186zpi: Difference between revisions
Contribution (talk | contribs) |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(28 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''186 zeta peak index''' (abbreviated '''186zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 186st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | '''186 zeta peak index''' (abbreviated '''186zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 186st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{ | {{ZPI | ||
| zpi = 186 | |||
| steps = 41.3438354846780 | |||
| step size = 29.0248832971658 | |||
| height = 1.876590 | |||
| integral = 0.241233 | |||
| gap = 11.567493 | |||
| edo = 41edo | |||
| octave = 1190.02021518380 | |||
| consistent = 2 | |||
| distinct = 2 | |||
}} | |||
| 29.0248832971658 | |||
| 1.876590 | |||
| 0.241233 | |||
| 11.567493 | |||
| | |||
| 1190.02021518380 | |||
| 2 | |||
| 2 | |||
== Theory == | == Theory == | ||
=== Record on the Riemann zeta function with primes 2 and 3 removed === | === Record on the Riemann zeta function with primes 2 and 3 removed === | ||
'''186zpi''' sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is [[125zpi]] and the next one is [[565zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function. | '''186zpi''' sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is [[125zpi]] and the next one is [[565zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function. | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan="6" |Unmodified Riemann zeta function | |- | ||
! colspan="5" |Riemann zeta function with primes 2 and 3 removed | ! colspan="6" | Unmodified Riemann zeta function | ||
! colspan="5" | Riemann zeta function with primes 2 and 3 removed | |||
|- | |- | ||
! colspan="3" | Tuning | ! colspan="3" | Tuning | ||
Line 61: | Line 45: | ||
| 30.6006474885974 | | 30.6006474885974 | ||
| 39.2148564976330 | | 39.2148564976330 | ||
|1.468164 | | 1.468164 | ||
| [[31edo]] | | [[31edo]] | ||
| 1215.66055142662 | | 1215.66055142662 | ||
| 30.5974484926723 | | 30.5974484926723 | ||
| 39.2189564527704 | | 39.2189564527704 | ||
|3.769318 | | 3.769318 | ||
| [[31edo]] | | [[31edo]] | ||
| 1215.78765003588 | | 1215.78765003588 | ||
|- | |- | ||
|[[186zpi]] | | [[186zpi]] | ||
|41.3438354846780 | | 41.3438354846780 | ||
|29.0248832971658 | | 29.0248832971658 | ||
|1.876590 | | 1.876590 | ||
|[[41edo]] | | [[41edo]] | ||
|1190.02021518380 | | 1190.02021518380 | ||
|41.3477989230936 | | 41.3477989230936 | ||
|29.0221010852836 | | 29.0221010852836 | ||
|4.469823 | | 4.469823 | ||
|[[41edo]] | | [[41edo]] | ||
|1189.90614449663 | | 1189.90614449663 | ||
|- | |- | ||
|[[565zpi]] | | [[565zpi]] | ||
|98.6209462564991 | | 98.6209462564991 | ||
|12.1678005084130 | | 12.1678005084130 | ||
|2.305330 | | 2.305330 | ||
|[[99edo]] | | [[99edo]] | ||
|1204.61225033289 | | 1204.61225033289 | ||
|98.6257548378926 | | 98.6257548378926 | ||
|12.1672072570942 | | 12.1672072570942 | ||
|4.883729 | | 4.883729 | ||
|[[99edo]] | | [[99edo]] | ||
|1204.55351845233 | | 1204.55351845233 | ||
|} | |} | ||
Line 107: | Line 91: | ||
It is important to note that [[124edo]] provides two possible [[3/2|fifths (3/2)]]. The closest one, from the [[val]] <124 197] (i.e. the [[patent val]]), is the [[3/2|fifth]] mapped to 73 steps of [[124edo]] with a [[relative error]] of +46.465%. The second closest, from the [[val]] <124 196] (i.e. the [[val]] 124b), is mapped to 72 steps of [[124edo]] with a [[relative error]] of -53.535%. This second [[3/2|fifth]], which appears in [[124ed8]], also corresponds to the [[3/2|fifth]] of [[31edo]]. Therefore, we choose to use the [[ups and downs notation]] of the 124b temperament, denoted as <124 196]. | It is important to note that [[124edo]] provides two possible [[3/2|fifths (3/2)]]. The closest one, from the [[val]] <124 197] (i.e. the [[patent val]]), is the [[3/2|fifth]] mapped to 73 steps of [[124edo]] with a [[relative error]] of +46.465%. The second closest, from the [[val]] <124 196] (i.e. the [[val]] 124b), is mapped to 72 steps of [[124edo]] with a [[relative error]] of -53.535%. This second [[3/2|fifth]], which appears in [[124ed8]], also corresponds to the [[3/2|fifth]] of [[31edo]]. Therefore, we choose to use the [[ups and downs notation]] of the 124b temperament, denoted as <124 196]. | ||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | |||
|+ style="font-size: 105%; white-space: nowrap;" | Intervals in 186zpi | |||
{| class="wikitable center | |||
|- | |- | ||
|colspan="3"| | | colspan="3" style="text-align:left;" | JI ratios are comprised of [[32-integer-limit]] ratios,<br>and are stylized as follows to indicate their accuracy: | ||
JI ratios are comprised of 32-integer limit ratios,<br> | |||
and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | * '''<u>Bold Underlined:</u>''' relative error < 8.333 % | ||
* '''Bold:''' relative error < 16.667 % | * '''Bold:''' relative error < 16.667 % | ||
Line 120: | Line 101: | ||
* <small><small>Small Small:</small></small> relative error < 41.667 % | * <small><small>Small Small:</small></small> relative error < 41.667 % | ||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | * <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | ||
| colspan="2" | | | colspan="2" style="text-align:right;" | <center>'''⟨124 196] at every 3 steps'''</center><br>[[9/8|Whole tone]] = 20 steps<br>[[256/243|Limma]] = 12 steps<br>[[2187/2048|Apotome]] = 8 steps | ||
|- | |- | ||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and downs notation | |||
! Step | ! Step | ||
|- | |- | ||
|0 | | 0 | ||
|0.000 | | 0.000 | ||
| | | | ||
|P1 | | P1 | ||
|0 | | 0 | ||
|- | |- | ||
|1 | | 1 | ||
|29.025 | | 29.025 | ||
| | | | ||
|^^^1 | | ^^^1 | ||
|3 | | 3 | ||
|- | |- | ||
|2 | | 2 | ||
|58.050 | | 58.050 | ||
|'''[[32/31]]''', '''<u>[[31/30]]''', '''<u>[[30/29]]''', '''[[29/28]]''', [[28/27]], <small>[[27/26]]</small>, <small><small>[[26/25]]</small></small>, <small><small><small>[[25/24]]</small></small></small> | | '''[[32/31]]''', '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''[[29/28]]''', [[28/27]], <small>[[27/26]]</small>, <small><small>[[26/25]]</small></small>, <small><small><small>[[25/24]]</small></small></small> | ||
| vvA1, ^^d2 | | vvA1, ^^d2 | ||
|6 | | 6 | ||
|- | |- | ||
|3 | | 3 | ||
|87.075 | | 87.075 | ||
|<small><small><small>[[24/23]]</small></small></small>, <small><small>[[23/22]]</small></small>, [[22/21]], '''[[21/20]]''', '''<u>[[20/19]]''', [[19/18]], <small><small>[[18/17]]</small></small> | | <small><small><small>[[24/23]]</small></small></small>, <small><small>[[23/22]]</small></small>, [[22/21]], '''[[21/20]]''', '''<u>[[20/19]]'''</u>, [[19/18]], <small><small>[[18/17]]</small></small> | ||
|vvvm2 | | vvvm2 | ||
|9 | | 9 | ||
|- | |- | ||
|4 | | 4 | ||
|116.100 | | 116.100 | ||
|<small><small>[[17/16]]</small></small>, '''[[16/15]]''', '''<u>[[31/29]]''', '''[[15/14]]''', <small>[[29/27]]</small>, <small><small><small>[[14/13]]</small></small></small> | | <small><small>[[17/16]]</small></small>, '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''[[15/14]]''', <small>[[29/27]]</small>, <small><small><small>[[14/13]]</small></small></small> | ||
|m2 | | m2 | ||
|12 | | 12 | ||
|- | |- | ||
|5 | | 5 | ||
|145.124 | | 145.124 | ||
|<small><small>[[27/25]]</small></small>, [[13/12]], '''<u>[[25/23]]''', [[12/11]], <small><small><small>[[23/21]]</small></small></small> | | <small><small>[[27/25]]</small></small>, [[13/12]], '''<u>[[25/23]]'''</u>, [[12/11]], <small><small><small>[[23/21]]</small></small></small> | ||
|^^^m2 | | ^^^m2 | ||
|15 | | 15 | ||
|- | |- | ||
|6 | | 6 | ||
|174.149 | | 174.149 | ||
|<small>[[11/10]]</small>, '''[[32/29]]''', '''<u>[[21/19]]''', '''<u>[[31/28]]''', <small>[[10/9]]</small> | | <small>[[11/10]]</small>, '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, <small>[[10/9]]</small> | ||
|vvM2 | | vvM2 | ||
|18 | | 18 | ||
|- | |- | ||
|7 | | 7 | ||
|203.174 | | 203.174 | ||
|<small><small><small>[[29/26]]</small></small></small>, <small><small>[[19/17]]</small></small>, [[28/25]], '''<u>[[9/8]]''', <small>[[26/23]]</small>, <small><small><small>[[17/15]]</small></small></small> | | <small><small><small>[[29/26]]</small></small></small>, <small><small>[[19/17]]</small></small>, [[28/25]], '''<u>[[9/8]]'''</u>, <small>[[26/23]]</small>, <small><small><small>[[17/15]]</small></small></small> | ||
|^M2 | | ^M2 | ||
|21 | | 21 | ||
|- | |- | ||
|8 | | 8 | ||
|232.199 | | 232.199 | ||
|<small><small>[[25/22]]</small></small>, '''<u>[[8/7]]''', [[31/27]], <small><small>[[23/20]]</small></small> | | <small><small>[[25/22]]</small></small>, '''<u>[[8/7]]'''</u>, [[31/27]], <small><small>[[23/20]]</small></small> | ||
|^<sup>4</sup>M2 | | ^<sup>4</sup>M2 | ||
|24 | | 24 | ||
|- | |- | ||
|9 | | 9 | ||
|261.224 | | 261.224 | ||
|<small><small><small>[[15/13]]</small></small></small>, <small>[[22/19]]</small>, '''[[29/25]]''', [[7/6]] | | <small><small><small>[[15/13]]</small></small></small>, <small>[[22/19]]</small>, '''[[29/25]]''', [[7/6]] | ||
|^^^d3 | | ^^^d3 | ||
|27 | | 27 | ||
|- | |- | ||
|10 | | 10 | ||
|290.249 | | 290.249 | ||
|<small><small><small>[[27/23]]</small></small></small>, <small>[[20/17]]</small>, '''<u>[[13/11]]''', '''[[32/27]]''', <small>[[19/16]]</small>, <small><small>[[25/21]]</small></small>, <small><small><small>[[31/26]]</small></small></small> | | <small><small><small>[[27/23]]</small></small></small>, <small>[[20/17]]</small>, '''<u>[[13/11]]'''</u>, '''[[32/27]]''', <small>[[19/16]]</small>, <small><small>[[25/21]]</small></small>, <small><small><small>[[31/26]]</small></small></small> | ||
|vvm3 | | vvm3 | ||
|30 | | 30 | ||
|- | |- | ||
|11 | | 11 | ||
|319.274 | | 319.274 | ||
|'''[[6/5]]''', <small>[[29/24]]</small>, <small><small>[[23/19]]</small></small> | | '''[[6/5]]''', <small>[[29/24]]</small>, <small><small>[[23/19]]</small></small> | ||
|^m3 | | ^m3 | ||
|33 | | 33 | ||
|- | |- | ||
|12 | | 12 | ||
|348.299 | | 348.299 | ||
|<small><small><small>[[17/14]]</small></small></small>, <small>[[28/23]]</small>, '''<u>[[11/9]]''', [[27/22]], <small><small>[[16/13]]</small></small> | | <small><small><small>[[17/14]]</small></small></small>, <small>[[28/23]]</small>, '''<u>[[11/9]]'''</u>, [[27/22]], <small><small>[[16/13]]</small></small> | ||
|~3 | | ~3 | ||
|36 | | 36 | ||
|- | |- | ||
|13 | | 13 | ||
|377.323 | | 377.323 | ||
|<small><small>[[21/17]]</small></small>, <small>[[26/21]]</small>, [[31/25]], <small>[[5/4]]</small> | | <small><small>[[21/17]]</small></small>, <small>[[26/21]]</small>, [[31/25]], <small>[[5/4]]</small> | ||
|vM3 | | vM3 | ||
|39 | | 39 | ||
|- | |- | ||
|14 | | 14 | ||
|406.348 | | 406.348 | ||
|[[29/23]], '''<u>[[24/19]]''', '''[[19/15]]''', <small><small>[[14/11]]</small></small> | | [[29/23]], '''<u>[[24/19]]'''</u>, '''[[19/15]]''', <small><small>[[14/11]]</small></small> | ||
|^^M3 | | ^^M3 | ||
|42 | | 42 | ||
|- | |- | ||
|15 | | 15 | ||
|435.373 | | 435.373 | ||
|<small><small>[[23/18]]</small></small>, <small>[[32/25]]</small>, '''<u>[[9/7]]''', <small>[[31/24]]</small>, <small><small>[[22/17]]</small></small> | | <small><small>[[23/18]]</small></small>, <small>[[32/25]]</small>, '''<u>[[9/7]]'''</u>, <small>[[31/24]]</small>, <small><small>[[22/17]]</small></small> | ||
|vvvA3 | | vvvA3 | ||
|45 | | 45 | ||
|- | |- | ||
|16 | | 16 | ||
|464.398 | | 464.398 | ||
|<small><small>[[13/10]]</small></small>, '''[[30/23]]''', '''<u>[[17/13]]''', [[21/16]], <small><small>[[25/19]]</small></small>, <small><small><small>[[29/22]]</small></small></small> | | <small><small>[[13/10]]</small></small>, '''[[30/23]]''', '''<u>[[17/13]]'''</u>, [[21/16]], <small><small>[[25/19]]</small></small>, <small><small><small>[[29/22]]</small></small></small> | ||
|v<sup>4</sup>4 | | v<sup>4</sup>4 | ||
|48 | | 48 | ||
|- | |- | ||
|17 | | 17 | ||
|493.423 | | 493.423 | ||
| | | '''[[4/3]]''' | ||
'''[[4/3]]''' | | v4 | ||
|v4 | | 51 | ||
|51 | |||
|- | |- | ||
|18 | | 18 | ||
|522.448 | | 522.448 | ||
|[[31/23]], '''[[27/20]]''', '''<u>[[23/17]]''', [[19/14]], <small><small><small>[[15/11]]</small></small></small> | | [[31/23]], '''[[27/20]]''', '''<u>[[23/17]]'''</u>, [[19/14]], <small><small><small>[[15/11]]</small></small></small> | ||
|^^4 | | ^^4 | ||
|54 | | 54 | ||
|- | |- | ||
|19 | | 19 | ||
|551.473 | | 551.473 | ||
|<small>[[26/19]]</small>, '''<u>[[11/8]]''', <small>[[29/21]]</small>, <small><small>[[18/13]]</small></small> | | <small>[[26/19]]</small>, '''<u>[[11/8]]'''</u>, <small>[[29/21]]</small>, <small><small>[[18/13]]</small></small> | ||
|vvvA4 | | vvvA4 | ||
|57 | | 57 | ||
|- | |- | ||
|20 | | 20 | ||
|580.498 | | 580.498 | ||
|<small><small>[[25/18]]</small></small>, <small>[[32/23]]</small>, '''<u>[[7/5]]''', <small><small><small>[[31/22]]</small></small></small> | | <small><small>[[25/18]]</small></small>, <small>[[32/23]]</small>, '''<u>[[7/5]]'''</u>, <small><small><small>[[31/22]]</small></small></small> | ||
|A4 | | A4 | ||
|60 | | 60 | ||
|- | |- | ||
|21 | | 21 | ||
|609.523 | | 609.523 | ||
|<small><small><small>[[24/17]]</small></small></small>, [[17/12]], '''<u>[[27/19]]''', <small>[[10/7]]</small> | | <small><small><small>[[24/17]]</small></small></small>, [[17/12]], '''<u>[[27/19]]'''</u>, <small>[[10/7]]</small> | ||
|vd5 | | vd5 | ||
|63 | | 63 | ||
|- | |- | ||
|22 | | 22 | ||
|638.547 | | 638.547 | ||
|<small><small>[[23/16]]</small></small>, '''<u>[[13/9]]''', '''[[29/20]]''', <small><small>[[16/11]]</small></small> | | <small><small>[[23/16]]</small></small>, '''<u>[[13/9]]'''</u>, '''[[29/20]]''', <small><small>[[16/11]]</small></small> | ||
|^^d5 | | ^^d5 | ||
|66 | | 66 | ||
|- | |- | ||
|23 | | 23 | ||
|667.572 | | 667.572 | ||
|<small><small>[[19/13]]</small></small>, '''[[22/15]]''', '''<u>[[25/17]]''', '''[[28/19]]''', [[31/21]] | | <small><small>[[19/13]]</small></small>, '''[[22/15]]''', '''<u>[[25/17]]'''</u>, '''[[28/19]]''', [[31/21]] | ||
|vvv5 | | vvv5 | ||
|69 | | 69 | ||
|- | |- | ||
|24 | | 24 | ||
|696.597 | | 696.597 | ||
|[[3/2]] | | [[3/2]] | ||
|P5 | | P5 | ||
|72 | | 72 | ||
|- | |- | ||
|25 | | 25 | ||
|725.622 | | 725.622 | ||
|'''[[32/21]]''', [[29/19]], <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small> | | '''[[32/21]]''', [[29/19]], <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small> | ||
|^^^5 | | ^^^5 | ||
|75 | | 75 | ||
|- | |- | ||
|26 | | 26 | ||
|754.647 | | 754.647 | ||
|<small>[[20/13]]</small>, '''<u>[[17/11]]''', '''[[31/20]]''', <small><small>[[14/9]]</small></small> | | <small>[[20/13]]</small>, '''<u>[[17/11]]'''</u>, '''[[31/20]]''', <small><small>[[14/9]]</small></small> | ||
|vvA5, ^^d6 | | vvA5, ^^d6 | ||
|78 | | 78 | ||
|- | |- | ||
|27 | | 27 | ||
|783.672 | | 783.672 | ||
|<small><small>[[25/16]]</small></small>, '''<u>[[11/7]]''', [[30/19]], <small><small>[[19/12]]</small></small> | | <small><small>[[25/16]]</small></small>, '''<u>[[11/7]]'''</u>, [[30/19]], <small><small>[[19/12]]</small></small> | ||
|vvvm6 | | vvvm6 | ||
|81 | | 81 | ||
|- | |- | ||
|28 | | 28 | ||
|812.697 | | 812.697 | ||
|<small><small>[[27/17]]</small></small>, '''<u>[[8/5]]''', <small><small><small>[[29/18]]</small></small></small> | | <small><small>[[27/17]]</small></small>, '''<u>[[8/5]]'''</u>, <small><small><small>[[29/18]]</small></small></small> | ||
|m6 | | m6 | ||
|84 | | 84 | ||
|- | |- | ||
|29 | | 29 | ||
|841.722 | | 841.722 | ||
|<small><small>[[21/13]]</small></small>, '''<u>[[13/8]]''', [[31/19]], <small><small>[[18/11]]</small></small> | | <small><small>[[21/13]]</small></small>, '''<u>[[13/8]]'''</u>, [[31/19]], <small><small>[[18/11]]</small></small> | ||
|^^^m6 | | ^^^m6 | ||
|87 | | 87 | ||
|- | |- | ||
|30 | | 30 | ||
|870.746 | | 870.746 | ||
|<small><small>[[23/14]]</small></small>, [[28/17]], <small><small><small>[[5/3]]</small></small></small> | | <small><small>[[23/14]]</small></small>, [[28/17]], <small><small><small>[[5/3]]</small></small></small> | ||
|vvM6 | | vvM6 | ||
|90 | | 90 | ||
|- | |- | ||
|31 | | 31 | ||
|899.771 | | 899.771 | ||
|'''[[32/19]]''', [[27/16]], <small><small>[[22/13]]</small></small> | | '''[[32/19]]''', [[27/16]], <small><small>[[22/13]]</small></small> | ||
|^M6 | | ^M6 | ||
|93 | | 93 | ||
|- | |- | ||
|32 | | 32 | ||
|928.796 | | 928.796 | ||
|<small><small>[[17/10]]</small></small>, '''[[29/17]]''', '''[[12/7]]''', <small><small><small>[[31/18]]</small></small></small> | | <small><small>[[17/10]]</small></small>, '''[[29/17]]''', '''[[12/7]]''', <small><small><small>[[31/18]]</small></small></small> | ||
|^<sup>4</sup>M6 | | ^<sup>4</sup>M6 | ||
|96 | | 96 | ||
|- | |- | ||
|33 | | 33 | ||
|957.821 | | 957.821 | ||
|<small><small>[[19/11]]</small></small>, [[26/15]], <small><small>[[7/4]]</small></small> | | <small><small>[[19/11]]</small></small>, [[26/15]], <small><small>[[7/4]]</small></small> | ||
|^^^d7 | | ^^^d7 | ||
|99 | | 99 | ||
|- | |- | ||
|34 | | 34 | ||
|986.846 | | 986.846 | ||
|'''[[30/17]]''', '''<u>[[23/13]]''', <small>[[16/9]]</small> | | '''[[30/17]]''', '''<u>[[23/13]]'''</u>, <small>[[16/9]]</small> | ||
|vvm7 | | vvm7 | ||
|102 | | 102 | ||
|- | |- | ||
|35 | | 35 | ||
|1015.871 | | 1015.871 | ||
|<small><small>[[25/14]]</small></small>, '''<u>[[9/5]]''', <small><small><small>[[29/16]]</small></small></small> | | <small><small>[[25/14]]</small></small>, '''<u>[[9/5]]'''</u>, <small><small><small>[[29/16]]</small></small></small> | ||
|^m7 | | ^m7 | ||
|105 | | 105 | ||
|- | |- | ||
|36 | | 36 | ||
|1044.896 | | 1044.896 | ||
|<small><small>[[20/11]]</small></small>, '''[[31/17]]''', '''[[11/6]]''' | | <small><small>[[20/11]]</small></small>, '''[[31/17]]''', '''[[11/6]]''' | ||
|~7 | | ~7 | ||
|108 | | 108 | ||
|- | |- | ||
|37 | | 37 | ||
|1073.921 | | 1073.921 | ||
|<small><small><small>[[24/13]]</small></small></small>, '''<u>[[13/7]]''', [[28/15]], <small><small><small>[[15/8]]</small></small></small> | | <small><small><small>[[24/13]]</small></small></small>, '''<u>[[13/7]]'''</u>, [[28/15]], <small><small><small>[[15/8]]</small></small></small> | ||
|vM7 | | vM7 | ||
|111 | | 111 | ||
|- | |- | ||
|38 | | 38 | ||
|1102.946 | | 1102.946 | ||
|<small>[[32/17]]</small>, '''<u>[[17/9]]''', <small>[[19/10]]</small> | | <small>[[32/17]]</small>, '''<u>[[17/9]]'''</u>, <small>[[19/10]]</small> | ||
|^^M7 | | ^^M7 | ||
|114 | | 114 | ||
|- | |- | ||
|39 | | 39 | ||
|1131.970 | | 1131.970 | ||
|<small><small><small>[[21/11]]</small></small></small>, [[23/12]], '''<u>[[25/13]]''', [[27/14]], <small>[[29/15]]</small>, <small><small><small>[[31/16]]</small></small></small> | | <small><small><small>[[21/11]]</small></small></small>, [[23/12]], '''<u>[[25/13]]'''</u>, [[27/14]], <small>[[29/15]]</small>, <small><small><small>[[31/16]]</small></small></small> | ||
|vvvA7 | | vvvA7 | ||
|117 | | 117 | ||
|- | |- | ||
|40 | | 40 | ||
|1160.995 | | 1160.995 | ||
| | | | ||
|v<sup>4</sup>1 + | | v<sup>4</sup>1 +1 oct | ||
|120 | | 120 | ||
|- | |- | ||
|41 | | 41 | ||
|1190.020 | | 1190.020 | ||
|<small><small>[[2/1]]</small></small> | | <small><small>[[2/1]]</small></small> | ||
|v1 + | | v1 +1 oct | ||
|123 | | 123 | ||
|- | |- | ||
|42 | | 42 | ||
|1219.045 | | 1219.045 | ||
| | | | ||
|^^1 + | | ^^1 +1 oct | ||
|126 | | 126 | ||
|- | |- | ||
|43 | | 43 | ||
|1248.070 | | 1248.070 | ||
|<small>[[31/15]]</small>, <small><small><small>[[29/14]]</small></small></small> | | <small>[[31/15]]</small>, <small><small><small>[[29/14]]</small></small></small> | ||
|vvvA1 + | | vvvA1 +1 oct | ||
|129 | | 129 | ||
|- | |- | ||
|44 | | 44 | ||
|1277.095 | | 1277.095 | ||
|<small><small>[[27/13]]</small></small>, [[25/12]], '''<u>[[23/11]]''', <small>[[21/10]]</small> | | <small><small>[[27/13]]</small></small>, [[25/12]], '''<u>[[23/11]]'''</u>, <small>[[21/10]]</small> | ||
| v<sup>4</sup>m2 + | | v<sup>4</sup>m2 +1 oct | ||
|132 | | 132 | ||
|- | |- | ||
|45 | | 45 | ||
|1306.120 | | 1306.120 | ||
|<small><small><small>[[19/9]]</small></small></small>, '''<u>[[17/8]]''', [[32/15]], <small><small><small>[[15/7]]</small></small></small> | | <small><small><small>[[19/9]]</small></small></small>, '''<u>[[17/8]]'''</u>, [[32/15]], <small><small><small>[[15/7]]</small></small></small> | ||
|vm2 + | | vm2 +1 oct | ||
|135 | | 135 | ||
|- | |- | ||
|46 | | 46 | ||
|1335.145 | | 1335.145 | ||
|[[28/13]], '''[[13/6]]''' | | [[28/13]], '''[[13/6]]''' | ||
|^^m2 + | | ^^m2 +1 oct | ||
|138 | | 138 | ||
|- | |- | ||
|47 | | 47 | ||
|1364.170 | | 1364.170 | ||
|<small><small><small>[[24/11]]</small></small></small>, '''<u>[[11/5]]''', <small><small>[[31/14]]</small></small> | | <small><small><small>[[24/11]]</small></small></small>, '''<u>[[11/5]]'''</u>, <small><small>[[31/14]]</small></small> | ||
|vvvM2 + | | vvvM2 +1 oct | ||
|141 | | 141 | ||
|- | |- | ||
|48 | | 48 | ||
|1393.194 | | 1393.194 | ||
|<small><small>[[20/9]]</small></small>, '''[[29/13]]''', <small><small>[[9/4]]</small></small> | | <small><small>[[20/9]]</small></small>, '''[[29/13]]''', <small><small>[[9/4]]</small></small> | ||
|M2 + | | M2 +1 oct | ||
|144 | | 144 | ||
|- | |- | ||
|49 | | 49 | ||
|1422.219 | | 1422.219 | ||
| '''<u>[[25/11]]''', <small>[[16/7]]</small> | | '''<u>[[25/11]]'''</u>, <small>[[16/7]]</small> | ||
|^^^M2 + | | ^^^M2 +1 oct | ||
|147 | | 147 | ||
|- | |- | ||
|50 | | 50 | ||
|1451.244 | | 1451.244 | ||
|<small>[[23/10]]</small>, '''[[30/13]]''' | | <small>[[23/10]]</small>, '''[[30/13]]''' | ||
|vvA2 + | | vvA2 +1 oct, ^^d3 +1 oct | ||
|150 | | 150 | ||
|- | |- | ||
|51 | | 51 | ||
|1480.269 | | 1480.269 | ||
|<small><small><small>[[7/3]]</small></small></small>, <small>[[26/11]]</small> | | <small><small><small>[[7/3]]</small></small></small>, <small>[[26/11]]</small> | ||
|vvvm3 + | | vvvm3 +1 oct | ||
|153 | | 153 | ||
|- | |- | ||
|52 | | 52 | ||
|1509.294 | | 1509.294 | ||
|<small><small>[[19/8]]</small></small>, '''[[31/13]]''', [[12/5]] | | <small><small>[[19/8]]</small></small>, '''[[31/13]]''', [[12/5]] | ||
|m3 + | | m3 +1 oct | ||
|156 | | 156 | ||
|- | |- | ||
|53 | | 53 | ||
|1538.319 | | 1538.319 | ||
|<small><small>[[29/12]]</small></small>, '''<u>[[17/7]]''', <small>[[22/9]]</small> | | <small><small>[[29/12]]</small></small>, '''<u>[[17/7]]'''</u>, <small>[[22/9]]</small> | ||
|^^^m3 + | | ^^^m3 +1 oct | ||
|159 | | 159 | ||
|- | |- | ||
|54 | | 54 | ||
|1567.344 | | 1567.344 | ||
|<small><small><small>[[27/11]]</small></small></small>, <small>[[32/13]]</small> | | <small><small><small>[[27/11]]</small></small></small>, <small>[[32/13]]</small> | ||
|vvM3 + | | vvM3 +1 oct | ||
|162 | | 162 | ||
|- | |- | ||
|55 | | 55 | ||
|1596.369 | | 1596.369 | ||
|<small><small>[[5/2]]</small></small> | | <small><small>[[5/2]]</small></small> | ||
|^M3 + | | ^M3 +1 oct | ||
|165 | | 165 | ||
|- | |- | ||
|56 | | 56 | ||
|1625.393 | | 1625.393 | ||
|<small>[[28/11]]</small>, '''<u>[[23/9]]''', <small><small>[[18/7]]</small></small> | | <small>[[28/11]]</small>, '''<u>[[23/9]]'''</u>, <small><small>[[18/7]]</small></small> | ||
| ^<sup>4</sup>M3 + | | ^<sup>4</sup>M3 +1 oct | ||
|168 | | 168 | ||
|- | |- | ||
|57 | | 57 | ||
|1654.418 | | 1654.418 | ||
|<small><small>[[31/12]]</small></small>, '''<u>[[13/5]]''' | | <small><small>[[31/12]]</small></small>, '''<u>[[13/5]]'''</u> | ||
|^^^d4 + | | ^^^d4 +1 oct | ||
|171 | | 171 | ||
|- | |- | ||
|58 | | 58 | ||
|1683.443 | | 1683.443 | ||
|<small><small><small>[[21/8]]</small></small></small>, [[29/11]] | | <small><small><small>[[21/8]]</small></small></small>, [[29/11]] | ||
|vv4 + | | vv4 +1 oct | ||
|174 | | 174 | ||
|- | |- | ||
|59 | | 59 | ||
|1712.468 | | 1712.468 | ||
|<small><small><small>[[8/3]]</small></small></small>, [[27/10]] | | <small><small><small>[[8/3]]</small></small></small>, [[27/10]] | ||
|^4 + | | ^4 +1 oct | ||
|177 | | 177 | ||
|- | |- | ||
|60 | | 60 | ||
|1741.493 | | 1741.493 | ||
|<small><small><small>[[19/7]]</small></small></small>, '''[[30/11]]''', <small><small>[[11/4]]</small></small> | | <small><small><small>[[19/7]]</small></small></small>, '''[[30/11]]''', <small><small>[[11/4]]</small></small> | ||
|~4 + | | ~4 +1 oct | ||
|180 | | 180 | ||
|- | |- | ||
|61 | | 61 | ||
|1770.518 | | 1770.518 | ||
|'''<u>[[25/9]]''', <small><small>[[14/5]]</small></small> | | '''<u>[[25/9]]'''</u>, <small><small>[[14/5]]</small></small> | ||
|vA4 + | | vA4 +1 oct | ||
|183 | | 183 | ||
|- | |- | ||
|62 | | 62 | ||
|1799.543 | | 1799.543 | ||
|[[31/11]], '''[[17/6]]''' | | [[31/11]], '''[[17/6]]''' | ||
|^^A4 + | | ^^A4 +1 oct, vvd5 +1 oct | ||
|186 | | 186 | ||
|- | |- | ||
|63 | | 63 | ||
|1828.568 | | 1828.568 | ||
|<small><small>[[20/7]]</small></small>, '''<u>[[23/8]]''', <small>[[26/9]]</small> | | <small><small>[[20/7]]</small></small>, '''<u>[[23/8]]'''</u>, <small>[[26/9]]</small> | ||
|^d5 + | | ^d5 +1 oct | ||
|189 | | 189 | ||
|- | |- | ||
|64 | | 64 | ||
|1857.593 | | 1857.593 | ||
|<small><small><small>[[29/10]]</small></small></small>, <small>[[32/11]]</small> | | <small><small><small>[[29/10]]</small></small></small>, <small>[[32/11]]</small> | ||
|~5 + | | ~5 +1 oct | ||
|192 | | 192 | ||
|- | |- | ||
|65 | | 65 | ||
|1886.617 | | 1886.617 | ||
| | | | ||
|v5 + | | v5 +1 oct | ||
|195 | | 195 | ||
|- | |- | ||
|66 | | 66 | ||
|1915.642 | | 1915.642 | ||
|<small><small><small>[[3/1]]</small></small></small> | | <small><small><small>[[3/1]]</small></small></small> | ||
|^^5 + | | ^^5 +1 oct | ||
|198 | | 198 | ||
|- | |- | ||
|67 | | 67 | ||
|1944.667 | | 1944.667 | ||
|<small><small><small>[[31/10]]</small></small></small> | | <small><small><small>[[31/10]]</small></small></small> | ||
|vvvA5 + | | vvvA5 +1 oct | ||
|201 | | 201 | ||
|- | |- | ||
|68 | | 68 | ||
|1973.692 | | 1973.692 | ||
|<small>[[28/9]]</small>, '''<u>[[25/8]]''', <small>[[22/7]]</small> | | <small>[[28/9]]</small>, '''<u>[[25/8]]'''</u>, <small>[[22/7]]</small> | ||
| v<sup>4</sup>m6 + | | v<sup>4</sup>m6 +1 oct | ||
|204 | | 204 | ||
|- | |- | ||
|69 | | 69 | ||
|2002.717 | | 2002.717 | ||
|[[19/6]], <small><small>[[16/5]]</small></small> | | [[19/6]], <small><small>[[16/5]]</small></small> | ||
|vm6 + | | vm6 +1 oct | ||
|207 | | 207 | ||
|- | |- | ||
|70 | | 70 | ||
|2031.742 | | 2031.742 | ||
|[[29/9]], <small>[[13/4]]</small> | | [[29/9]], <small>[[13/4]]</small> | ||
|^^m6 + | | ^^m6 +1 oct | ||
|210 | | 210 | ||
|- | |- | ||
|71 | | 71 | ||
|2060.767 | | 2060.767 | ||
| '''<u>[[23/7]]''' | | '''<u>[[23/7]]'''</u> | ||
|vvvM6 + | | vvvM6 +1 oct | ||
|213 | | 213 | ||
|- | |- | ||
|72 | | 72 | ||
|2089.792 | | 2089.792 | ||
|[[10/3]] | | [[10/3]] | ||
|M6 + | | M6 +1 oct | ||
|216 | | 216 | ||
|- | |- | ||
|73 | | 73 | ||
|2118.816 | | 2118.816 | ||
|<small><small><small>[[27/8]]</small></small></small>, '''<u>[[17/5]]''', <small><small><small>[[24/7]]</small></small></small> | | <small><small><small>[[27/8]]</small></small></small>, '''<u>[[17/5]]'''</u>, <small><small><small>[[24/7]]</small></small></small> | ||
|^^^M6 + | | ^^^M6 +1 oct | ||
|219 | | 219 | ||
|- | |- | ||
|74 | | 74 | ||
|2147.841 | | 2147.841 | ||
|[[31/9]] | | [[31/9]] | ||
|vvA6 + | | vvA6 +1 oct, ^^d7 +1 oct | ||
|222 | | 222 | ||
|- | |- | ||
|75 | | 75 | ||
|2176.866 | | 2176.866 | ||
|<small>[[7/2]]</small> | | <small>[[7/2]]</small> | ||
|vvvm7 + | | vvvm7 +1 oct | ||
|225 | | 225 | ||
|- | |- | ||
|76 | | 76 | ||
|2205.891 | | 2205.891 | ||
|<small><small>[[32/9]]</small></small>, '''<u>[[25/7]]''', <small><small>[[18/5]]</small></small> | | <small><small>[[32/9]]</small></small>, '''<u>[[25/7]]'''</u>, <small><small>[[18/5]]</small></small> | ||
|m7 + | | m7 +1 oct | ||
|228 | | 228 | ||
|- | |- | ||
|77 | | 77 | ||
|2234.916 | | 2234.916 | ||
|[[29/8]], <small><small><small>[[11/3]]</small></small></small> | | [[29/8]], <small><small><small>[[11/3]]</small></small></small> | ||
|^^^m7 + | | ^^^m7 +1 oct | ||
|231 | | 231 | ||
|- | |- | ||
|78 | | 78 | ||
|2263.941 | | 2263.941 | ||
| | | <small>[[26/7]]</small> | ||
<small>[[26/7]]</small> | | vvM7 +1 oct | ||
|vvM7 + | | 234 | ||
|234 | |||
|- | |- | ||
|79 | | 79 | ||
|2292.966 | | 2292.966 | ||
|'''[[15/4]]''' | | '''[[15/4]]''' | ||
|^M7 + | | ^M7 +1 oct | ||
|237 | | 237 | ||
|- | |- | ||
|80 | | 80 | ||
|2321.991 | | 2321.991 | ||
|<small><small>[[19/5]]</small></small>, '''[[23/6]]''' | | <small><small>[[19/5]]</small></small>, '''[[23/6]]''' | ||
| ^<sup>4</sup>M7 + | | ^<sup>4</sup>M7 +1 oct | ||
|240 | | 240 | ||
|- | |- | ||
|81 | | 81 | ||
|2351.016 | | 2351.016 | ||
|<small><small><small>[[27/7]]</small></small></small>, [[31/8]] | | <small><small><small>[[27/7]]</small></small></small>, [[31/8]] | ||
|^^^d1 + | | ^^^d1 +2 oct | ||
|243 | | 243 | ||
|- | |- | ||
|82 | | 82 | ||
|2380.040 | | 2380.040 | ||
| | | | ||
|vv1 + | | vv1 +2 oct | ||
|246 | | 246 | ||
|- | |- | ||
|83 | | 83 | ||
|2409.065 | | 2409.065 | ||
|<small>[[4/1]]</small> | | <small>[[4/1]]</small> | ||
|^1 + | | ^1 +2 oct | ||
|249 | | 249 | ||
|- | |- | ||
|84 | | 84 | ||
|2438.090 | | 2438.090 | ||
| | | | ||
|^<sup>4</sup>1 + | | ^<sup>4</sup>1 +2 oct | ||
|252 | | 252 | ||
|- | |- | ||
|85 | | 85 | ||
|2467.115 | | 2467.115 | ||
|[[29/7]], '''[[25/6]]''' | | [[29/7]], '''[[25/6]]''' | ||
|^^^d2 + | | ^^^d2 +2 oct | ||
|255 | | 255 | ||
|- | |- | ||
|86 | | 86 | ||
|2496.140 | | 2496.140 | ||
|<small><small>[[21/5]]</small></small>, <small>[[17/4]]</small> | | <small><small>[[21/5]]</small></small>, <small>[[17/4]]</small> | ||
|vvm2 + | | vvm2 +2 oct | ||
|258 | | 258 | ||
|- | |- | ||
|87 | | 87 | ||
|2525.165 | | 2525.165 | ||
|[[30/7]], <small><small><small>[[13/3]]</small></small></small> | | [[30/7]], <small><small><small>[[13/3]]</small></small></small> | ||
|^m2 + | | ^m2 +2 oct | ||
|261 | | 261 | ||
|- | |- | ||
|88 | | 88 | ||
|2554.190 | | 2554.190 | ||
|<small><small>[[22/5]]</small></small> | | <small><small>[[22/5]]</small></small> | ||
|~2 + | | ~2 +2 oct | ||
|264 | | 264 | ||
|- | |- | ||
|89 | | 89 | ||
|2583.215 | | 2583.215 | ||
|[[31/7]] | | [[31/7]] | ||
|vM2 + | | vM2 +2 oct | ||
|267 | | 267 | ||
|- | |- | ||
|90 | | 90 | ||
|2612.239 | | 2612.239 | ||
|<small>[[9/2]]</small> | | <small>[[9/2]]</small> | ||
|^^M2 + | | ^^M2 +2 oct | ||
|270 | | 270 | ||
|- | |- | ||
|91 | | 91 | ||
|2641.264 | | 2641.264 | ||
|<small><small>[[32/7]]</small></small>, '''<u>[[23/5]]''' | | <small><small>[[32/7]]</small></small>, '''<u>[[23/5]]'''</u> | ||
|vvvA2 + | | vvvA2 +2 oct | ||
|273 | | 273 | ||
|- | |- | ||
|92 | | 92 | ||
|2670.289 | | 2670.289 | ||
|'''[[14/3]]''' | | '''[[14/3]]''' | ||
| v<sup>4</sup>m3 + | | v<sup>4</sup>m3 +2 oct | ||
|276 | | 276 | ||
|- | |- | ||
|93 | | 93 | ||
|2699.314 | | 2699.314 | ||
| '''<u>[[19/4]]''' | | '''<u>[[19/4]]'''</u> | ||
|vm3 + | | vm3 +2 oct | ||
|279 | | 279 | ||
|- | |- | ||
|94 | | 94 | ||
|2728.339 | | 2728.339 | ||
|<small><small><small>[[24/5]]</small></small></small>, '''<u>[[29/6]]''' | | <small><small><small>[[24/5]]</small></small></small>, '''<u>[[29/6]]'''</u> | ||
|^^m3 + | | ^^m3 +2 oct | ||
|282 | | 282 | ||
|- | |- | ||
|95 | | 95 | ||
|2757.364 | | 2757.364 | ||
| | | | ||
|vvvM3 + | | vvvM3 +2 oct | ||
|285 | | 285 | ||
|- | |- | ||
|96 | | 96 | ||
|2786.389 | | 2786.389 | ||
|'''<u>[[5/1]]''' | | '''<u>[[5/1]]'''</u> | ||
|M3 + | | M3 +2 oct | ||
|288 | | 288 | ||
|- | |- | ||
|97 | | 97 | ||
|2815.414 | | 2815.414 | ||
| | | | ||
|^^^M3 + | | ^^^M3 +2 oct | ||
|291 | | 291 | ||
|- | |- | ||
|98 | | 98 | ||
|2844.439 | | 2844.439 | ||
|'''<u>[[31/6]]''', <small><small>[[26/5]]</small></small> | | '''<u>[[31/6]]'''</u>, <small><small>[[26/5]]</small></small> | ||
|vvA3 + | | vvA3 +2 oct, ^^d4 +2 oct | ||
|294 | | 294 | ||
|- | |- | ||
|99 | | 99 | ||
|2873.463 | | 2873.463 | ||
|'''[[21/4]]''' | | '''[[21/4]]''' | ||
|vvv4 + | | vvv4 +2 oct | ||
|297 | | 297 | ||
|- | |- | ||
|100 | | 100 | ||
|2902.488 | | 2902.488 | ||
|'''[[16/3]]''' | | '''[[16/3]]''' | ||
|P4 + | | P4 +2 oct | ||
|300 | | 300 | ||
|- | |- | ||
|101 | | 101 | ||
|2931.513 | | 2931.513 | ||
|<small><small>[[27/5]]</small></small> | | <small><small>[[27/5]]</small></small> | ||
|^^^4 + | | ^^^4 +2 oct | ||
|303 | | 303 | ||
|- | |- | ||
|102 | | 102 | ||
|2960.538 | | 2960.538 | ||
| | | <small>[[11/2]]</small> | ||
<small>[[11/2]]</small> | | vvA4 +2 oct | ||
|vvA4 + | | 306 | ||
|306 | |||
|- | |- | ||
|103 | | 103 | ||
|2989.563 | | 2989.563 | ||
|[[28/5]], <small><small><small>[[17/3]]</small></small></small> | | [[28/5]], <small><small><small>[[17/3]]</small></small></small> | ||
|^A4 + | | ^A4 +2 oct | ||
|309 | | 309 | ||
|- | |- | ||
|104 | | 104 | ||
|3018.588 | | 3018.588 | ||
|<small><small>[[23/4]]</small></small> | | <small><small>[[23/4]]</small></small> | ||
|d5 + | | d5 +2 oct | ||
|312 | | 312 | ||
|- | |- | ||
|105 | | 105 | ||
|3047.613 | | 3047.613 | ||
|'''[[29/5]]''' | | '''[[29/5]]''' | ||
|^^^d5 + | | ^^^d5 +2 oct | ||
|315 | | 315 | ||
|- | |- | ||
| 106 | | 106 | ||
|3076.638 | | 3076.638 | ||
| | | | ||
|vv5 + | | vv5 +2 oct | ||
|318 | | 318 | ||
|- | |- | ||
|107 | | 107 | ||
|3105.663 | | 3105.663 | ||
|'''[[6/1]]''' | | '''[[6/1]]''' | ||
|^5 + | | ^5 +2 oct | ||
|321 | | 321 | ||
|- | |- | ||
|108 | | 108 | ||
|3134.687 | | 3134.687 | ||
| | | | ||
|^<sup>4</sup>5 + | | ^<sup>4</sup>5 +2 oct | ||
|324 | | 324 | ||
|- | |- | ||
|109 | | 109 | ||
|3163.712 | | 3163.712 | ||
|[[31/5]], <small>[[25/4]]</small> | | [[31/5]], <small>[[25/4]]</small> | ||
|^^^d6 + | | ^^^d6 +2 oct | ||
|327 | | 327 | ||
|- | |- | ||
|110 | | 110 | ||
|3192.737 | | 3192.737 | ||
|'''[[19/3]]''' | | '''[[19/3]]''' | ||
|vvm6 + | | vvm6 +2 oct | ||
|330 | | 330 | ||
|- | |- | ||
|111 | | 111 | ||
|3221.762 | | 3221.762 | ||
| | | <small>[[32/5]]</small> | ||
<small>[[32/5]]</small> | | ^m6 +2 oct | ||
|^m6 + | | 333 | ||
|333 | |||
|- | |- | ||
|112 | | 112 | ||
|3250.787 | | 3250.787 | ||
|<small><small>[[13/2]]</small></small> | | <small><small>[[13/2]]</small></small> | ||
|~6 + | | ~6 +2 oct | ||
|336 | | 336 | ||
|- | |- | ||
|113 | | 113 | ||
|3279.812 | | 3279.812 | ||
|'''[[20/3]]''' | | '''[[20/3]]''' | ||
|vM6 + | | vM6 +2 oct | ||
|339 | | 339 | ||
|- | |- | ||
|114 | | 114 | ||
|3308.837 | | 3308.837 | ||
|'''[[27/4]]''' | | '''[[27/4]]''' | ||
|^^M6 + | | ^^M6 +2 oct | ||
|342 | | 342 | ||
|- | |- | ||
|115 | | 115 | ||
|3337.862 | | 3337.862 | ||
| | | | ||
|vvvA6 + | | vvvA6 +2 oct | ||
|345 | | 345 | ||
|- | |- | ||
|116 | | 116 | ||
|3366.886 | | 3366.886 | ||
|'''<u>[[7/1]]''' | | '''<u>[[7/1]]'''</u> | ||
| v<sup>4</sup>m7 + | | v<sup>4</sup>m7 +2 oct | ||
|348 | | 348 | ||
|- | |- | ||
| 117 | | 117 | ||
|3395.911 | | 3395.911 | ||
| | | | ||
|vm7 + | | vm7 +2 oct | ||
|351 | | 351 | ||
|- | |- | ||
|118 | | 118 | ||
|3424.936 | | 3424.936 | ||
|'''[[29/4]]''' | | '''[[29/4]]''' | ||
|^^m7 + | | ^^m7 +2 oct | ||
|354 | | 354 | ||
|- | |- | ||
|119 | | 119 | ||
|3453.961 | | 3453.961 | ||
|'''[[22/3]]''' | | '''[[22/3]]''' | ||
|vvvM7 + | | vvvM7 +2 oct | ||
|357 | | 357 | ||
|- | |- | ||
|120 | | 120 | ||
|3482.986 | | 3482.986 | ||
|[[15/2]] | | [[15/2]] | ||
|M7 + | | M7 +2 oct | ||
|360 | | 360 | ||
|- | |- | ||
|121 | | 121 | ||
|3512.011 | | 3512.011 | ||
|<small><small><small>[[23/3]]</small></small></small> | | <small><small><small>[[23/3]]</small></small></small> | ||
|^^^M7 + | | ^^^M7 +2 oct | ||
|363 | | 363 | ||
|- | |- | ||
|122 | | 122 | ||
|3541.036 | | 3541.036 | ||
|'''[[31/4]]''' | | '''[[31/4]]''' | ||
|vvA7 + | | vvA7 +2 oct, ^^d1 +3 oct | ||
|366 | | 366 | ||
|- | |- | ||
|123 | | 123 | ||
|3570.061 | | 3570.061 | ||
| | | | ||
|vvv1 + | | vvv1 +3 oct | ||
|369 | | 369 | ||
|- | |- | ||
|124 | | 124 | ||
|3599.086 | | 3599.086 | ||
|'''<u>[[8/1]]''' | | '''<u>[[8/1]]'''</u> | ||
|P1 + | | P1 +3 oct | ||
|372 | | 372 | ||
|- | |- | ||
|125 | | 125 | ||
|3628.110 | | 3628.110 | ||
| | | | ||
|^^^1 + | | ^^^1 +3 oct | ||
|375 | | 375 | ||
|- | |- | ||
|126 | | 126 | ||
|3657.135 | | 3657.135 | ||
|<small><small><small>[[25/3]]</small></small></small> | | <small><small><small>[[25/3]]</small></small></small> | ||
|vvA1 + | | vvA1 +3 oct, ^^d2 +3 oct | ||
|378 | | 378 | ||
|- | |- | ||
|127 | | 127 | ||
|3686.160 | | 3686.160 | ||
| | | | ||
|vvvm2 + | | vvvm2 +3 oct | ||
|381 | | 381 | ||
|- | |- | ||
|128 | | 128 | ||
|3715.185 | | 3715.185 | ||
|<small><small>[[17/2]]</small></small> | | <small><small>[[17/2]]</small></small> | ||
|m2 + | | m2 +3 oct | ||
|384 | | 384 | ||
|- | |- | ||
|129 | | 129 | ||
|3744.210 | | 3744.210 | ||
|[[26/3]] | | [[26/3]] | ||
|^^^m2 + | | ^^^m2 +3 oct | ||
|387 | | 387 | ||
|- | |- | ||
|130 | | 130 | ||
|3773.235 | | 3773.235 | ||
| | | | ||
|vvM2 + | | vvM2 +3 oct | ||
|390 | | 390 | ||
|- | |- | ||
|131 | | 131 | ||
|3802.260 | | 3802.260 | ||
|'''<u>[[9/1]]''' | | '''<u>[[9/1]]'''</u> | ||
|^M2 + | | ^M2 +3 oct | ||
|393 | | 393 | ||
|- | |- | ||
|132 | | 132 | ||
|3831.285 | | 3831.285 | ||
| | | | ||
| ^<sup>4</sup>M2 + | | ^<sup>4</sup>M2 +3 oct | ||
|396 | | 396 | ||
|- | |- | ||
|133 | | 133 | ||
|3860.309 | | 3860.309 | ||
|[[28/3]] | | [[28/3]] | ||
|^^^d3 + | | ^^^d3 +3 oct | ||
|399 | | 399 | ||
|- | |- | ||
|134 | | 134 | ||
|3889.334 | | 3889.334 | ||
| | | <small>[[19/2]]</small> | ||
<small>[[19/2]]</small> | | vvm3 +3 oct | ||
|vvm3 + | | 402 | ||
|402 | |||
|- | |- | ||
|135 | | 135 | ||
|3918.359 | | 3918.359 | ||
| | | <small>[[29/3]]</small> | ||
<small>[[29/3]]</small> | | ^m3 +3 oct | ||
|^m3 + | | 405 | ||
|405 | |||
|- | |- | ||
|136 | | 136 | ||
|3947.384 | | 3947.384 | ||
| | | | ||
|~3 + | | ~3 +3 oct | ||
|408 | | 408 | ||
|- | |- | ||
|137 | | 137 | ||
|3976.409 | | 3976.409 | ||
|<small><small>[[10/1]]</small></small> | | <small><small>[[10/1]]</small></small> | ||
|vM3 + | | vM3 +3 oct | ||
|411 | | 411 | ||
|- | |- | ||
|138 | | 138 | ||
|4005.434 | | 4005.434 | ||
| | | | ||
|^^M3 + | | ^^M3 +3 oct | ||
|414 | | 414 | ||
|- | |- | ||
|139 | | 139 | ||
|4034.459 | | 4034.459 | ||
| | | <small>[[31/3]]</small> | ||
<small>[[31/3]]</small> | | vvvA3 +3 oct | ||
|vvvA3 + | | 417 | ||
|417 | |||
|- | |- | ||
|140 | | 140 | ||
|4063.484 | | 4063.484 | ||
| | | <small>[[21/2]]</small> | ||
<small>[[21/2]]</small> | | v<sup>4</sup>4 +3 oct | ||
|v<sup>4</sup>4 + | | 420 | ||
|420 | |||
|- | |- | ||
|141 | | 141 | ||
|4092.509 | | 4092.509 | ||
|[[32/3]] | | [[32/3]] | ||
|v4 + | | v4 +3 oct | ||
|423 | | 423 | ||
|- | |- | ||
| 142 | | 142 | ||
|4121.533 | | 4121.533 | ||
| | | | ||
|^^4 + | | ^^4 +3 oct | ||
|426 | | 426 | ||
|- | |- | ||
|143 | | 143 | ||
|4150.558 | | 4150.558 | ||
| '''<u>[[11/1]]''' | | '''<u>[[11/1]]'''</u> | ||
|vvvA4 + | | vvvA4 +3 oct | ||
|429 | | 429 | ||
|- | |- | ||
|144 | | 144 | ||
|4179.583 | | 4179.583 | ||
| | | | ||
|A4 + | | A4 +3 oct | ||
|432 | | 432 | ||
|- | |- | ||
| 145 | | 145 | ||
|4208.608 | | 4208.608 | ||
| | | | ||
|vd5 + | | vd5 +3 oct | ||
|435 | | 435 | ||
|- | |- | ||
|146 | | 146 | ||
|4237.633 | | 4237.633 | ||
| | | <small>[[23/2]]</small> | ||
<small>[[23/2]]</small> | | ^^d5 +3 oct | ||
|^^d5 + | | 438 | ||
|438 | |||
|- | |- | ||
|147 | | 147 | ||
|4266.658 | | 4266.658 | ||
| | | | ||
|vvv5 + | | vvv5 +3 oct | ||
|441 | | 441 | ||
|- | |- | ||
|148 | | 148 | ||
|4295.683 | | 4295.683 | ||
|[[12/1]] | | [[12/1]] | ||
|P5 + | | P5 +3 oct | ||
|444 | | 444 | ||
|- | |- | ||
|149 | | 149 | ||
|4324.708 | | 4324.708 | ||
| | | | ||
|^^^5 + | | ^^^5 +3 oct | ||
|447 | | 447 | ||
|- | |- | ||
|150 | | 150 | ||
|4353.732 | | 4353.732 | ||
| | | | ||
|vvA5 + | | vvA5 +3 oct, ^^d6 +3 oct | ||
|450 | | 450 | ||
|- | |- | ||
|151 | | 151 | ||
|4382.757 | | 4382.757 | ||
|<small><small>[[25/2]]</small></small> | | <small><small>[[25/2]]</small></small> | ||
|vvvm6 + | | vvvm6 +3 oct | ||
|453 | | 453 | ||
|- | |- | ||
|152 | | 152 | ||
|4411.782 | | 4411.782 | ||
| | | | ||
|m6 + | | m6 +3 oct | ||
|456 | | 456 | ||
|- | |- | ||
|153 | | 153 | ||
|4440.807 | | 4440.807 | ||
| '''<u>[[13/1]]''' | | '''<u>[[13/1]]'''</u> | ||
|^^^m6 + | | ^^^m6 +3 oct | ||
|459 | | 459 | ||
|- | |- | ||
|154 | | 154 | ||
|4469.832 | | 4469.832 | ||
| | | | ||
|vvM6 + | | vvM6 +3 oct | ||
|462 | | 462 | ||
|- | |- | ||
|155 | | 155 | ||
|4498.857 | | 4498.857 | ||
|[[27/2]] | | [[27/2]] | ||
|^M6 + | | ^M6 +3 oct | ||
|465 | | 465 | ||
|- | |- | ||
|156 | | 156 | ||
|4527.882 | | 4527.882 | ||
| | | | ||
| ^<sup>4</sup>M6 + | | ^<sup>4</sup>M6 +3 oct | ||
|468 | | 468 | ||
|- | |- | ||
|157 | | 157 | ||
|4556.907 | | 4556.907 | ||
|<small><small>[[14/1]]</small></small> | | <small><small>[[14/1]]</small></small> | ||
|^^^d7 + | | ^^^d7 +3 oct | ||
|471 | | 471 | ||
|- | |- | ||
|158 | | 158 | ||
|4585.932 | | 4585.932 | ||
| | | | ||
|vvm7 + | | vvm7 +3 oct | ||
|474 | | 474 | ||
|- | |- | ||
| 159 | | 159 | ||
|4614.956 | | 4614.956 | ||
| | | | ||
|^m7 + | | ^m7 +3 oct | ||
|477 | | 477 | ||
|- | |- | ||
|160 | | 160 | ||
|4643.981 | | 4643.981 | ||
|<small><small><small>[[29/2]]</small></small></small> | | <small><small><small>[[29/2]]</small></small></small> | ||
|~7 + | | ~7 +3 oct | ||
|480 | | 480 | ||
|- | |- | ||
| 161 | | 161 | ||
|4673.006 | | 4673.006 | ||
| | | | ||
|vM7 + | | vM7 +3 oct | ||
|483 | | 483 | ||
|- | |- | ||
|162 | | 162 | ||
|4702.031 | | 4702.031 | ||
|<small><small><small>[[15/1]]</small></small></small> | | <small><small><small>[[15/1]]</small></small></small> | ||
|^^M7 + | | ^^M7 +3 oct | ||
|486 | | 486 | ||
|- | |- | ||
|163 | | 163 | ||
|4731.056 | | 4731.056 | ||
|<small><small><small>[[31/2]]</small></small></small> | | <small><small><small>[[31/2]]</small></small></small> | ||
|vvvA7 + | | vvvA7 +3 oct | ||
|489 | | 489 | ||
|- | |- | ||
|164 | | 164 | ||
|4760.081 | | 4760.081 | ||
| | | | ||
|v<sup>4</sup>1 + | | v<sup>4</sup>1 +4 oct | ||
|492 | | 492 | ||
|- | |- | ||
|165 | | 165 | ||
|4789.106 | | 4789.106 | ||
|<small><small>[[16/1]]</small></small> | | <small><small>[[16/1]]</small></small> | ||
|v1 + | | v1 +4 oct | ||
|495 | | 495 | ||
|- | |- | ||
| 166 | | 166 | ||
|4818.131 | | 4818.131 | ||
| | | | ||
|^^1 + | | ^^1 +4 oct | ||
|498 | | 498 | ||
|- | |- | ||
|167 | | 167 | ||
|4847.156 | | 4847.156 | ||
| | | | ||
|vvvA1 + | | vvvA1 +4 oct | ||
|501 | | 501 | ||
|- | |- | ||
|168 | | 168 | ||
|4876.180 | | 4876.180 | ||
| | | | ||
| v<sup>4</sup>m2 + | | v<sup>4</sup>m2 +4 oct | ||
|504 | | 504 | ||
|- | |- | ||
|169 | | 169 | ||
|4905.205 | | 4905.205 | ||
| '''<u>[[17/1]]''' | | '''<u>[[17/1]]'''</u> | ||
|vm2 + | | vm2 +4 oct | ||
|507 | | 507 | ||
|- | |- | ||
|170 | | 170 | ||
|4934.230 | | 4934.230 | ||
| | | | ||
|^^m2 + | | ^^m2 +4 oct | ||
|510 | | 510 | ||
|- | |- | ||
|171 | | 171 | ||
|4963.255 | | 4963.255 | ||
| | | | ||
|vvvM2 + | | vvvM2 +4 oct | ||
|513 | | 513 | ||
|- | |- | ||
|172 | | 172 | ||
|4992.280 | | 4992.280 | ||
|<small><small>[[18/1]]</small></small> | | <small><small>[[18/1]]</small></small> | ||
|M2 + | | M2 +4 oct | ||
|516 | | 516 | ||
|- | |- | ||
|173 | | 173 | ||
|5021.305 | | 5021.305 | ||
| | | | ||
|^^^M2 + | | ^^^M2 +4 oct | ||
|519 | | 519 | ||
|- | |- | ||
|174 | | 174 | ||
|5050.330 | | 5050.330 | ||
| | | | ||
|vvA2 + | | vvA2 +4 oct, ^^d3 +4 oct | ||
|522 | | 522 | ||
|- | |- | ||
|175 | | 175 | ||
|5079.355 | | 5079.355 | ||
| | | | ||
|vvvm3 + | | vvvm3 +4 oct | ||
|525 | | 525 | ||
|- | |- | ||
|176 | | 176 | ||
|5108.379 | | 5108.379 | ||
|<small><small>[[19/1]]</small></small> | | <small><small>[[19/1]]</small></small> | ||
|m3 + | | m3 +4 oct | ||
|528 | | 528 | ||
|- | |- | ||
|177 | | 177 | ||
|5137.404 | | 5137.404 | ||
| | | | ||
|^^^m3 + | | ^^^m3 +4 oct | ||
|531 | | 531 | ||
|- | |- | ||
|178 | | 178 | ||
|5166.429 | | 5166.429 | ||
| | | | ||
|vvM3 + | | vvM3 +4 oct | ||
|534 | | 534 | ||
|- | |- | ||
|179 | | 179 | ||
|5195.454 | | 5195.454 | ||
| | | <small>[[20/1]]</small> | ||
<small>[[20/1]]</small> | | ^M3 +4 oct | ||
|^M3 + | | 537 | ||
|537 | |||
|- | |- | ||
|180 | | 180 | ||
|5224.479 | | 5224.479 | ||
| | | | ||
| ^<sup>4</sup>M3 + | | ^<sup>4</sup>M3 +4 oct | ||
|540 | | 540 | ||
|- | |- | ||
|181 | | 181 | ||
|5253.504 | | 5253.504 | ||
| | | | ||
|^^^d4 + | | ^^^d4 +4 oct | ||
|543 | | 543 | ||
|- | |- | ||
|182 | | 182 | ||
|5282.529 | | 5282.529 | ||
|<small><small>[[21/1]]</small></small> | | <small><small>[[21/1]]</small></small> | ||
|vv4 + | | vv4 +4 oct | ||
|546 | | 546 | ||
|- | |- | ||
|183 | | 183 | ||
|5311.554 | | 5311.554 | ||
| | | | ||
|^4 + | | ^4 +4 oct | ||
|549 | | 549 | ||
|- | |- | ||
|184 | | 184 | ||
|5340.579 | | 5340.579 | ||
|<small><small>[[22/1]]</small></small> | | <small><small>[[22/1]]</small></small> | ||
|~4 + | | ~4 +4 oct | ||
|552 | | 552 | ||
|- | |- | ||
| 185 | | 185 | ||
|5369.603 | | 5369.603 | ||
| | | | ||
|vA4 + | | vA4 +4 oct | ||
|555 | | 555 | ||
|- | |- | ||
|186 | | 186 | ||
|5398.628 | | 5398.628 | ||
| | | | ||
|^^A4 + | | ^^A4 +4 oct, vvd5 +4 oct | ||
|558 | | 558 | ||
|- | |- | ||
|187 | | 187 | ||
|5427.653 | | 5427.653 | ||
| '''<u>[[23/1]]''' | | '''<u>[[23/1]]'''</u> | ||
|^d5 + | | ^d5 +4 oct | ||
|561 | | 561 | ||
|- | |- | ||
|188 | | 188 | ||
|5456.678 | | 5456.678 | ||
| | | | ||
|~5 + | | ~5 +4 oct | ||
|564 | | 564 | ||
|- | |- | ||
|189 | | 189 | ||
|5485.703 | | 5485.703 | ||
| | | | ||
|v5 + | | v5 +4 oct | ||
|567 | | 567 | ||
|- | |- | ||
|190 | | 190 | ||
|5514.728 | | 5514.728 | ||
|<small><small><small>[[24/1]]</small></small></small> | | <small><small><small>[[24/1]]</small></small></small> | ||
|^^5 + | | ^^5 +4 oct | ||
|570 | | 570 | ||
|- | |- | ||
|191 | | 191 | ||
|5543.753 | | 5543.753 | ||
| | | | ||
|vvvA5 + | | vvvA5 +4 oct | ||
|573 | | 573 | ||
|- | |- | ||
|192 | | 192 | ||
|5572.778 | | 5572.778 | ||
| '''<u>[[25/1]]''' | | '''<u>[[25/1]]'''</u> | ||
| v<sup>4</sup>m6 + | | v<sup>4</sup>m6 +4 oct | ||
|576 | | 576 | ||
|- | |- | ||
| 193 | | 193 | ||
|5601.802 | | 5601.802 | ||
| | | | ||
|vm6 + | | vm6 +4 oct | ||
|579 | | 579 | ||
|- | |- | ||
|194 | | 194 | ||
|5630.827 | | 5630.827 | ||
|<small><small>[[26/1]]</small></small> | | <small><small>[[26/1]]</small></small> | ||
|^^m6 + | | ^^m6 +4 oct | ||
|582 | | 582 | ||
|- | |- | ||
|195 | | 195 | ||
|5659.852 | | 5659.852 | ||
| | | | ||
|vvvM6 + | | vvvM6 +4 oct | ||
|585 | | 585 | ||
|- | |- | ||
|196 | | 196 | ||
|5688.877 | | 5688.877 | ||
| | | | ||
|M6 + | | M6 +4 oct | ||
|588 | | 588 | ||
|- | |- | ||
|197 | | 197 | ||
|5717.902 | | 5717.902 | ||
|<small><small>[[27/1]]</small></small> | | <small><small>[[27/1]]</small></small> | ||
|^^^M6 + | | ^^^M6 +4 oct | ||
|591 | | 591 | ||
|- | |- | ||
|198 | | 198 | ||
|5746.927 | | 5746.927 | ||
| | | | ||
|vvA6 + | | vvA6 +4 oct, ^^d7 +4 oct | ||
|594 | | 594 | ||
|- | |- | ||
|199 | | 199 | ||
|5775.952 | | 5775.952 | ||
|[[28/1]] | | [[28/1]] | ||
|vvvm7 + | | vvvm7 +4 oct | ||
|597 | | 597 | ||
|- | |- | ||
|200 | | 200 | ||
|5804.977 | | 5804.977 | ||
| | | | ||
|m7 + | | m7 +4 oct | ||
|600 | | 600 | ||
|- | |- | ||
|201 | | 201 | ||
|5834.002 | | 5834.002 | ||
|'''[[29/1]]''' | | '''[[29/1]]''' | ||
|^^^m7 + | | ^^^m7 +4 oct | ||
|603 | | 603 | ||
|- | |- | ||
|202 | | 202 | ||
|5863.026 | | 5863.026 | ||
| | | | ||
|vvM7 + | | vvM7 +4 oct | ||
|606 | | 606 | ||
|- | |- | ||
|203 | | 203 | ||
|5892.051 | | 5892.051 | ||
|'''[[30/1]]''' | | '''[[30/1]]''' | ||
|^M7 + | | ^M7 +4 oct | ||
|609 | | 609 | ||
|- | |- | ||
|204 | | 204 | ||
|5921.076 | | 5921.076 | ||
| | | | ||
| ^<sup>4</sup>M7 + | | ^<sup>4</sup>M7 +4 oct | ||
|612 | | 612 | ||
|- | |- | ||
|205 | | 205 | ||
|5950.101 | | 5950.101 | ||
|[[31/1]] | | [[31/1]] | ||
|^^^d1 + | | ^^^d1 +5 oct | ||
|615 | | 615 | ||
|- | |- | ||
| 206 | | 206 | ||
|5979.126 | | 5979.126 | ||
| | | | ||
|vv1 + | | vv1 +5 oct | ||
|618 | | 618 | ||
|- | |- | ||
|207 | | 207 | ||
|6008.151 | | 6008.151 | ||
| | | <small>[[32/1]]</small> | ||
<small>[[32/1]]</small> | | ^1 +5 oct | ||
|^1 + | | 621 | ||
|621 | |||
|} | |} | ||
== Approximation to JI == | |||
=== Interval mappings === | |||
The following | The following tables show how [[32-integer-limit]] intervals are represented in 186zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | ||
{| class="wikitable center- | {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | ||
|+ style="white-space: nowrap;" | | |+ style="white-space: nowrap;" | 32-integer-limit intervals in 186zpi (by direct approximation) | ||
|- | |- | ||
!Ratio | ! Ratio | ||
!Error (abs, [[Cent| ¢]]) | ! Error (abs, [[Cent|¢]]) | ||
!Error (rel, [[Relative cent| %]]) | ! Error (rel, [[Relative cent|%]]) | ||
|- | |- | ||
|[[17/13]] | | [[17/13]] | ||
|0.030 | | -0.030 | ||
|0.102 | | -0.102 | ||
|- | |- | ||
|'''[[5/1]]''' | | '''[[5/1]]''' | ||
|'''0.075''' | | '''+0.075''' | ||
|'''0.259''' | | '''+0.259''' | ||
|- | |- | ||
|[[25/17]] | | [[25/17]] | ||
|0.100 | | -0.100 | ||
|0.344 | | -0.344 | ||
|- | |- | ||
|[[25/13]] | | [[25/13]] | ||
|0.129 | | -0.129 | ||
|0.446 | | -0.446 | ||
|- | |- | ||
|[[23/11]] | | [[23/11]] | ||
|0.138 | | +0.138 | ||
|0.477 | | +0.477 | ||
|- | |- | ||
|[[25/1]] | | [[25/1]] | ||
|0.150 | | +0.150 | ||
|0.517 | | +0.517 | ||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+0.155'' | |||
| ''+0.533'' | |||
|- | |- | ||
| | | [[17/5]] | ||
| | | +0.175 | ||
| | | +0.602 | ||
|- | |- | ||
|[[ | | [[13/5]] | ||
|0. | | +0.204 | ||
|0. | | +0.704 | ||
|- | |- | ||
|[[ | | '''[[17/1]]''' | ||
|0. | | '''+0.250''' | ||
|0. | | '''+0.861''' | ||
|- | |- | ||
|'''[[ | | '''[[13/1]]''' | ||
|'''0. | | '''+0.279''' | ||
|'''0. | | '''+0.963''' | ||
|- style="background-color: #cccccc;" | |||
| ''[[9/7]]'' | |||
| ''+0.289'' | |||
| ''+0.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''+0.293'' | |||
| ''+1.011'' | |||
|- | |- | ||
|'''[[ | | '''[[23/1]]''' | ||
|'''0. | | '''-0.621''' | ||
|''' | | '''-2.140''' | ||
|- | |- | ||
| | | [[31/29]] | ||
| +0.641 | |||
| | | +2.209 | ||
| | |||
|- | |- | ||
| | | [[30/29]] | ||
| | | -0.642 | ||
| | | -2.211 | ||
|- | |- | ||
| | | [[23/5]] | ||
| | | -0.696 | ||
| | | -2.399 | ||
|- | |- | ||
|[[ | | [[29/6]] | ||
|0. | | +0.717 | ||
|2. | | +2.470 | ||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-0.736'' | |||
| ''-2.535'' | |||
|- | |- | ||
|[[ | | '''[[11/1]]''' | ||
|0. | | '''-0.760''' | ||
|2. | | '''-2.617''' | ||
|- | |- | ||
|[[23 | | [[25/23]] | ||
|0. | | +0.771 | ||
|2. | | +2.657 | ||
|- | |- | ||
|[[ | | [[11/5]] | ||
|0. | | -0.835 | ||
|2. | | -2.876 | ||
|- | |- | ||
| | | [[23/17]] | ||
| -0.871 | |||
| | | -3.001 | ||
| | |||
|- | |- | ||
| | | [[21/19]] | ||
|'' | | +0.881 | ||
|'' | | +3.037 | ||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''+0.891'' | |||
| ''+3.069'' | |||
|- | |- | ||
|[[ | | [[23/13]] | ||
|0. | | -0.901 | ||
| | | -3.103 | ||
|- | |- | ||
|[[11/5]] | | [[25/11]] | ||
|0. | | +0.910 | ||
| | | +3.135 | ||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''-0.914'' | |||
| ''-3.151'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''-0.990'' | |||
| ''-3.409'' | |||
|- | |- | ||
|[[23/ | | [[17/11]] | ||
| | | +1.009 | ||
|3. | | +3.478 | ||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+1.025'' | |||
| ''+3.531'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/9]]'' | |||
| ''+1.029'' | |||
| ''+3.546'' | |||
|- | |- | ||
|[[ | | [[13/11]] | ||
| | | +1.039 | ||
| | | +3.580 | ||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+1.065'' | |||
| ''+3.668'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+1.164'' | |||
| ''+4.012'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/19]]'' | |||
| ''+1.171'' | |||
| ''+4.033'' | |||
|- | |- | ||
|''[[ | | [[11/7]] | ||
|'' | | +1.180 | ||
|'' | | +4.065 | ||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''+1.194'' | |||
| ''+4.114'' | |||
|- | |- | ||
|[[ | | [[31/30]] | ||
| | | +1.283 | ||
| | | +4.420 | ||
|- | |- | ||
|[[ | | [[23/7]] | ||
| | | +1.318 | ||
| | | +4.542 | ||
|- | |- | ||
| | | [[31/6]] | ||
''[[ | | +1.358 | ||
|'' | | +4.679 | ||
|'' | |- style="background-color: #cccccc;" | ||
| ''[[9/1]]'' | |||
| ''-1.650'' | |||
| ''-5.686'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/5]]'' | |||
| ''-1.725'' | |||
| ''-5.944'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''-1.726'' | |||
| ''-5.947'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/9]]'' | |||
| ''+1.800'' | |||
| ''+6.203'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+1.801'' | |||
| ''+6.205'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''+1.900'' | |||
| ''+6.547'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+1.906'' | |||
| ''+6.568'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/9]]'' | |||
| ''+1.930'' | |||
| ''+6.649'' | |||
|- | |- | ||
| | | '''[[7/1]]''' | ||
''[[ | | '''-1.939''' | ||
|'' | | '''-6.682''' | ||
|'' | |||
|- | |- | ||
|[[ | | [[7/5]] | ||
| | | -2.015 | ||
| | | -6.941 | ||
|- style="background-color: #cccccc;" | |||
| ''[[31/28]]'' | |||
| ''-2.060'' | |||
| ''-7.099'' | |||
|- | |- | ||
| | | [[25/7]] | ||
| +2.090 | |||
| | | +7.199 | ||
| | |||
|- | |- | ||
| | | [[17/7]] | ||
| | | +2.189 | ||
| | | +7.543 | ||
|- | |- | ||
|[[13/ | | [[13/7]] | ||
| | | +2.219 | ||
| | | +7.645 | ||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''+2.607'' | |||
| ''+8.984'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+2.683'' | |||
| ''+9.242'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/28]]'' | |||
| ''-2.702'' | |||
| ''-9.308'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/19]]'' | |||
| ''-2.716'' | |||
| ''-9.356'' | |||
|- | |- | ||
| | | [[19/3]] | ||
| | | -2.821 | ||
| | | -9.719 | ||
|- | |- | ||
|''[[ | | [[19/15]] | ||
|'' | | -2.896 | ||
|''4. | | -9.977 | ||
|- style="background-color: #cccccc;" | |||
| ''[[27/20]]'' | |||
| ''+2.897'' | |||
| ''+9.980'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/4]]'' | |||
| ''+2.972'' | |||
| ''+10.238'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''+3.085'' | |||
| ''+10.630'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/14]]'' | |||
| ''-3.343'' | |||
| ''-11.519'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''+3.418'' | |||
| ''+11.777'' | |||
|- | |- | ||
| | | [[13/6]] | ||
| | | -3.428 | ||
| | | -11.811 | ||
|- | |- | ||
|[[ | | [[17/6]] | ||
| | | -3.458 | ||
| | | -11.913 | ||
|- | |- | ||
| | | [[30/13]] | ||
| | | +3.503 | ||
| | | +12.069 | ||
|- | |- | ||
|[[ | | [[30/17]] | ||
| | | +3.533 | ||
| | | +12.171 | ||
|- | |- | ||
|[[ | | [[25/6]] | ||
| | | -3.557 | ||
| | | -12.256 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-3.597'' | |||
| ''-12.393'' | |||
|- | |- | ||
|[[ | | [[6/5]] | ||
| | | +3.632 | ||
| | | +12.515 | ||
|- | |- | ||
| | | [[6/1]] | ||
''[[ | | +3.708 | ||
|'' | | +12.774 | ||
|'' | |- style="background-color: #cccccc;" | ||
| ''[[32/29]]'' | |||
| ''+3.726'' | |||
| ''+12.839'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/19]]'' | |||
| ''-3.741'' | |||
| ''-12.887'' | |||
|- | |- | ||
| | | [[30/1]] | ||
''[[ | | +3.783 | ||
|'' | | +13.032 | ||
|'' | |- style="background-color: #cccccc;" | ||
| ''[[32/27]]'' | |||
| ''-3.886'' | |||
| ''-13.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/4]]'' | |||
| ''-4.000'' | |||
| ''-13.781'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/20]]'' | |||
| ''-4.075'' | |||
| ''-14.039'' | |||
|- | |- | ||
| | | [[29/13]] | ||
| | | +4.145 | ||
| | | +14.280 | ||
|- | |- | ||
| | | [[29/17]] | ||
| | | +4.174 | ||
| | | +14.382 | ||
|- | |- | ||
| | | [[29/25]] | ||
| | | +4.274 | ||
| | | +14.726 | ||
|- | |- | ||
| | | [[23/6]] | ||
| | | -4.329 | ||
| | | -14.914 | ||
|- | |- | ||
| | | [[12/7]] | ||
| | | -4.333 | ||
| | | -14.928 | ||
|- | |- | ||
|''[[ | | [[29/5]] | ||
|'' | | +4.349 | ||
|'' | | +14.985 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''+4.368'' | |||
| ''+15.050'' | |||
|- | |- | ||
| | | [[30/23]] | ||
| | | +4.404 | ||
| | | +15.172 | ||
|- | |- | ||
| | | '''[[29/1]]''' | ||
[[ | | '''+4.424''' | ||
| | | '''+15.243''' | ||
| | |- style="background-color: #cccccc;" | ||
| ''[[16/3]]'' | |||
| ''+4.443'' | |||
| ''+15.309'' | |||
|- | |- | ||
|''[[ | | [[11/6]] | ||
|'' | | -4.467 | ||
| | | -15.391 | ||
'' | |- style="background-color: #cccccc;" | ||
| ''[[22/15]]'' | |||
| ''+4.523'' | |||
| ''+15.583'' | |||
|- | |- | ||
|[[ | | [[30/11]] | ||
| | | +4.542 | ||
| | | +15.649 | ||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''-4.547'' | |||
| ''-15.666'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/3]]'' | |||
| ''+4.598'' | |||
| ''+15.842'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''-4.622'' | |||
| ''-15.924'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/4]]'' | |||
| ''-4.641'' | |||
| ''-15.990'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''+4.697'' | |||
| ''+16.183'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/20]]'' | |||
| ''-4.716'' | |||
| ''-16.248'' | |||
|- | |- | ||
|[[ | | [[31/13]] | ||
| | | +4.786 | ||
| | | +16.489 | ||
|- | |- | ||
|[[ | | [[31/17]] | ||
| | | +4.816 | ||
| | | +16.591 | ||
|- style="background-color: #cccccc;" | |||
| ''[[28/27]]'' | |||
| ''-4.911'' | |||
| ''-16.920'' | |||
|- | |- | ||
| | | [[31/25]] | ||
| | | +4.915 | ||
| | | +16.935 | ||
|- | |- | ||
| | | [[31/5]] | ||
| | | +4.990 | ||
| | | +17.194 | ||
|- | |- | ||
| | | [[29/23]] | ||
| | | +5.046 | ||
| | | +17.383 | ||
|- | |- | ||
|''[[ | | '''[[31/1]]''' | ||
|'' | | '''+5.066''' | ||
| | | '''+17.452''' | ||
'' | |- style="background-color: #cccccc;" | ||
| ''[[27/14]]'' | |||
| ''-5.069'' | |||
| ''-17.463'' | |||
|- | |- | ||
|[[ | | [[29/11]] | ||
| | | +5.184 | ||
| | | +17.860 | ||
|- style="background-color: #cccccc;" | |||
| ''[[15/2]]'' | |||
| ''-5.283'' | |||
| ''-18.201'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/8]]'' | |||
| ''+5.339'' | |||
| ''+18.394'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''-5.358'' | |||
| ''-18.459'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''+5.433'' | |||
| ''+18.718'' | |||
|- | |- | ||
|[[19/15]] | | [[12/11]] | ||
| | | -5.513 | ||
| | | -18.993 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-5.536'' | |||
| ''-19.075'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/15]]'' | |||
| ''+5.562'' | |||
| ''+19.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-5.612'' | |||
| ''-19.334'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/3]]'' | |||
| ''+5.637'' | |||
| ''+19.422'' | |||
|- | |- | ||
| | | [[7/6]] | ||
| | | -5.647 | ||
| | | -19.456 | ||
|- | |- | ||
| | | [[23/12]] | ||
| | | +5.651 | ||
| | | +19.470 | ||
|- | |- | ||
| | | [[31/23]] | ||
| | | +5.687 | ||
| | | +19.592 | ||
|- | |- | ||
| | | [[30/7]] | ||
| | | +5.722 | ||
| | | +19.714 | ||
|- | |- | ||
| | | [[31/19]] | ||
| | | -5.801 | ||
| | | -19.986 | ||
|- | |- | ||
|[[ | | [[31/11]] | ||
| | | +5.825 | ||
| | | +20.069 | ||
|- style="background-color: #cccccc;" | |||
| ''[[31/8]]'' | |||
| ''+5.980'' | |||
| ''+20.603'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/9]]'' | |||
| ''+6.075'' | |||
| ''+20.929'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''-6.094'' | |||
| ''-20.994'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/14]]'' | |||
| ''-6.239'' | |||
| ''-21.496'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/22]]'' | |||
| ''-6.248'' | |||
| ''-21.528'' | |||
|- | |- | ||
|[[ | | [[12/1]] | ||
| | | -6.272 | ||
| | | -21.610 | ||
|- | |- | ||
|[[ | | [[12/5]] | ||
| | | -6.347 | ||
| | | -21.869 | ||
|- | |- | ||
|[[ | | [[29/7]] | ||
| | | +6.364 | ||
| | | +21.925 | ||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''-6.383'' | |||
| ''-21.991'' | |||
|- | |- | ||
|[[25/ | | [[25/12]] | ||
| | | +6.422 | ||
| | | +22.127 | ||
|- | |- | ||
| | | [[29/19]] | ||
| | | -6.442 | ||
| | | -22.195 | ||
|- | |- | ||
|[[ | | [[17/12]] | ||
| | | +6.522 | ||
| | | +22.471 | ||
|- | |- | ||
|[[6/ | | [[19/18]] | ||
| | | -6.528 | ||
| | | -22.492 | ||
|- style="background-color: #cccccc;" | |||
| ''[[22/21]]'' | |||
| ''+6.538'' | |||
| ''+22.524'' | |||
|- | |- | ||
|''[[ | | [[13/12]] | ||
|'' | | +6.552 | ||
|'' | | +22.573 | ||
|- style="background-color: #cccccc;" | |||
| ''[[28/3]]'' | |||
| ''-6.561'' | |||
| ''-22.606'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/15]]'' | |||
| ''-6.637'' | |||
| ''-22.865'' | |||
|- | |- | ||
|''[[28/ | | [[31/21]] | ||
|'' | | -6.682 | ||
|'' | | -23.023 | ||
|- style="background-color: #cccccc;" | |||
| ''[[31/9]]'' | |||
| ''+6.716'' | |||
| ''+23.138'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/13]]'' | |||
| ''+6.846'' | |||
| ''+23.588'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''+6.876'' | |||
| ''+23.690'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/27]]'' | |||
| ''-6.972'' | |||
| ''-24.019'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/25]]'' | |||
| ''+6.976'' | |||
| ''+24.034'' | |||
|- | |- | ||
|[[ | | [[31/7]] | ||
| | | +7.005 | ||
| | | +24.134 | ||
|- style="background-color: #cccccc;" | |||
| ''[[27/2]]'' | |||
| ''-7.008'' | |||
| ''-24.145'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/5]]'' | |||
| ''+7.051'' | |||
| ''+24.292'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/10]]'' | |||
| ''-7.083'' | |||
| ''-24.404'' | |||
|- | |- | ||
|''[[ | | [[30/19]] | ||
|'' | | -7.084 | ||
|'' | | -24.406 | ||
|- style="background-color: #cccccc;" | |||
| ''[[28/1]]'' | |||
| ''+7.126'' | |||
| ''+24.551'' | |||
|- | |- | ||
|''[[ | | [[19/6]] | ||
|'' | | +7.159 | ||
|'' | | +24.665 | ||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''-7.264'' | |||
| ''-25.027'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/26]]'' | |||
| ''-7.288'' | |||
| ''-25.108'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''-7.297'' | |||
| ''-25.141'' | |||
|- | |- | ||
|''[[31/ | | [[29/21]] | ||
|'' | | -7.324 | ||
|'' | | -25.232 | ||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''-7.372'' | |||
| ''-25.400'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/19]]'' | |||
| ''+7.419'' | |||
| ''+25.561'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/21]]'' | |||
| ''+7.577'' | |||
| ''+26.104'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/27]]'' | |||
| ''-7.613'' | |||
| ''-26.228'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''-7.707'' | |||
| ''-26.554'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/23]]'' | |||
| ''+7.747'' | |||
| ''+26.691'' | |||
|- | |- | ||
|[[ | | [[26/7]] | ||
| | | -7.761 | ||
| | | -26.739 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''+7.871'' | |||
| ''+27.119'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/11]]'' | |||
| ''+7.886'' | |||
| ''+27.168'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''+7.901'' | |||
| ''+27.221'' | |||
|- | |- | ||
|[[ | | [[10/7]] | ||
| | | -7.965 | ||
| | | -27.443 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | |||
| ''+8.001'' | |||
| ''+27.565'' | |||
|- | |- | ||
|[[29/ | | [[7/2]] | ||
| | | +8.040 | ||
| | | +27.702 | ||
|- style="background-color: #cccccc;" | |||
| ''[[26/9]]'' | |||
| ''-8.050'' | |||
| ''-27.735'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | |||
| ''+8.076'' | |||
| ''+27.824'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''+8.151'' | |||
| ''+28.082'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/2]]'' | |||
| ''-8.179'' | |||
| ''-28.178'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''-8.254'' | |||
| ''-28.437'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''-8.254'' | |||
| ''-28.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''+8.329'' | |||
| ''+28.698'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/24]]'' | |||
| ''-8.348'' | |||
| ''-28.763'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/19]]'' | |||
| ''+8.458'' | |||
| ''+29.141'' | |||
|- | |- | ||
|[[ | | [[31/3]] | ||
| | | -8.622 | ||
| | | -29.705 | ||
|- | |- | ||
|[[ | | [[31/15]] | ||
|4. | | -8.697 | ||
| | | -29.964 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''+8.772'' | |||
| ''+30.222'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/9]]'' | |||
| ''+8.776'' | |||
| ''+30.237'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''-8.786'' | |||
| ''-30.270'' | |||
|- | |- | ||
|[[ | | [[22/7]] | ||
|4. | | -8.800 | ||
| | | -30.319 | ||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''-8.815'' | |||
| ''-30.372'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''+8.861'' | |||
| ''+30.529'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''+8.891'' | |||
| ''+30.631'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''+8.910'' | |||
| ''+30.699'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''-8.915'' | |||
| ''-30.716'' | |||
|- | |- | ||
|''[[16/ | | [[26/11]] | ||
|''4. | | -8.941 | ||
|'' | | -30.803 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-8.955'' | |||
| ''-30.852'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''-8.990'' | |||
| ''-30.974'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''+9.065'' | |||
| ''+31.233'' | |||
|- | |- | ||
|[[ | | [[26/23]] | ||
| | | -9.079 | ||
| | | -31.281 | ||
|- style="background-color: #cccccc;" | |||
| ''[[22/9]]'' | |||
| ''-9.089'' | |||
| ''-31.315'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''+9.140'' | |||
| ''+31.492'' | |||
|- | |- | ||
| | | [[11/10]] | ||
| | | +9.145 | ||
| | | +31.508 | ||
|- | |- | ||
|''[[16/ | | [[11/2]] | ||
|'' | | +9.220 | ||
|'' | | +31.766 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-9.244'' | |||
| ''-31.848'' | |||
|- | |- | ||
|[[ | | [[29/3]] | ||
| | | -9.263 | ||
| | | -31.914 | ||
|- | |- | ||
| | | [[23/10]] | ||
| | | +9.284 | ||
| | | +31.985 | ||
|- | |- | ||
|[[ | | [[29/15]] | ||
| | | -9.338 | ||
| | | -32.173 | ||
|- | |- | ||
|''[[ | | [[23/2]] | ||
|'' | | +9.359 | ||
|'' | | +32.243 | ||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''-9.686'' | |||
| ''-33.373'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''-9.691'' | |||
| ''-33.387'' | |||
|- | |- | ||
|''[[ | | [[26/1]] | ||
|'' | | -9.700 | ||
|'' | | -33.421 | ||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''-9.762'' | |||
| ''-33.632'' | |||
|- | |- | ||
| | | [[26/5]] | ||
''[[ | | -9.775 | ||
|''4. | | -33.679 | ||
|'' | |- style="background-color: #cccccc;" | ||
| ''[[32/9]]'' | |||
| ''+9.801'' | |||
| ''+33.768'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''-9.825'' | |||
| ''-33.850'' | |||
|- | |- | ||
|''[[ | | [[26/25]] | ||
|'' | | -9.850 | ||
|'' | | -33.938 | ||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''+9.900'' | |||
| ''+34.109'' | |||
|- | |- | ||
| | | [[10/1]] | ||
| | | -9.905 | ||
| | | -34.125 | ||
|- | |- | ||
| | | [[26/17]] | ||
| | | -9.950 | ||
| | | -34.282 | ||
|- | |- | ||
|[[ | | '''[[2/1]]''' | ||
| | | '''-9.980''' | ||
| | | '''-34.384''' | ||
|- | |- | ||
|[[ | | [[5/2]] | ||
| | | +10.055 | ||
| | | +34.642 | ||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''+10.090'' | |||
| ''+34.764'' | |||
|- | |- | ||
| | | [[23/22]] | ||
| | | +10.118 | ||
| | | +34.861 | ||
|- | |- | ||
|[[ | | [[25/2]] | ||
| | | +10.130 | ||
|16. | | +34.901 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''-10.135'' | |||
| ''-34.917'' | |||
|- | |- | ||
|[[ | | [[17/10]] | ||
| | | +10.155 | ||
| | | +34.986 | ||
|- | |- | ||
|[[ | | [[13/10]] | ||
| | | +10.184 | ||
| | | +35.088 | ||
|- | |- | ||
| | | [[17/2]] | ||
| | | +10.230 | ||
| | | +35.244 | ||
|- | |- | ||
|''[[ | | [[13/2]] | ||
|'' | | +10.259 | ||
|'' | | +35.346 | ||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''-10.269'' | |||
| ''-35.380'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+10.273'' | |||
| ''+35.394'' | |||
|- | |- | ||
|[[ | | [[19/13]] | ||
| | | +10.587 | ||
| | | +36.475 | ||
|- | |- | ||
| | | [[19/17]] | ||
| | | +10.617 | ||
| | | +36.577 | ||
|- | |- | ||
|''[[ | | [[29/12]] | ||
|'' | | +10.697 | ||
|'' | | +36.853 | ||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''-10.716'' | |||
| ''-36.919'' | |||
|- | |- | ||
| | | [[25/19]] | ||
| -10.716 | |||
| | | -36.921 | ||
| | |||
|- | |- | ||
|''[[ | | [[22/1]] | ||
|'' | | -10.739 | ||
|'' | | -37.001 | ||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''+10.791'' | |||
| ''+37.177'' | |||
|- | |- | ||
|[[ | | [[19/5]] | ||
| | | +10.791 | ||
| | | +37.180 | ||
|- | |- | ||
| | | [[22/5]] | ||
| | | -10.814 | ||
| | | -37.259 | ||
|- | |- | ||
|''[[ | | '''[[19/1]]''' | ||
|'' | | '''+10.866''' | ||
|'' | | '''+37.438''' | ||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''-10.870'' | |||
| ''-37.452'' | |||
|- | |- | ||
|''[[ | | [[25/22]] | ||
|''5. | | +10.890 | ||
|'' | | +37.518 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-10.894'' | |||
| ''-37.534'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-10.969'' | |||
| ''-37.793'' | |||
|- | |- | ||
|''[[ | | [[22/17]] | ||
|'' | | -10.989 | ||
| | | -37.862 | ||
'' | |- style="background-color: #cccccc;" | ||
| ''[[7/4]]'' | |||
| ''-11.005'' | |||
| ''-37.915'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/18]]'' | |||
| ''+11.009'' | |||
| ''+37.929'' | |||
|- | |- | ||
|[[7/ | | [[22/13]] | ||
| | | -11.019 | ||
| | | -37.964 | ||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''+11.044'' | |||
| ''+38.052'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''+11.080'' | |||
| ''+38.174'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''+11.144'' | |||
| ''+38.395'' | |||
|- | |- | ||
|[[ | | [[14/11]] | ||
| | | -11.160 | ||
| | | -38.448 | ||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-11.174'' | |||
| ''-38.497'' | |||
|- | |- | ||
|[[ | | [[23/14]] | ||
| | | +11.298 | ||
| | | +38.925 | ||
|- | |- | ||
|[[ | | [[31/12]] | ||
| | | +11.338 | ||
| | | +39.062 | ||
|- | |- | ||
|[[ | | [[21/13]] | ||
| | | +11.468 | ||
| | | +39.512 | ||
|- | |- | ||
|[[ | | [[23/19]] | ||
| | | -11.488 | ||
| | | -39.579 | ||
|- | |- | ||
| | | [[21/17]] | ||
| | | +11.498 | ||
| | | +39.614 | ||
|- | |- | ||
| | | [[25/21]] | ||
| | | -11.598 | ||
| | | -39.958 | ||
|- | |- | ||
|''[[ | | [[19/11]] | ||
|'' | | +11.626 | ||
|'' | | +40.056 | ||
|- style="background-color: #cccccc;" | |||
| ''[[18/1]]'' | |||
| ''-11.630'' | |||
| ''-40.069'' | |||
|- | |- | ||
|''[[ | | [[21/5]] | ||
|'' | | +11.673 | ||
|'' | | +40.216 | ||
|- style="background-color: #cccccc;" | |||
| ''[[18/5]]'' | |||
| ''-11.705'' | |||
| ''-40.328'' | |||
|- | |- | ||
|''[[27/ | | [[21/1]] | ||
|'' | | +11.748 | ||
|'' | | +40.475 | ||
|- style="background-color: #cccccc;" | |||
| ''[[27/13]]'' | |||
| ''+11.758'' | |||
| ''+40.508'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/18]]'' | |||
| ''+11.780'' | |||
| ''+40.587'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''+11.781'' | |||
| ''+40.589'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/17]]'' | |||
| ''+11.787'' | |||
| ''+40.610'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''-11.880'' | |||
| ''-40.930'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''-11.886'' | |||
| ''-40.952'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/25]]'' | |||
| ''+11.887'' | |||
| ''+40.954'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/13]]'' | |||
| ''-11.910'' | |||
| ''-41.032'' | |||
|- | |- | ||
|[[ | | [[14/1]] | ||
| | | -11.919 | ||
| | | -41.066 | ||
|- style="background-color: #cccccc;" | |||
| ''[[27/5]]'' | |||
| ''+11.962'' | |||
| ''+41.213'' | |||
|- | |- | ||
|[[12/ | | [[14/5]] | ||
| | | -11.994 | ||
| | | -41.324 | ||
|- style="background-color: #cccccc;" | |||
| ''[[27/1]]'' | |||
| ''+12.037'' | |||
| ''+41.471'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/14]]'' | |||
| ''-12.040'' | |||
| ''-41.482'' | |||
|- | |- | ||
|[[ | | [[25/14]] | ||
| | | +12.069 | ||
| | | +41.583 | ||
|- | |- | ||
| | | [[17/14]] | ||
| | | +12.169 | ||
| | | +41.926 | ||
|- | |- | ||
|[[ | | [[14/13]] | ||
| | | -12.199 | ||
| | | -42.028 | ||
|- | |- | ||
|[[ | | [[31/18]] | ||
| | | -12.329 | ||
| | | -42.478 | ||
|- | |- | ||
|[[ | | [[23/21]] | ||
| | | -12.369 | ||
| | | -42.615 | ||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+12.493'' | |||
| ''+43.044'' | |||
|- | |- | ||
|[[19/ | | [[21/11]] | ||
| | | +12.507 | ||
| | | +43.092 | ||
|- style="background-color: #cccccc;" | |||
| ''[[19/9]]'' | |||
| ''+12.517'' | |||
| ''+43.124'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''+12.523'' | |||
| ''+43.146'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''-12.623'' | |||
| ''-43.489'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/23]]'' | |||
| ''+12.658'' | |||
| ''+43.611'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''+12.662'' | |||
| ''+43.626'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/14]]'' | |||
| ''-12.681'' | |||
| ''-43.691'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''+12.698'' | |||
| ''+43.748'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+12.773'' | |||
| ''+44.006'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/11]]'' | |||
| ''+12.797'' | |||
| ''+44.089'' | |||
|- | |- | ||
|''[[ | | [[19/7]] | ||
|'' | | +12.806 | ||
|'' | | +44.120 | ||
|- style="background-color: #cccccc;" | |||
| ''[[27/8]]'' | |||
| ''+12.951'' | |||
| ''+44.622'' | |||
|- | |- | ||
|[[ | | [[29/18]] | ||
| | | -12.970 | ||
|22. | | -44.687 | ||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''-13.065'' | |||
| ''-45.014'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/22]]'' | |||
| ''-13.220'' | |||
| ''-45.547'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/7]]'' | |||
| ''-13.323'' | |||
| ''-45.902'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''+13.394'' | |||
| ''+46.147'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/3]]'' | |||
| ''+13.398'' | |||
| ''+46.161'' | |||
|- | |- | ||
| | | [[13/3]] | ||
| | | -13.408 | ||
| | | -46.194 | ||
|- | |- | ||
| | | [[17/3]] | ||
| | | -13.437 | ||
| | | -46.296 | ||
|- | |- | ||
|[[ | | [[15/13]] | ||
| | | +13.483 | ||
| | | +46.453 | ||
|- | |- | ||
|''[[ | | [[17/15]] | ||
|'' | | -13.513 | ||
|'' | | -46.555 | ||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''+13.532'' | |||
| ''+46.624'' | |||
|- | |- | ||
| | | [[25/3]] | ||
| | | -13.537 | ||
| | | -46.640 | ||
|- | |- | ||
| | | [[5/3]] | ||
| | | -13.612 | ||
| | | -46.898 | ||
|- | |- | ||
|''[[ | | '''[[3/1]]''' | ||
|'' | | '''+13.687''' | ||
|'' | | '''+47.157''' | ||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''-13.706'' | |||
| ''-47.223'' | |||
|- | |- | ||
|''[[ | | [[15/1]] | ||
|'' | | +13.762 | ||
|'' | | +47.416 | ||
|- style="background-color: #cccccc;" | |||
| ''[[29/22]]'' | |||
| ''-13.861'' | |||
| ''-47.756'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/7]]'' | |||
| ''+13.976'' | |||
| ''+48.153'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/2]]'' | |||
| ''-13.980'' | |||
| ''-48.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/10]]'' | |||
| ''-14.055'' | |||
| ''-48.423'' | |||
|- | |- | ||
|[[31/ | | [[29/26]] | ||
| | | +14.125 | ||
| | | +48.664 | ||
|- style="background-color: #cccccc;" | |||
| ''[[31/26]]'' | |||
| ''-14.259'' | |||
| ''-49.127'' | |||
|- | |- | ||
| | | [[23/3]] | ||
| | | -14.308 | ||
| | | -49.297 | ||
|- | |- | ||
| | | [[24/7]] | ||
| | | -14.313 | ||
| | | -49.312 | ||
|- | |- | ||
|''[[ | | [[29/10]] | ||
|'' | | +14.329 | ||
|'' | | +49.368 | ||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-14.348'' | |||
| ''-49.434'' | |||
|- | |- | ||
|[[ | | [[23/15]] | ||
| | | -14.384 | ||
| | | -49.556 | ||
|- | |- | ||
|''[[ | | [[29/2]] | ||
|'' | | +14.404 | ||
|'' | | +49.627 | ||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+14.423'' | |||
| ''+49.692'' | |||
|- | |- | ||
|[[ | | [[11/3]] | ||
| -14.447 | |||
| -49.774 | |||
|- | |- style="background-color: #cccccc;" | ||
| ''[[15/11]]'' | |||
| ''-14.503'' | |||
| ''-49.967'' | |||
|- | |} | ||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 32-integer-limit intervals in 186zpi (by patent val mapping) | |||
|- | |||
|''[[ | |||
|'' | |||
|'' | |||
| | |||
|- | |||
| | |||
| | |||
|- | |- | ||
! Ratio | |||
| | ! Error (abs, [[Cent|¢]]) | ||
! Error (rel, [[Relative cent|%]]) | |||
|- | |- | ||
| | | [[17/13]] | ||
| | | -0.030 | ||
| | | -0.102 | ||
|- | |- | ||
|''[[ | | '''[[5/1]]''' | ||
|'' | | '''+0.075''' | ||
|'' | | '''+0.259''' | ||
|- | |- | ||
| | | [[25/17]] | ||
| | | -0.100 | ||
| | | -0.344 | ||
|- | |- | ||
| | | [[25/13]] | ||
| | | -0.129 | ||
| | | -0.446 | ||
|- | |- | ||
| | | [[23/11]] | ||
| | | +0.138 | ||
| | | +0.477 | ||
|- | |- | ||
| | | [[25/1]] | ||
| | | +0.150 | ||
| | | +0.517 | ||
|- | |- | ||
| | | [[17/5]] | ||
| +0.175 | |||
| | | +0.602 | ||
| | |||
|- | |- | ||
| | | [[13/5]] | ||
| | | +0.204 | ||
| | | +0.704 | ||
|- | |- | ||
|''[[ | | '''[[17/1]]''' | ||
|'' | | '''+0.250''' | ||
|'' | | '''+0.861''' | ||
|- | |- | ||
|[[ | | '''[[13/1]]''' | ||
| | | '''+0.279''' | ||
| | | '''+0.963''' | ||
|- | |- | ||
|[[ | | '''[[23/1]]''' | ||
| | | '''-0.621''' | ||
| | | '''-2.140''' | ||
|- | |- | ||
| | | [[31/29]] | ||
| | | +0.641 | ||
| | | +2.209 | ||
|- | |- | ||
| | | [[30/29]] | ||
| | | -0.642 | ||
| | | -2.211 | ||
|- | |- | ||
| | | [[23/5]] | ||
| | | -0.696 | ||
| | | -2.399 | ||
|- | |- | ||
|[[ | | [[29/6]] | ||
| | | +0.717 | ||
| | | +2.470 | ||
|- | |- | ||
|''[[ | | '''[[11/1]]''' | ||
|'' | | '''-0.760''' | ||
|'' | | '''-2.617''' | ||
|- | |- | ||
| | | [[25/23]] | ||
| | | +0.771 | ||
| | | +2.657 | ||
|- | |- | ||
| | | [[11/5]] | ||
| | | -0.835 | ||
| | | -2.876 | ||
|- | |- | ||
| | | [[23/17]] | ||
| | | -0.871 | ||
| | | -3.001 | ||
|- | |- | ||
| | | [[21/19]] | ||
| | | +0.881 | ||
| | | +3.037 | ||
|- | |- | ||
|[[ | | [[23/13]] | ||
| | | -0.901 | ||
| | | -3.103 | ||
|- | |- | ||
| | | [[25/11]] | ||
| | | +0.910 | ||
| | | +3.135 | ||
|- | |- | ||
| | | [[17/11]] | ||
| +1.009 | |||
| | | +3.478 | ||
| | |||
|- | |- | ||
| | | [[13/11]] | ||
| +1.039 | |||
| | | +3.580 | ||
| | |||
|- | |- | ||
|[[ | | [[11/7]] | ||
| | | +1.180 | ||
| | | +4.065 | ||
|- | |- | ||
| | | [[31/30]] | ||
| | | +1.283 | ||
| | | +4.420 | ||
|- | |- | ||
| | | [[23/7]] | ||
| | | +1.318 | ||
| | | +4.542 | ||
|- | |- | ||
|[[ | | [[31/6]] | ||
| | | +1.358 | ||
| | | +4.679 | ||
|- | |- | ||
|[[ | | '''[[7/1]]''' | ||
| | | '''-1.939''' | ||
| | | '''-6.682''' | ||
|- | |- | ||
| | | [[7/5]] | ||
| | | -2.015 | ||
| | | -6.941 | ||
|- | |- | ||
|[[ | | [[25/7]] | ||
| | | +2.090 | ||
| | | +7.199 | ||
|- | |- | ||
|[[ | | [[17/7]] | ||
| | | +2.189 | ||
| | | +7.543 | ||
|- | |- | ||
|[[ | | [[13/7]] | ||
| | | +2.219 | ||
| | | +7.645 | ||
|- | |- | ||
|[[ | | [[19/3]] | ||
| | | -2.821 | ||
| | | -9.719 | ||
|- | |- | ||
| | | [[19/15]] | ||
| | | -2.896 | ||
| | | -9.977 | ||
|- | |- | ||
| | | [[13/6]] | ||
| | | -3.428 | ||
| | | -11.811 | ||
|- | |- | ||
|[[ | | [[17/6]] | ||
| | | -3.458 | ||
| | | -11.913 | ||
|- | |- | ||
| | | [[30/13]] | ||
| | | +3.503 | ||
| | | +12.069 | ||
|- | |- | ||
|[[ | | [[30/17]] | ||
| | | +3.533 | ||
| | | +12.171 | ||
|- | |- | ||
| | | [[25/6]] | ||
| | | -3.557 | ||
| | | -12.256 | ||
|- | |- | ||
| | | [[6/5]] | ||
| | | +3.632 | ||
| | | +12.515 | ||
|- | |- | ||
|[[ | | [[6/1]] | ||
| | | +3.708 | ||
| | | +12.774 | ||
|- | |- | ||
| | | [[30/1]] | ||
| | | +3.783 | ||
| | | +13.032 | ||
|- | |- | ||
|[[ | | [[29/13]] | ||
| | | +4.145 | ||
| | | +14.280 | ||
|- | |- | ||
|[[ | | [[29/17]] | ||
| | | +4.174 | ||
| | | +14.382 | ||
|- | |- | ||
| | | [[29/25]] | ||
| | | +4.274 | ||
| | | +14.726 | ||
|- | |- | ||
|[[ | | [[23/6]] | ||
| | | -4.329 | ||
| | | -14.914 | ||
|- | |- | ||
| | | [[12/7]] | ||
| | | -4.333 | ||
| -14.928 | |||
| | |||
|- | |- | ||
|[[ | | [[29/5]] | ||
| | | +4.349 | ||
| | | +14.985 | ||
|- | |- | ||
|[[ | | [[30/23]] | ||
| | | +4.404 | ||
| | | +15.172 | ||
|- | |- | ||
|''[[ | | '''[[29/1]]''' | ||
| | | '''+4.424''' | ||
'' | | '''+15.243''' | ||
|'' | |||
|- | |- | ||
|[[ | | [[11/6]] | ||
| | | -4.467 | ||
| | | -15.391 | ||
|- | |- | ||
|[[ | | [[30/11]] | ||
| | | +4.542 | ||
| | | +15.649 | ||
|- | |- | ||
|[[ | | [[31/13]] | ||
| | | +4.786 | ||
| | | +16.489 | ||
|- | |- | ||
|[[ | | [[31/17]] | ||
| | | +4.816 | ||
| | | +16.591 | ||
|- | |- | ||
| | | [[31/25]] | ||
| | | +4.915 | ||
| +16.935 | |||
| | |||
|- | |- | ||
| | | [[31/5]] | ||
| | | +4.990 | ||
| +17.194 | |||
| | |||
|- | |- | ||
|[[ | | [[29/23]] | ||
| | | +5.046 | ||
| | | +17.383 | ||
|- | |- | ||
|[[ | | '''[[31/1]]''' | ||
| | | '''+5.066''' | ||
| | | '''+17.452''' | ||
|- | |- | ||
|[[29/ | | [[29/11]] | ||
| | | +5.184 | ||
| | | +17.860 | ||
|- | |- | ||
| | | [[12/11]] | ||
| | | -5.513 | ||
| -18.993 | |||
| | |||
|- | |- | ||
|[[ | | [[7/6]] | ||
| | | -5.647 | ||
| | | -19.456 | ||
|- | |- | ||
|[[ | | [[23/12]] | ||
| | | +5.651 | ||
| | | +19.470 | ||
|- | |- | ||
| | | [[31/23]] | ||
| | | +5.687 | ||
| +19.592 | |||
| | |||
|- | |- | ||
|[[ | | [[30/7]] | ||
| | | +5.722 | ||
| | | +19.714 | ||
|- | |- | ||
|[[ | | [[31/19]] | ||
| | | -5.801 | ||
| | | -19.986 | ||
|- | |- | ||
| | | [[31/11]] | ||
| | | +5.825 | ||
| | | +20.069 | ||
|- | |- | ||
| | | [[12/1]] | ||
| | | -6.272 | ||
| -21.610 | |||
| | |||
|- | |- | ||
|[[ | | [[12/5]] | ||
| | | -6.347 | ||
| | | -21.869 | ||
|- | |- | ||
| | | [[29/7]] | ||
| | | +6.364 | ||
| +21.925 | |||
| | |||
|- | |- | ||
| | | [[25/12]] | ||
| | | +6.422 | ||
| +22.127 | |||
| | |||
|- | |- | ||
|[[ | | [[29/19]] | ||
| | | -6.442 | ||
| | | -22.195 | ||
|- | |- | ||
| | | [[17/12]] | ||
| | | +6.522 | ||
| +22.471 | |||
| | |||
|- | |- | ||
| | | [[19/18]] | ||
| | | -6.528 | ||
| -22.492 | |||
| | |||
|- | |- | ||
|[[ | | [[13/12]] | ||
| | | +6.552 | ||
| | | +22.573 | ||
|- | |- | ||
| | | [[31/21]] | ||
| | | -6.682 | ||
| -23.023 | |||
| | |||
|- | |- | ||
| | | [[31/7]] | ||
| | | +7.005 | ||
| +24.134 | |||
| | |||
|- | |- | ||
| | | [[30/19]] | ||
| | | -7.084 | ||
| -24.406 | |||
| | |||
|- | |- | ||
|[[ | | [[19/6]] | ||
| | | +7.159 | ||
| | | +24.665 | ||
|- | |- | ||
| | | [[29/21]] | ||
| | | -7.324 | ||
| -25.232 | |||
| | |||
|- | |- | ||
|[[ | | [[26/7]] | ||
| | | -7.761 | ||
| | | -26.739 | ||
|- | |- | ||
|[[ | | [[10/7]] | ||
| | | -7.965 | ||
| | | -27.443 | ||
|- | |- | ||
|[[ | | [[7/2]] | ||
| | | +8.040 | ||
| | | +27.702 | ||
|- | |- | ||
|[[ | | [[31/3]] | ||
| | | -8.622 | ||
| | | -29.705 | ||
|- | |- | ||
|[[ | | [[31/15]] | ||
| | | -8.697 | ||
| | | -29.964 | ||
|- | |- | ||
|[[ | | [[22/7]] | ||
| | | -8.800 | ||
| | | -30.319 | ||
|- | |- | ||
|[[ | | [[26/11]] | ||
| | | -8.941 | ||
| | | -30.803 | ||
|- | |- | ||
| | | [[26/23]] | ||
| | | -9.079 | ||
| -31.281 | |||
| | |||
|- | |- | ||
|[[ | | [[11/10]] | ||
| | | +9.145 | ||
| | | +31.508 | ||
|- | |- | ||
| | | [[11/2]] | ||
| | | +9.220 | ||
| +31.766 | |||
| | |||
|- | |- | ||
|[[ | | [[29/3]] | ||
| | | -9.263 | ||
| | | -31.914 | ||
|- | |- | ||
| | | [[23/10]] | ||
| | | +9.284 | ||
| +31.985 | |||
| | |||
|- | |- | ||
| | | [[29/15]] | ||
| | | -9.338 | ||
| -32.173 | |||
| | |||
|- | |- | ||
| | | [[23/2]] | ||
| | | +9.359 | ||
| +32.243 | |||
| | |||
|- | |- | ||
| | | [[26/1]] | ||
| | | -9.700 | ||
| -33.421 | |||
| | |||
|- | |- | ||
| | | [[26/5]] | ||
| | | -9.775 | ||
| -33.679 | |||
| | |||
|- | |- | ||
| | | [[26/25]] | ||
| | | -9.850 | ||
| -33.938 | |||
| | |||
|- | |- | ||
| | | [[10/1]] | ||
| | | -9.905 | ||
| -34.125 | |||
| | |||
|- | |- | ||
| | | [[26/17]] | ||
| | | -9.950 | ||
| -34.282 | |||
| | |||
|- | |- | ||
|[[ | | '''[[2/1]]''' | ||
| | | '''-9.980''' | ||
| | | '''-34.384''' | ||
|- | |- | ||
| | | [[5/2]] | ||
| | | +10.055 | ||
| +34.642 | |||
| | |||
|- | |- | ||
|[[ | | [[23/22]] | ||
| | | +10.118 | ||
| | | +34.861 | ||
|- | |- | ||
| | | [[25/2]] | ||
| | | +10.130 | ||
| +34.901 | |||
| | |||
|- | |- | ||
| | | [[17/10]] | ||
| | | +10.155 | ||
| +34.986 | |||
| | |||
|- | |- | ||
|[[ | | [[13/10]] | ||
| | | +10.184 | ||
| | | +35.088 | ||
|- | |- | ||
|[[17/ | | [[17/2]] | ||
| | | +10.230 | ||
| | | +35.244 | ||
|- | |- | ||
|[[ | | [[13/2]] | ||
| | | +10.259 | ||
| | | +35.346 | ||
|- | |- | ||
|[[ | | [[19/13]] | ||
| | | +10.587 | ||
| | | +36.475 | ||
|- | |- | ||
|[[ | | [[19/17]] | ||
| | | +10.617 | ||
| | | +36.577 | ||
|- | |- | ||
| | | [[29/12]] | ||
| | | +10.697 | ||
| +36.853 | |||
| | |||
|- | |- | ||
|[[ | | [[25/19]] | ||
| | | -10.716 | ||
| | | -36.921 | ||
|- | |- | ||
| | | [[22/1]] | ||
| | | -10.739 | ||
| -37.001 | |||
| | |||
|- | |- | ||
| | | [[19/5]] | ||
| | | +10.791 | ||
| +37.180 | |||
| | |||
|- | |- | ||
| | | [[22/5]] | ||
| | | -10.814 | ||
| -37.259 | |||
| | |||
|- | |- | ||
|''[[ | | '''[[19/1]]''' | ||
| | | '''+10.866''' | ||
'' | | '''+37.438''' | ||
|'' | |||
|- | |- | ||
| | | [[25/22]] | ||
| | | +10.890 | ||
| +37.518 | |||
| | |||
|- | |- | ||
| | | [[22/17]] | ||
| | | -10.989 | ||
| -37.862 | |||
| | |||
|- | |- | ||
| | | [[22/13]] | ||
| | | -11.019 | ||
| -37.964 | |||
| | |||
|- | |- | ||
| | | [[14/11]] | ||
| | | -11.160 | ||
| -38.448 | |||
| | |||
|- | |- | ||
| | | [[23/14]] | ||
| | | +11.298 | ||
| +38.925 | |||
| | |||
|- | |- | ||
|[[ | | [[31/12]] | ||
| | | +11.338 | ||
| | | +39.062 | ||
|- | |- | ||
| | | [[21/13]] | ||
| | | +11.468 | ||
| +39.512 | |||
| | |||
|- | |- | ||
|[[ | | [[23/19]] | ||
| | | -11.488 | ||
| | | -39.579 | ||
|- | |- | ||
| | | [[21/17]] | ||
| | | +11.498 | ||
| +39.614 | |||
| | |||
|- | |- | ||
| | | [[25/21]] | ||
| | | -11.598 | ||
| -39.958 | |||
| | |||
|- | |- | ||
| | | [[19/11]] | ||
| | | +11.626 | ||
| +40.056 | |||
| | |||
|- | |- | ||
| | | [[21/5]] | ||
| | | +11.673 | ||
| +40.216 | |||
| | |||
|- | |- | ||
| | | [[21/1]] | ||
| | | +11.748 | ||
| +40.475 | |||
| | |||
|- | |- | ||
|[[ | | [[14/1]] | ||
| | | -11.919 | ||
| | | -41.066 | ||
|- | |- | ||
|[[ | | [[14/5]] | ||
| | | -11.994 | ||
| | | -41.324 | ||
|- | |- | ||
|[[ | | [[25/14]] | ||
| | | +12.069 | ||
| | | +41.583 | ||
|- | |- | ||
|[[17/ | | [[17/14]] | ||
| | | +12.169 | ||
| | | +41.926 | ||
|- | |- | ||
| | | [[14/13]] | ||
| | | -12.199 | ||
| -42.028 | |||
| | |||
|- | |- | ||
|[[ | | [[31/18]] | ||
| | | -12.329 | ||
| | | -42.478 | ||
|- | |- | ||
|[[ | | [[23/21]] | ||
| | | -12.369 | ||
| | | -42.615 | ||
|- | |- | ||
| | | [[21/11]] | ||
| | | +12.507 | ||
| | | +43.092 | ||
|- | |- | ||
| | | [[19/7]] | ||
| | | +12.806 | ||
| +44.120 | |||
| | |||
|- | |- | ||
|[[ | | [[29/18]] | ||
| | | -12.970 | ||
| | | -44.687 | ||
|- | |- | ||
| | | [[13/3]] | ||
| | | -13.408 | ||
| -46.194 | |||
| | |||
|- | |- | ||
| | | [[17/3]] | ||
| | | -13.437 | ||
| -46.296 | |||
| | |||
|- | |- | ||
| | | [[15/13]] | ||
| | | +13.483 | ||
| +46.453 | |||
| | |||
|- | |- | ||
| | | [[17/15]] | ||
| | | -13.513 | ||
| -46.555 | |||
| | |||
|- | |- | ||
|[[ | | [[25/3]] | ||
| | | -13.537 | ||
| | | -46.640 | ||
|- | |- | ||
| | | [[5/3]] | ||
| | | -13.612 | ||
| -46.898 | |||
| | |||
|- | |- | ||
|[[ | | '''[[3/1]]''' | ||
| | | '''+13.687''' | ||
| | | '''+47.157''' | ||
|- | |- | ||
|[[ | | [[15/1]] | ||
| | | +13.762 | ||
| | | +47.416 | ||
|- | |- | ||
|[[29/ | | [[29/26]] | ||
|14. | | +14.125 | ||
| | | +48.664 | ||
|- | |- | ||
| | | [[23/3]] | ||
| | | -14.308 | ||
| -49.297 | |||
| | |||
|- | |- | ||
|[[ | | [[24/7]] | ||
|14. | | -14.313 | ||
|49. | | -49.312 | ||
|- | |- | ||
|[[29/ | | [[29/10]] | ||
|14. | | +14.329 | ||
|49. | | +49.368 | ||
|- | |- | ||
| | | [[23/15]] | ||
| | | -14.384 | ||
| -49.556 | |||
| | |||
|- | |- | ||
|[[ | | [[29/2]] | ||
|14. | | +14.404 | ||
|49. | | +49.627 | ||
|- | |- | ||
|''[[15/11]]'' | | [[11/3]] | ||
| | | -14.447 | ||
''14. | | -49.774 | ||
|''49.967'' | |- style="background-color: #cccccc;" | ||
| ''[[15/11]]'' | |||
| ''+14.522'' | |||
| ''+50.033'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/26]]'' | |||
| ''+14.766'' | |||
| ''+50.873'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/10]]'' | |||
| ''+14.970'' | |||
| ''+51.577'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/2]]'' | |||
| ''+15.045'' | |||
| ''+51.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/22]]'' | |||
| ''+15.164'' | |||
| ''+52.244'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''-15.492'' | |||
| ''-53.376'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/3]]'' | |||
| ''-15.627'' | |||
| ''-53.839'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''-15.631'' | |||
| ''-53.853'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/7]]'' | |||
| ''+15.702'' | |||
| ''+54.098'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/22]]'' | |||
| ''+15.805'' | |||
| ''+54.453'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''-16.252'' | |||
| ''-55.994'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''-16.327'' | |||
| ''-56.252'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/14]]'' | |||
| ''+16.344'' | |||
| ''+56.309'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''+16.402'' | |||
| ''+56.511'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-16.502'' | |||
| ''-56.854'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/9]]'' | |||
| ''-16.508'' | |||
| ''-56.876'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''-16.532'' | |||
| ''-56.956'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/14]]'' | |||
| ''+16.985'' | |||
| ''+58.518'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/13]]'' | |||
| ''+17.115'' | |||
| ''+58.968'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''+17.139'' | |||
| ''+59.048'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''+17.145'' | |||
| ''+59.070'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/18]]'' | |||
| ''-17.245'' | |||
| ''-59.413'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/5]]'' | |||
| ''+17.320'' | |||
| ''+59.672'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/1]]'' | |||
| ''+17.395'' | |||
| ''+59.931'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''-17.945'' | |||
| ''-61.826'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/18]]'' | |||
| ''-18.016'' | |||
| ''-62.071'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''+18.020'' | |||
| ''+62.085'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''+18.154'' | |||
| ''+62.548'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''-19.125'' | |||
| ''-65.891'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''+19.200'' | |||
| ''+66.150'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''+19.263'' | |||
| ''+66.368'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''+19.334'' | |||
| ''+66.613'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''+19.338'' | |||
| ''+66.627'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''-19.884'' | |||
| ''-68.508'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''-19.960'' | |||
| ''-68.767'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''+20.035'' | |||
| ''+69.026'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''+20.110'' | |||
| ''+69.284'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''-20.134'' | |||
| ''-69.369'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''-20.164'' | |||
| ''-69.471'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''+20.209'' | |||
| ''+69.628'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''+20.239'' | |||
| ''+69.730'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/19]]'' | |||
| ''-20.567'' | |||
| ''-70.859'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/24]]'' | |||
| ''+20.676'' | |||
| ''+71.237'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''+20.771'' | |||
| ''+71.563'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/2]]'' | |||
| ''+20.846'' | |||
| ''+71.822'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/11]]'' | |||
| ''-21.139'' | |||
| ''-72.832'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/23]]'' | |||
| ''-21.278'' | |||
| ''-73.309'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''+21.318'' | |||
| ''+73.446'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/21]]'' | |||
| ''-21.448'' | |||
| ''-73.896'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/19]]'' | |||
| ''-21.606'' | |||
| ''-74.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''+21.653'' | |||
| ''+74.600'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''+21.728'' | |||
| ''+74.859'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/1]]'' | |||
| ''-21.899'' | |||
| ''-75.449'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/5]]'' | |||
| ''-21.974'' | |||
| ''-75.708'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/25]]'' | |||
| ''-22.049'' | |||
| ''-75.966'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''-22.149'' | |||
| ''-76.310'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/13]]'' | |||
| ''-22.178'' | |||
| ''-76.412'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/9]]'' | |||
| ''-22.309'' | |||
| ''-76.862'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/21]]'' | |||
| ''-22.487'' | |||
| ''-77.476'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/14]]'' | |||
| ''+22.786'' | |||
| ''+78.504'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/9]]'' | |||
| ''-22.950'' | |||
| ''-79.071'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/3]]'' | |||
| ''-23.388'' | |||
| ''-80.578'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/15]]'' | |||
| ''-23.463'' | |||
| ''-80.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''-23.592'' | |||
| ''-81.282'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''+23.667'' | |||
| ''+81.541'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/2]]'' | |||
| ''+23.742'' | |||
| ''+81.799'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/20]]'' | |||
| ''+24.309'' | |||
| ''+83.752'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/4]]'' | |||
| ''+24.384'' | |||
| ''+84.010'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/3]]'' | |||
| ''-24.427'' | |||
| ''-84.158'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/15]]'' | |||
| ''-24.502'' | |||
| ''-84.417'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/20]]'' | |||
| ''+24.950'' | |||
| ''+85.961'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/4]]'' | |||
| ''+25.025'' | |||
| ''+86.219'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''-25.607'' | |||
| ''-88.223'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/14]]'' | |||
| ''+25.682'' | |||
| ''+88.481'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/28]]'' | |||
| ''+26.323'' | |||
| ''+90.692'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/28]]'' | |||
| ''+26.965'' | |||
| ''+92.901'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/9]]'' | |||
| ''-27.095'' | |||
| ''-93.351'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''-27.119'' | |||
| ''-93.432'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''-27.125'' | |||
| ''-93.453'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/9]]'' | |||
| ''-27.224'' | |||
| ''-93.797'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/5]]'' | |||
| ''+27.300'' | |||
| ''+94.056'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/1]]'' | |||
| ''+27.375'' | |||
| ''+94.314'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/9]]'' | |||
| ''-27.996'' | |||
| ''-96.454'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''-28.000'' | |||
| ''-96.469'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''-28.134'' | |||
| ''-96.931'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+29.180'' | |||
| ''+100.533'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/7]]'' | |||
| ''+29.314'' | |||
| ''+100.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''+29.318'' | |||
| ''+101.011'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''-29.939'' | |||
| ''-103.151'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''-30.014'' | |||
| ''-103.409'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+30.090'' | |||
| ''+103.668'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+30.189'' | |||
| ''+104.012'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/19]]'' | |||
| ''+30.195'' | |||
| ''+104.033'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''+30.219'' | |||
| ''+104.114'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''-30.751'' | |||
| ''-105.947'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+30.826'' | |||
| ''+106.205'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''+31.632'' | |||
| ''+108.984'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+31.707'' | |||
| ''+109.242'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/19]]'' | |||
| ''-32.765'' | |||
| ''-112.887'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''-33.572'' | |||
| ''-115.666'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''-33.647'' | |||
| ''-115.924'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''+33.722'' | |||
| ''+116.183'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/8]]'' | |||
| ''+34.364'' | |||
| ''+118.394'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/8]]'' | |||
| ''+35.005'' | |||
| ''+120.603'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/3]]'' | |||
| ''-35.586'' | |||
| ''-122.606'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/15]]'' | |||
| ''-35.661'' | |||
| ''-122.865'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/27]]'' | |||
| ''-35.996'' | |||
| ''-124.019'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/27]]'' | |||
| ''-36.638'' | |||
| ''-126.228'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/9]]'' | |||
| ''-37.075'' | |||
| ''-127.735'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''-37.279'' | |||
| ''-128.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''+37.354'' | |||
| ''+128.698'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-37.980'' | |||
| ''-130.852'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/9]]'' | |||
| ''-38.114'' | |||
| ''-131.315'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''-39.160'' | |||
| ''-134.917'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''-39.294'' | |||
| ''-135.380'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+39.298'' | |||
| ''+135.394'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-39.919'' | |||
| ''-137.534'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-39.994'' | |||
| ''-137.793'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''+40.069'' | |||
| ''+138.052'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''+40.169'' | |||
| ''+138.395'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-40.199'' | |||
| ''-138.497'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/13]]'' | |||
| ''+40.782'' | |||
| ''+140.508'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''+40.806'' | |||
| ''+140.589'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/17]]'' | |||
| ''+40.812'' | |||
| ''+140.610'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/25]]'' | |||
| ''+40.912'' | |||
| ''+140.954'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/5]]'' | |||
| ''+40.987'' | |||
| ''+141.213'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/1]]'' | |||
| ''+41.062'' | |||
| ''+141.471'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/23]]'' | |||
| ''+41.683'' | |||
| ''+143.611'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''+41.687'' | |||
| ''+143.626'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/11]]'' | |||
| ''+41.822'' | |||
| ''+144.089'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/7]]'' | |||
| ''+43.001'' | |||
| ''+148.153'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''-43.627'' | |||
| ''-150.308'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''+43.702'' | |||
| ''+150.566'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''+44.343'' | |||
| ''+152.777'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''+44.985'' | |||
| ''+154.986'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''-47.259'' | |||
| ''-162.823'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''+47.334'' | |||
| ''+163.081'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''-47.959'' | |||
| ''-165.236'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''-49.139'' | |||
| ''-169.301'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/9]]'' | |||
| ''-49.274'' | |||
| ''-169.763'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''-49.278'' | |||
| ''-169.778'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''-49.899'' | |||
| ''-171.918'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | |||
| ''-49.974'' | |||
| ''-172.176'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | |||
| ''-50.049'' | |||
| ''-172.435'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''-50.149'' | |||
| ''-172.779'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''-50.178'' | |||
| ''-172.881'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/26]]'' | |||
| ''+50.762'' | |||
| ''+174.892'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''+50.786'' | |||
| ''+174.973'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/10]]'' | |||
| ''+50.967'' | |||
| ''+175.596'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/2]]'' | |||
| ''+51.042'' | |||
| ''+175.855'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+51.667'' | |||
| ''+178.009'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/22]]'' | |||
| ''+51.801'' | |||
| ''+178.472'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/14]]'' | |||
| ''+52.981'' | |||
| ''+182.537'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''-53.606'' | |||
| ''-184.691'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''-53.682'' | |||
| ''-184.950'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/29]]'' | |||
| ''-54.323'' | |||
| ''-187.161'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''-54.964'' | |||
| ''-189.370'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''+57.314'' | |||
| ''+197.465'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/19]]'' | |||
| ''-60.765'' | |||
| ''-209.356'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/20]]'' | |||
| ''+60.946'' | |||
| ''+209.980'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/4]]'' | |||
| ''+61.021'' | |||
| ''+210.238'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-61.647'' | |||
| ''-212.393'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/27]]'' | |||
| ''-62.961'' | |||
| ''-216.920'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-63.586'' | |||
| ''-219.075'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-63.661'' | |||
| ''-219.334'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-67.294'' | |||
| ''-231.848'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/8]]'' | |||
| ''+71.001'' | |||
| ''+244.622'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/9]]'' | |||
| ''-77.274'' | |||
| ''-266.232'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''+80.981'' | |||
| ''+279.006'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/27]]'' | |||
| ''-90.961'' | |||
| ''-313.389'' | |||
|} | |} | ||
[[Category:Zeta peak indexes]] | [[Category:Zeta peak indexes]] |