[17/16]]''
| [[30/19]]
|
| -7.084
''11.144''
| -24.406
|''38.395''
|-
|-
|[[14/11]]
| [[19/6]]
|11.160
| +7.159
|38.448
| +24.665
|-
|-
|''[[16/13]]''
| [[29/21]]
|
| -7.324
''11.174''
| -25.232
|''38.497''
|-
|-
|[[23/14]]
| [[26/7]]
|11.298
| -7.761
| 38.925
| -26.739
|-
|-
|[[31/12]]
| [[10/7]]
|11.338
| -7.965
| 39.062
| -27.443
|-
|-
|[[21/13]]
| [[7/2]]
|11.468
| +8.040
| 39.512
| +27.702
|-
|-
|[[23/19]]
| [[31/3]]
|11.488
| -8.622
| 39.579
| -29.705
|-
|-
|[[21/17]]
| [[31/15]]
|11.498
| -8.697
| 39.614
| -29.964
|-
|-
|[[25/21]]
| [[22/7]]
|11.598
| -8.800
| 39.958
| -30.319
|-
|-
|[[19/11]]
| [[26/11]]
|11.626
| -8.941
|40.056
| -30.803
|-
|-
|''[[18/1]]''
| [[26/23]]
|
| -9.079
''11.630''
| -31.281
|''40.069''
|-
|-
|[[21/5]]
| [[11/10]]
|11.673
| +9.145
|40.216
| +31.508
|-
|-
|''[[18/5]]''
| [[11/2]]
|
| +9.220
''11.705''
| +31.766
|''40.328''
|-
|-
|[[21/1]]
| [[29/3]]
|11.748
| -9.263
|40.475
| -31.914
|-
|-
|''[[27/13]]''
| [[23/10]]
|
| +9.284
''11.758''
| +31.985
|''40.508''
|-
|-
|''[[25/18]]''
| [[29/15]]
|
| -9.338
''11.780''
| -32.173
|''40.587''
|-
|-
|''[[19/8]]''
| [[23/2]]
|
| +9.359
''11.781''
| +32.243
|''40.589''
|-
|-
|''[[27/17]]''
| [[26/1]]
|
| -9.700
''11.787''
| -33.421
|''40.610''
|-
|-
|''[[18/17]]''
| [[26/5]]
|
| -9.775
''11.880''
| -33.679
|''40.930''
|-
|-
|''[[19/12]]''
| [[26/25]]
|
| -9.850
''11.886''
| -33.938
|''40.952''
|-
|-
|''[[27/25]]''
| [[10/1]]
|
| -9.905
''11.887''
| -34.125
|''40.954''
|-
|-
|''[[18/13]]''
| [[26/17]]
|
| -9.950
''11.910''
| -34.282
|''41.032''
|-
|-
|[[14/1]]
| '''[[2/1]]'''
|11.919
| '''-9.980'''
|41.066
| '''-34.384'''
|-
|-
|''[[27/5]]''
| [[5/2]]
|
| +10.055
''11.962''
| +34.642
|''41.213''
|-
|-
|[[14/5]]
| [[23/22]]
|11.994
| +10.118
|41.324
| +34.861
|-
|-
|''[[27/1]]''
| [[25/2]]
|
| +10.130
''12.037''
| +34.901
|''41.471''
|-
|-
|''[[31/14]]''
| [[17/10]]
|
| +10.155
''12.040''
| +34.986
|''41.482''
|-
|-
|[[25/14]]
| [[13/10]]
|12.069
| +10.184
| 41.583
| +35.088
|-
|-
|[[17/14]]
| [[17/2]]
|12.169
| +10.230
| 41.926
| +35.244
|-
|-
|[[14/13]]
| [[13/2]]
|12.199
| +10.259
| 42.028
| +35.346
|-
|-
|[[31/18]]
| [[19/13]]
|12.329
| +10.587
| 42.478
| +36.475
|-
|-
|[[23/21]]
| [[19/17]]
|12.369
| +10.617
|42.615
| +36.577
|-
|-
|''[[24/13]]''
| [[29/12]]
|
| +10.697
''12.493''
| +36.853
|''43.044''
|-
|-
|[[21/11]]
| [[25/19]]
|12.507
| -10.716
|43.092
| -36.921
|-
|-
|''[[19/9]]''
| [[22/1]]
|
| -10.739
''12.517''
| -37.001
|''43.124''
|-
|-
|''[[24/17]]''
| [[19/5]]
|
| +10.791
''12.523''
| +37.180
|''43.146''
|-
|-
|''[[25/24]]''
| [[22/5]]
|
| -10.814
''12.623''
| -37.259
|''43.489''
|-
|-
|''[[27/23]]''
| '''[[19/1]]'''
|
| '''+10.866'''
''12.658''
| '''+37.438'''
|''43.611''
|-
|-
|''[[21/8]]''
| [[25/22]]
|
| +10.890
''12.662''
| +37.518
|''43.626''
|-
|-
|''[[29/14]]''
| [[22/17]]
|
| -10.989
''12.681''
| -37.862
|''43.691''
|-
|-
|''[[24/5]]''
| [[22/13]]
|
| -11.019
''12.698''
| -37.964
|''43.748''
|-
|-
|''[[24/1]]''
| [[14/11]]
|
| -11.160
''12.773''
| -38.448
|''44.006''
|-
|-
|''[[27/11]]''
| [[23/14]]
|
| +11.298
''12.797''
| +38.925
|''44.089''
|-
|-
|[[19/7]]
| [[31/12]]
|12.806
| +11.338
|44.120
| +39.062
|-
|-
|''[[27/8]]''
| [[21/13]]
|
| +11.468
''12.951''
| +39.512
|''44.622''
|-
|-
|[[29/18]]
| [[23/19]]
|12.970
| -11.488
|44.687
| -39.579
|-
|-
|''[[31/16]]''
| [[21/17]]
|
| +11.498
''13.065''
| +39.614
|''45.014''
|-
|-
|''[[31/22]]''
| [[25/21]]
|
| -11.598
''13.220''
| -39.958
|''45.547''
|-
|-
|''[[15/7]]''
| [[19/11]]
|
| +11.626
''13.323''
| +40.056
|''45.902''
|-
|-
|''[[24/23]]''
| [[21/5]]
|
| +11.673
''13.394''
| +40.216
|''46.147''
|-
|-
|''[[7/3]]''
| [[21/1]]
|
| +11.748
''13.398''
| +40.475
|''46.161''
|-
|-
|[[13/3]]
| [[14/1]]
|13.408
| -11.919
|46.194
| -41.066
|-
|-
|[[17/3]]
| [[14/5]]
|13.437
| -11.994
| 46.296
| -41.324
|-
|-
|[[15/13]]
| [[25/14]]
|13.483
| +12.069
| 46.453
| +41.583
|-
|-
|[[17/15]]
| [[17/14]]
|13.513
| +12.169
|46.555
| +41.926
|-
|-
|''[[24/11]]''
| [[14/13]]
|
| -12.199
''13.532''
| -42.028
|''46.624''
|-
|-
|[[25/3]]
| [[31/18]]
|13.537
| -12.329
|46.640
| -42.478
|-
|-
|[[5/3]]
| [[23/21]]
|13.612
| -12.369
|46.898
| -42.615
|-
|-
|'''[[3/1]]'''
| [[21/11]]
|'''13.687'''
| +12.507
|'''47.157'''
| +43.092
|-
|-
|''[[29/16]]''
| [[19/7]]
|
| +12.806
''13.706''
| +44.120
|''47.223''
|-
|-
|[[15/1]]
| [[29/18]]
|13.762
| -12.970
|47.416
| -44.687
|-
|-
|''[[29/22]]''
| [[13/3]]
|
| -13.408
''13.861''
| -46.194
|''47.756''
|-
|-
|''[[27/7]]''
| [[17/3]]
|
| -13.437
''13.976''
| -46.296
|''48.153''
|-
|-
|''[[31/2]]''
| [[15/13]]
|
| +13.483
''13.980''
| +46.453
|''48.164''
|-
|-
|''[[31/10]]''
| [[17/15]]
|
| -13.513
''14.055''
| -46.555
|''48.423''
|-
|-
|[[29/26]]
| [[25/3]]
|14.125
| -13.537
|48.664
| -46.640
|-
|-
|''[[31/26]]''
| [[5/3]]
|
| -13.612
''14.259''
| -46.898
|''49.127''
|-
|-
|[[23/3]]
| '''[[3/1]]'''
|14.308
| '''+13.687'''
|49.297
| '''+47.157'''
|-
|-
|[[24/7]]
| [[15/1]]
|14.313
| +13.762
| 49.312
| +47.416
|-
|-
|[[29/10]]
| [[29/26]]
|14.329
| +14.125
|49.368
| +48.664
|-
|-
|''[[15/8]]''
| [[23/3]]
|
| -14.308
''14.348''
| -49.297
|''49.434''
|-
|-
|[[23/15]]
| [[24/7]]
|14.384
| -14.313
|49.556
| -49.312
|-
|-
|[[29/2]]
| [[29/10]]
|14.404
| +14.329
|49.627
| +49.368
|-
|-
|''[[8/3]]''
| [[23/15]]
|
| -14.384
''14.423''
| -49.556
|''49.692''
|-
|-
|[[11/3]]
| [[29/2]]
|14.447
| +14.404
|49.774
| +49.627
|-
|-
|''[[15/11]]''
| [[11/3]]
|
| -14.447
''14.503''
| -49.774
|''49.967''
|- style="background-color: #cccccc;"
| ''[[15/11]]''
| ''+14.522''
| ''+50.033''
|- style="background-color: #cccccc;"
| ''[[31/26]]''
| ''+14.766''
| ''+50.873''
|- style="background-color: #cccccc;"
| ''[[31/10]]''
| ''+14.970''
| ''+51.577''
|- style="background-color: #cccccc;"
| ''[[31/2]]''
| ''+15.045''
| ''+51.836''
|- style="background-color: #cccccc;"
| ''[[29/22]]''
| ''+15.164''
| ''+52.244''
|- style="background-color: #cccccc;"
| ''[[24/11]]''
| ''-15.492''
| ''-53.376''
|- style="background-color: #cccccc;"
| ''[[7/3]]''
| ''-15.627''
| ''-53.839''
|- style="background-color: #cccccc;"
| ''[[24/23]]''
| ''-15.631''
| ''-53.853''
|- style="background-color: #cccccc;"
| ''[[15/7]]''
| ''+15.702''
| ''+54.098''
|- style="background-color: #cccccc;"
| ''[[31/22]]''
| ''+15.805''
| ''+54.453''
|- style="background-color: #cccccc;"
| ''[[24/1]]''
| ''-16.252''
| ''-55.994''
|- style="background-color: #cccccc;"
| ''[[24/5]]''
| ''-16.327''
| ''-56.252''
|- style="background-color: #cccccc;"
| ''[[29/14]]''
| ''+16.344''
| ''+56.309''
|- style="background-color: #cccccc;"
| ''[[25/24]]''
| ''+16.402''
| ''+56.511''
|- style="background-color: #cccccc;"
| ''[[24/17]]''
| ''-16.502''
| ''-56.854''
|- style="background-color: #cccccc;"
| ''[[19/9]]''
| ''-16.508''
| ''-56.876''
|- style="background-color: #cccccc;"
| ''[[24/13]]''
| ''-16.532''
| ''-56.956''
|- style="background-color: #cccccc;"
| ''[[31/14]]''
| ''+16.985''
| ''+58.518''
|- style="background-color: #cccccc;"
| ''[[18/13]]''
| ''+17.115''
| ''+58.968''
|- style="background-color: #cccccc;"
| ''[[19/12]]''
| ''+17.139''
| ''+59.048''
|- style="background-color: #cccccc;"
| ''[[18/17]]''
| ''+17.145''
| ''+59.070''
|- style="background-color: #cccccc;"
| ''[[25/18]]''
| ''-17.245''
| ''-59.413''
|- style="background-color: #cccccc;"
| ''[[18/5]]''
| ''+17.320''
| ''+59.672''
|- style="background-color: #cccccc;"
| ''[[18/1]]''
| ''+17.395''
| ''+59.931''
|- style="background-color: #cccccc;"
| ''[[20/7]]''
| ''-17.945''
| ''-61.826''
|- style="background-color: #cccccc;"
| ''[[23/18]]''
| ''-18.016''
| ''-62.071''
|- style="background-color: #cccccc;"
| ''[[7/4]]''
| ''+18.020''
| ''+62.085''
|- style="background-color: #cccccc;"
| ''[[18/11]]''
| ''+18.154''
| ''+62.548''
|- style="background-color: #cccccc;"
| ''[[20/11]]''
| ''-19.125''
| ''-65.891''
|- style="background-color: #cccccc;"
| ''[[11/4]]''
| ''+19.200''
| ''+66.150''
|- style="background-color: #cccccc;"
| ''[[23/20]]''
| ''+19.263''
| ''+66.368''
|- style="background-color: #cccccc;"
| ''[[18/7]]''
| ''+19.334''
| ''+66.613''
|- style="background-color: #cccccc;"
| ''[[23/4]]''
| ''+19.338''
| ''+66.627''
|- style="background-color: #cccccc;"
| ''[[20/1]]''
| ''-19.884''
| ''-68.508''
|- style="background-color: #cccccc;"
| ''[[4/1]]''
| ''-19.960''
| ''-68.767''
|- style="background-color: #cccccc;"
| ''[[5/4]]''
| ''+20.035''
| ''+69.026''
|- style="background-color: #cccccc;"
| ''[[25/4]]''
| ''+20.110''
| ''+69.284''
|- style="background-color: #cccccc;"
| ''[[20/17]]''
| ''-20.134''
| ''-69.369''
|- style="background-color: #cccccc;"
| ''[[20/13]]''
| ''-20.164''
| ''-69.471''
|- style="background-color: #cccccc;"
| ''[[17/4]]''
| ''+20.209''
| ''+69.628''
|- style="background-color: #cccccc;"
| ''[[13/4]]''
| ''+20.239''
| ''+69.730''
|- style="background-color: #cccccc;"
| ''[[26/19]]''
| ''-20.567''
| ''-70.859''
|- style="background-color: #cccccc;"
| ''[[29/24]]''
| ''+20.676''
| ''+71.237''
|- style="background-color: #cccccc;"
| ''[[19/10]]''
| ''+20.771''
| ''+71.563''
|- style="background-color: #cccccc;"
| ''[[19/2]]''
| ''+20.846''
| ''+71.822''
|- style="background-color: #cccccc;"
| ''[[28/11]]''
| ''-21.139''
| ''-72.832''
|- style="background-color: #cccccc;"
| ''[[28/23]]''
| ''-21.278''
| ''-73.309''
|- style="background-color: #cccccc;"
| ''[[31/24]]''
| ''+21.318''
| ''+73.446''
|- style="background-color: #cccccc;"
| ''[[26/21]]''
| ''-21.448''
| ''-73.896''
|- style="background-color: #cccccc;"
| ''[[22/19]]''
| ''-21.606''
| ''-74.439''
|- style="background-color: #cccccc;"
| ''[[21/10]]''
| ''+21.653''
| ''+74.600''
|- style="background-color: #cccccc;"
| ''[[21/2]]''
| ''+21.728''
| ''+74.859''
|- style="background-color: #cccccc;"
| ''[[28/1]]''
| ''-21.899''
| ''-75.449''
|- style="background-color: #cccccc;"
| ''[[28/5]]''
| ''-21.974''
| ''-75.708''
|- style="background-color: #cccccc;"
| ''[[28/25]]''
| ''-22.049''
| ''-75.966''
|- style="background-color: #cccccc;"
| ''[[28/17]]''
| ''-22.149''
| ''-76.310''
|- style="background-color: #cccccc;"
| ''[[28/13]]''
| ''-22.178''
| ''-76.412''
|- style="background-color: #cccccc;"
| ''[[31/9]]''
| ''-22.309''
| ''-76.862''
|- style="background-color: #cccccc;"
| ''[[22/21]]''
| ''-22.487''
| ''-77.476''
|- style="background-color: #cccccc;"
| ''[[19/14]]''
| ''+22.786''
| ''+78.504''
|- style="background-color: #cccccc;"
| ''[[29/9]]''
| ''-22.950''
| ''-79.071''
|- style="background-color: #cccccc;"
| ''[[26/3]]''
| ''-23.388''
| ''-80.578''
|- style="background-color: #cccccc;"
| ''[[26/15]]''
| ''-23.463''
| ''-80.836''
|- style="background-color: #cccccc;"
| ''[[10/3]]''
| ''-23.592''
| ''-81.282''
|- style="background-color: #cccccc;"
| ''[[3/2]]''
| ''+23.667''
| ''+81.541''
|- style="background-color: #cccccc;"
| ''[[15/2]]''
| ''+23.742''
| ''+81.799''
|- style="background-color: #cccccc;"
| ''[[29/20]]''
| ''+24.309''
| ''+83.752''
|- style="background-color: #cccccc;"
| ''[[29/4]]''
| ''+24.384''
| ''+84.010''
|- style="background-color: #cccccc;"
| ''[[22/3]]''
| ''-24.427''
| ''-84.158''
|- style="background-color: #cccccc;"
| ''[[22/15]]''
| ''-24.502''
| ''-84.417''
|- style="background-color: #cccccc;"
| ''[[31/20]]''
| ''+24.950''
| ''+85.961''
|- style="background-color: #cccccc;"
| ''[[31/4]]''
| ''+25.025''
| ''+86.219''
|- style="background-color: #cccccc;"
| ''[[14/3]]''
| ''-25.607''
| ''-88.223''
|- style="background-color: #cccccc;"
| ''[[15/14]]''
| ''+25.682''
| ''+88.481''
|- style="background-color: #cccccc;"
| ''[[29/28]]''
| ''+26.323''
| ''+90.692''
|- style="background-color: #cccccc;"
| ''[[31/28]]''
| ''+26.965''
| ''+92.901''
|- style="background-color: #cccccc;"
| ''[[13/9]]''
| ''-27.095''
| ''-93.351''
|- style="background-color: #cccccc;"
| ''[[24/19]]''
| ''-27.119''
| ''-93.432''
|- style="background-color: #cccccc;"
| ''[[17/9]]''
| ''-27.125''
| ''-93.453''
|- style="background-color: #cccccc;"
| ''[[25/9]]''
| ''-27.224''
| ''-93.797''
|- style="background-color: #cccccc;"
| ''[[9/5]]''
| ''+27.300''
| ''+94.056''
|- style="background-color: #cccccc;"
| ''[[9/1]]''
| ''+27.375''
| ''+94.314''
|- style="background-color: #cccccc;"
| ''[[23/9]]''
| ''-27.996''
| ''-96.454''
|- style="background-color: #cccccc;"
| ''[[8/7]]''
| ''-28.000''
| ''-96.469''
|- style="background-color: #cccccc;"
| ''[[11/9]]''
| ''-28.134''
| ''-96.931''
|- style="background-color: #cccccc;"
| ''[[11/8]]''
| ''+29.180''
| ''+100.533''
|- style="background-color: #cccccc;"
| ''[[9/7]]''
| ''+29.314''
| ''+100.996''
|- style="background-color: #cccccc;"
| ''[[23/8]]''
| ''+29.318''
| ''+101.011''
|- style="background-color: #cccccc;"
| ''[[8/1]]''
| ''-29.939''
| ''-103.151''
|- style="background-color: #cccccc;"
| ''[[8/5]]''
| ''-30.014''
| ''-103.409''
|- style="background-color: #cccccc;"
| ''[[25/8]]''
| ''+30.090''
| ''+103.668''
|- style="background-color: #cccccc;"
| ''[[17/8]]''
| ''+30.189''
| ''+104.012''
|- style="background-color: #cccccc;"
| ''[[27/19]]''
| ''+30.195''
| ''+104.033''
|- style="background-color: #cccccc;"
| ''[[13/8]]''
| ''+30.219''
| ''+104.114''
|- style="background-color: #cccccc;"
| ''[[20/19]]''
| ''-30.751''
| ''-105.947''
|- style="background-color: #cccccc;"
| ''[[19/4]]''
| ''+30.826''
| ''+106.205''
|- style="background-color: #cccccc;"
| ''[[21/20]]''
| ''+31.632''
| ''+108.984''
|- style="background-color: #cccccc;"
| ''[[21/4]]''
| ''+31.707''
| ''+109.242''
|- style="background-color: #cccccc;"
| ''[[28/19]]''
| ''-32.765''
| ''-112.887''
|- style="background-color: #cccccc;"
| ''[[20/3]]''
| ''-33.572''
| ''-115.666''
|- style="background-color: #cccccc;"
| ''[[4/3]]''
| ''-33.647''
| ''-115.924''
|- style="background-color: #cccccc;"
| ''[[15/4]]''
| ''+33.722''
| ''+116.183''
|- style="background-color: #cccccc;"
| ''[[29/8]]''
| ''+34.364''
| ''+118.394''
|- style="background-color: #cccccc;"
| ''[[31/8]]''
| ''+35.005''
| ''+120.603''
|- style="background-color: #cccccc;"
| ''[[28/3]]''
| ''-35.586''
| ''-122.606''
|- style="background-color: #cccccc;"
| ''[[28/15]]''
| ''-35.661''
| ''-122.865''
|- style="background-color: #cccccc;"
| ''[[31/27]]''
| ''-35.996''
| ''-124.019''
|- style="background-color: #cccccc;"
| ''[[29/27]]''
| ''-36.638''
| ''-126.228''
|- style="background-color: #cccccc;"
| ''[[26/9]]''
| ''-37.075''
| ''-127.735''
|- style="background-color: #cccccc;"
| ''[[10/9]]''
| ''-37.279''
| ''-128.439''
|- style="background-color: #cccccc;"
| ''[[9/2]]''
| ''+37.354''
| ''+128.698''
|- style="background-color: #cccccc;"
| ''[[16/7]]''
| ''-37.980''
| ''-130.852''
|- style="background-color: #cccccc;"
| ''[[22/9]]''
| ''-38.114''
| ''-131.315''
|- style="background-color: #cccccc;"
| ''[[16/11]]''
| ''-39.160''
| ''-134.917''
|- style="background-color: #cccccc;"
| ''[[14/9]]''
| ''-39.294''
| ''-135.380''
|- style="background-color: #cccccc;"
| ''[[23/16]]''
| ''+39.298''
| ''+135.394''
|- style="background-color: #cccccc;"
| ''[[16/1]]''
| ''-39.919''
| ''-137.534''
|- style="background-color: #cccccc;"
| ''[[16/5]]''
| ''-39.994''
| ''-137.793''
|- style="background-color: #cccccc;"
| ''[[25/16]]''
| ''+40.069''
| ''+138.052''
|- style="background-color: #cccccc;"
| ''[[17/16]]''
| ''+40.169''
| ''+138.395''
|- style="background-color: #cccccc;"
| ''[[16/13]]''
| ''-40.199''
| ''-138.497''
|- style="background-color: #cccccc;"
| ''[[27/13]]''
| ''+40.782''
| ''+140.508''
|- style="background-color: #cccccc;"
| ''[[19/8]]''
| ''+40.806''
| ''+140.589''
|- style="background-color: #cccccc;"
| ''[[27/17]]''
| ''+40.812''
| ''+140.610''
|- style="background-color: #cccccc;"
| ''[[27/25]]''
| ''+40.912''
| ''+140.954''
|- style="background-color: #cccccc;"
| ''[[27/5]]''
| ''+40.987''
| ''+141.213''
|- style="background-color: #cccccc;"
| ''[[27/1]]''
| ''+41.062''
| ''+141.471''
|- style="background-color: #cccccc;"
| ''[[27/23]]''
| ''+41.683''
| ''+143.611''
|- style="background-color: #cccccc;"
| ''[[21/8]]''
| ''+41.687''
| ''+143.626''
|- style="background-color: #cccccc;"
| ''[[27/11]]''
| ''+41.822''
| ''+144.089''
|- style="background-color: #cccccc;"
| ''[[27/7]]''
| ''+43.001''
| ''+148.153''
|- style="background-color: #cccccc;"
| ''[[8/3]]''
| ''-43.627''
| ''-150.308''
|- style="background-color: #cccccc;"
| ''[[15/8]]''
| ''+43.702''
| ''+150.566''
|- style="background-color: #cccccc;"
| ''[[29/16]]''
| ''+44.343''
| ''+152.777''
|- style="background-color: #cccccc;"
| ''[[31/16]]''
| ''+44.985''
| ''+154.986''
|- style="background-color: #cccccc;"
| ''[[20/9]]''
| ''-47.259''
| ''-162.823''
|- style="background-color: #cccccc;"
| ''[[9/4]]''
| ''+47.334''
| ''+163.081''
|- style="background-color: #cccccc;"
| ''[[32/7]]''
| ''-47.959''
| ''-165.236''
|- style="background-color: #cccccc;"
| ''[[32/11]]''
| ''-49.139''
| ''-169.301''
|- style="background-color: #cccccc;"
| ''[[28/9]]''
| ''-49.274''
| ''-169.763''
|- style="background-color: #cccccc;"
| ''[[32/23]]''
| ''-49.278''
| ''-169.778''
|- style="background-color: #cccccc;"
| ''[[32/1]]''
| ''-49.899''
| ''-171.918''
|- style="background-color: #cccccc;"
| ''[[32/5]]''
| ''-49.974''
| ''-172.176''
|- style="background-color: #cccccc;"
| ''[[32/25]]''
| ''-50.049''
| ''-172.435''
|- style="background-color: #cccccc;"
| ''[[32/17]]''
| ''-50.149''
| ''-172.779''
|- style="background-color: #cccccc;"
| ''[[32/13]]''
| ''-50.178''
| ''-172.881''
|- style="background-color: #cccccc;"
| ''[[27/26]]''
| ''+50.762''
| ''+174.892''
|- style="background-color: #cccccc;"
| ''[[19/16]]''
| ''+50.786''
| ''+174.973''
|- style="background-color: #cccccc;"
| ''[[27/10]]''
| ''+50.967''
| ''+175.596''
|- style="background-color: #cccccc;"
| ''[[27/2]]''
| ''+51.042''
| ''+175.855''
|- style="background-color: #cccccc;"
| ''[[21/16]]''
| ''+51.667''
| ''+178.009''
|- style="background-color: #cccccc;"
| ''[[27/22]]''
| ''+51.801''
| ''+178.472''
|- style="background-color: #cccccc;"
| ''[[27/14]]''
| ''+52.981''
| ''+182.537''
|- style="background-color: #cccccc;"
| ''[[16/3]]''
| ''-53.606''
| ''-184.691''
|- style="background-color: #cccccc;"
| ''[[16/15]]''
| ''-53.682''
| ''-184.950''
|- style="background-color: #cccccc;"
| ''[[32/29]]''
| ''-54.323''
| ''-187.161''
|- style="background-color: #cccccc;"
| ''[[32/31]]''
| ''-54.964''
| ''-189.370''
|- style="background-color: #cccccc;"
| ''[[9/8]]''
| ''+57.314''
| ''+197.465''
|- style="background-color: #cccccc;"
| ''[[32/19]]''
| ''-60.765''
| ''-209.356''
|- style="background-color: #cccccc;"
| ''[[27/20]]''
| ''+60.946''
| ''+209.980''
|- style="background-color: #cccccc;"
| ''[[27/4]]''
| ''+61.021''
| ''+210.238''
|- style="background-color: #cccccc;"
| ''[[32/21]]''
| ''-61.647''
| ''-212.393''
|- style="background-color: #cccccc;"
| ''[[28/27]]''
| ''-62.961''
| ''-216.920''
|- style="background-color: #cccccc;"
| ''[[32/3]]''
| ''-63.586''
| ''-219.075''
|- style="background-color: #cccccc;"
| ''[[32/15]]''
| ''-63.661''
| ''-219.334''
|- style="background-color: #cccccc;"
| ''[[16/9]]''
| ''-67.294''
| ''-231.848''
|- style="background-color: #cccccc;"
| ''[[27/8]]''
| ''+71.001''
| ''+244.622''
|- style="background-color: #cccccc;"
| ''[[32/9]]''
| ''-77.274''
| ''-266.232''
|- style="background-color: #cccccc;"
| ''[[27/16]]''
| ''+80.981''
| ''+279.006''
|- style="background-color: #cccccc;"
| ''[[32/27]]''
| ''-90.961''
| ''-313.389''
|}
|}


[[Category:Zeta peak indexes]]
[[Category:Zeta peak indexes]]