62edo: Difference between revisions
→Notation: since this section is about armodue, the ratios should also be derived from the armodue mapping |
→Instruments: Insert music section after this, starting with Bryan Deister's ''microtonal improvisation in 62edo'' (2025) |
||
(30 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
62 = 2 × 31 and the [[patent val]] is a contorted [[31edo]] through the 11-limit, but it makes for a good tuning in the higher limits. In the 13-limit it tempers out [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]; in the 17-limit [[221/220]], [[273/272]], and [[289/288]]; in the 19-limit [[153/152]], [[171/170]], [[209/208]], [[286/285]], and [[361/360]]. Unlike 31edo, which has a sharp profile for primes [[13/1|13]], [[17/1|17]], [[19/1|19]] and [[23/1|23]], 62edo has a flat profile for these, as it removes the distinction of otonal and utonal [[superparticular]] pairs of the primes (e.g. 13/12 vs 14/13 for prime 13) by tempering out the corresponding [[square-particular]]s. Interestingly, the | {{Nowrap| 62 {{=}} 2 × 31 }} and the [[patent val]] of 62edo is a [[contorsion|contorted]] [[31edo]] through the [[11-limit]], but it makes for a good tuning in the higher limits. In the 13-limit it [[tempering out|tempers out]] [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]; in the [[17-limit]] [[221/220]], [[273/272]], and [[289/288]]; in the [[19-limit]] [[153/152]], [[171/170]], [[209/208]], [[286/285]], and [[361/360]]. Unlike 31edo, which has a sharp profile for primes [[13/1|13]], [[17/1|17]], [[19/1|19]] and [[23/1|23]], 62edo has a flat profile for these, as it removes the distinction of otonal and utonal [[superparticular]] pairs of the primes (e.g. 13/12 vs 14/13 for prime 13) by tempering out the corresponding [[square-particular]]s. This flat tendency extends to higher primes too, as the first prime harmonic that is tuned sharper than its [[5/4]] is its [[59/32]]. Interestingly, the size differences between consecutive harmonics are monotonically decreasing for all first 24 harmonics, and 62edo is one of the few [[meantone]] edos that achieve this, great for those who seek higher-limit meantone harmony. | ||
It provides the [[optimal patent val]] for [[ | It provides the [[optimal patent val]] for [[gallium]], [[semivalentine]] and [[hemimeantone]] temperaments. | ||
Using the 35\62 generator, which leads to the {{val| 62 97 143 173 }} val, 62edo is also an excellent tuning for septimal [[mavila]] temperament; alternatively {{val| 62 97 143 172 }} [[support]]s [[hornbostel]]. | Using the 35\62 generator, which leads to the {{val| 62 97 143 173 }} val, 62edo is also an excellent tuning for septimal [[mavila]] temperament; alternatively {{val| 62 97 143 172 }} [[support]]s [[hornbostel]]. | ||
Line 12: | Line 12: | ||
{{Harmonics in equal|62}} | {{Harmonics in equal|62}} | ||
=== | === Subsets and supersets === | ||
Since 62 factors into 2 × 31, 62edo does not contain nontrivial subset edos other than [[2edo]] and 31edo. [[186edo]] and [[248edo]] are notable supersets. | |||
=== Miscellany === | |||
62 years is the amount of years in a leap week calendar cycle which corresponds to a year of 365 days 5 hours 48 minutes 23 seconds, meaning it is both a simple cycle for a calendar, and 62 being a multiple of 31 makes it a harmonically useful and playable cycle. The corresponding maximal evenness scales are 15 & 62 and 11 & 62. | 62 years is the amount of years in a leap week calendar cycle which corresponds to a year of 365 days 5 hours 48 minutes 23 seconds, meaning it is both a simple cycle for a calendar, and 62 being a multiple of 31 makes it a harmonically useful and playable cycle. The corresponding maximal evenness scales are 15 & 62 and 11 & 62. | ||
The 11 & 62 temperament | The 11 & 62 temperament is called mabon, named so because its associated year length corresponds to an autumnal equinoctial year. In the 2.9.7 subgroup tempers out 44957696/43046721, and the three generators of 17\62 correspond to [[16/9]]. It is possible to extend this to the 11-limit with comma basis {896/891, 1331/1296}, where 17\62 is mapped to [[11/9]] and two of them make [[16/11]]. In addition, three generators make the patent val 9/8, which is also created by combining the flat patent val fifth from 31edo with the sharp 37\62 fifth. | ||
The 15 & 62 temperament, corresponding to the leap day cycle, is | The 15 & 62 temperament, corresponding to the leap day cycle, is [[demivalentine]] in the 13-limit. | ||
== Intervals == | == Intervals == | ||
{{ | {| class="wikitable center-all right-2 left-3" | ||
|- | |||
! Steps | |||
! Cents | |||
! Approximate ratios* | |||
! [[Ups and downs notation]] | |||
|- | |||
| 0 | |||
| 0.00 | |||
| 1/1 | |||
| {{UDnote|step=0}} | |||
|- | |||
| 1 | |||
| 19.35 | |||
| 65/64, 66/65, 78/77, 91/90, 105/104 | |||
| {{UDnote|step=1}} | |||
|- | |||
| 2 | |||
| 38.71 | |||
| ''33/32'', 36/35, 45/44, 49/48, 50/49, 55/54, 56/55, ''64/63'' | |||
| {{UDnote|step=2}} | |||
|- | |||
| 3 | |||
| 58.06 | |||
| ''26/25'', 27/26 | |||
| {{UDnote|step=3}} | |||
|- | |||
| 4 | |||
| 77.42 | |||
| 21/20, 22/21, 23/22, 24/23, 25/24, ''28/27'' | |||
| {{UDnote|step=4}} | |||
|- | |||
| 5 | |||
| 96.77 | |||
| 17/16, 18/17, 19/18, 20/19 | |||
| {{UDnote|step=5}} | |||
|- | |||
| 6 | |||
| 116.13 | |||
| 15/14, 16/15 | |||
| {{UDnote|step=6}} | |||
|- | |||
| 7 | |||
| 135.48 | |||
| 13/12, 14/13 | |||
| {{UDnote|step=7}} | |||
|- | |||
| 8 | |||
| 154.84 | |||
| ''11/10'', 12/11, 23/21 | |||
| {{UDnote|step=8}} | |||
|- | |||
| 9 | |||
| 174.19 | |||
| 21/19 | |||
| {{UDnote|step=9}} | |||
|- | |||
| 10 | |||
| 193.55 | |||
| ''9/8'', ''10/9'', 19/17, 28/25 | |||
| {{UDnote|step=10}} | |||
|- | |||
| 11 | |||
| 212.90 | |||
| 17/15 | |||
| {{UDnote|step=11}} | |||
|- | |||
| 12 | |||
| 232.26 | |||
| 8/7 | |||
| {{UDnote|step=12}} | |||
|- | |||
| 13 | |||
| 251.61 | |||
| 15/13, 22/19 | |||
| {{UDnote|step=13}} | |||
|- | |||
| 14 | |||
| 270.97 | |||
| 7/6 | |||
| {{UDnote|step=14}} | |||
|- | |||
| 15 | |||
| 290.32 | |||
| 13/11, 19/16, 20/17 | |||
| {{UDnote|step=15}} | |||
|- | |||
| 16 | |||
| 309.68 | |||
| 6/5 | |||
| {{UDnote|step=16}} | |||
|- | |||
| 17 | |||
| 329.03 | |||
| 17/14, 23/19 | |||
| {{UDnote|step=18}} | |||
|- | |||
| 18 | |||
| 348.39 | |||
| 11/9, 27/22, 28/23 | |||
| {{UDnote|step=18}} | |||
|- | |||
| 19 | |||
| 367.74 | |||
| 16/13, 21/17, 26/21 | |||
| {{UDnote|step=19}} | |||
|- | |||
| 20 | |||
| 387.10 | |||
| 5/4 | |||
| {{UDnote|step=20}} | |||
|- | |||
| 21 | |||
| 406.45 | |||
| 19/15, 24/19 | |||
| {{UDnote|step=21}} | |||
|- | |||
| 22 | |||
| 425.81 | |||
| 9/7, 14/11, 23/18, 32/25 | |||
| {{UDnote|step=22}} | |||
|- | |||
| 23 | |||
| 445.16 | |||
| 13/10, 22/17 | |||
| {{UDnote|step=23}} | |||
|- | |||
| 24 | |||
| 464.52 | |||
| 17/13, 21/16, 30/23 | |||
| {{UDnote|step=24}} | |||
|- | |||
| 25 | |||
| 483.87 | |||
| 25/19 | |||
| {{UDnote|step=25}} | |||
|- | |||
| 26 | |||
| 503.23 | |||
| 4/3 | |||
| {{UDnote|step=26}} | |||
|- | |||
| 27 | |||
| 522.58 | |||
| 19/14, 23/17 | |||
| {{UDnote|step=27}} | |||
|- | |||
| 28 | |||
| 541.94 | |||
| 11/8, 15/11, 26/19 | |||
| {{UDnote|step=28}} | |||
|- | |||
| 29 | |||
| 561.29 | |||
| 18/13 | |||
| {{UDnote|step=29}} | |||
|- | |||
| 30 | |||
| 580.65 | |||
| 7/5, ''25/18'', 32/23 | |||
| {{UDnote|step=30}} | |||
|- | |||
| 31 | |||
| 600.00 | |||
| 17/12, 24/17 | |||
| {{UDnote|step=10}} | |||
|- | |||
| 32 | |||
| 619.35 | |||
| 10/7, 23/16, ''36/25'' | |||
| {{UDnote|step=32}} | |||
|- | |||
| 33 | |||
| 638.71 | |||
| 13/9 | |||
| {{UDnote|step=33}} | |||
|- | |||
| 34 | |||
| 658.06 | |||
| 16/11, 19/13, 22/15 | |||
| {{UDnote|step=34}} | |||
|- | |||
| 35 | |||
| 677.42 | |||
| 28/19, 34/23 | |||
| {{UDnote|step=35}} | |||
|- | |||
| 36 | |||
| 696.77 | |||
| 3/2 | |||
| {{UDnote|step=36}} | |||
|- | |||
| 37 | |||
| 716.13 | |||
| 38/25 | |||
| {{UDnote|step=37}} | |||
|- | |||
| 38 | |||
| 735.48 | |||
| 23/15, 26/17, 32/21 | |||
| {{UDnote|step=38}} | |||
|- | |||
| 39 | |||
| 754.84 | |||
| 17/11, 20/13 | |||
| {{UDnote|step=39}} | |||
|- | |||
| 40 | |||
| 774.19 | |||
| 11/7, 14/9, 25/16, 36/23 | |||
| {{UDnote|step=40}} | |||
|- | |||
| 41 | |||
| 793.55 | |||
| 19/12, 30/19 | |||
| {{UDnote|step=41}} | |||
|- | |||
| 42 | |||
| 812.90 | |||
| 8/5 | |||
| {{UDnote|step=42}} | |||
|- | |||
| 43 | |||
| 832.26 | |||
| 13/8, 21/13, 34/21 | |||
| {{UDnote|step=43}} | |||
|- | |||
| 44 | |||
| 851.61 | |||
| 18/11, 23/14, 44/27 | |||
| {{UDnote|step=44}} | |||
|- | |||
| 45 | |||
| 870.97 | |||
| 28/17, 38/23 | |||
| {{UDnote|step=45}} | |||
|- | |||
| 46 | |||
| 890.32 | |||
| 5/3 | |||
| {{UDnote|step=46}} | |||
|- | |||
| 47 | |||
| 909.68 | |||
| 17/10, 22/13, 32/19 | |||
| {{UDnote|step=47}} | |||
|- | |||
| 48 | |||
| 929.03 | |||
| 12/7 | |||
| {{UDnote|step=48}} | |||
|- | |||
| 49 | |||
| 948.39 | |||
| 19/11, 26/15 | |||
| {{UDnote|step=49}} | |||
|- | |||
| 50 | |||
| 967.74 | |||
| 7/4 | |||
| {{UDnote|step=50}} | |||
|- | |||
| 51 | |||
| 987.10 | |||
| 30/17 | |||
| {{UDnote|step=51}} | |||
|- | |||
| 52 | |||
| 1006.45 | |||
| ''9/5'', ''16/9'', 25/14, 34/19 | |||
| {{UDnote|step=52}} | |||
|- | |||
| 53 | |||
| 1025.81 | |||
| 38/21 | |||
| {{UDnote|step=53}} | |||
|- | |||
| 54 | |||
| 1045.16 | |||
| 11/6, ''20/11'', 42/23 | |||
| {{UDnote|step=54}} | |||
|- | |||
| 55 | |||
| 1064.52 | |||
| 13/7, 24/13 | |||
| {{UDnote|step=55}} | |||
|- | |||
| 56 | |||
| 1083.87 | |||
| 15/8, 28/15 | |||
| {{UDnote|step=56}} | |||
|- | |||
| 57 | |||
| 1103.23 | |||
| 17/9, 19/10, 32/17, 36/19 | |||
| {{UDnote|step=57}} | |||
|- | |||
| 58 | |||
| 1122.58 | |||
| 21/11, 23/12, ''27/14'', 40/21, 44/23, 48/25 | |||
| {{UDnote|step=58}} | |||
|- | |||
| 59 | |||
| 1141.94 | |||
| ''25/13'', 52/27 | |||
| {{UDnote|step=59}} | |||
|- | |||
| 60 | |||
| 1161.29 | |||
| 35/18, 49/25, 55/28, ''63/32'', ''64/33'', 88/45, 96/49, 108/55 | |||
| {{UDnote|step=60}} | |||
|- | |||
| 61 | |||
| 1180.65 | |||
| 65/33, 77/39, 128/65, 180/91, 208/105 | |||
| {{UDnote|step=61}} | |||
|- | |||
| 62 | |||
| 1200.00 | |||
| 2/1 | |||
| {{UDnote|step=62}} | |||
|} | |||
<nowiki />* 23-limit patent val, inconsistent intervals in ''italic'' | |||
== Notation == | == Notation == | ||
=== Ups and downs notation === | |||
62edo can be notated with [[ups and downs]], spoken as up, dup, downsharp, sharp, upsharp etc. and down, dud, upflat etc. Note that dup is equivalent to dudsharp and dud is equivalent to dupflat. | |||
{{Sharpness-sharp4a}} | |||
[[Alternative symbols for ups and downs notation]] uses sharps and flats and quarter-tone accidentals combined with arrows, borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp4}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[69edo#Sagittal notation|69]] and [[76edo#Sagittal notation|76]], and is a superset of the notation for [[31edo#Sagittal notation|31-EDO]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:62-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 703 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:62-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:62-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 687 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:62-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:62-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 679 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:62-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO. | |||
=== Armodue notation === | === Armodue notation === | ||
Armodue nomenclature 8;3 relation | ; Armodue nomenclature 8;3 relation | ||
* '''Ɨ''' = Thick (1/8-tone up) | * '''Ɨ''' = Thick (1/8-tone up) | ||
* '''‡''' = Semisharp (1/4-tone up) | * '''‡''' = Semisharp (1/4-tone up) | ||
Line 33: | Line 401: | ||
* '''⌐''' = Thin (1/8-tone down) | * '''⌐''' = Thin (1/8-tone down) | ||
{| class="wikitable center-all right-3 left-5" | {| class="wikitable center-all right-3 left-5 mw-collapsible mw-collapsed" | ||
|- | |- | ||
! colspan="2" | # | ! colspan="2" | # | ||
! | ! Cents | ||
! Armodue | ! Armodue notation | ||
! Associated | ! Associated ratio | ||
|- | |- | ||
| 0 | | 0 | ||
Line 418: | Line 786: | ||
| | | | ||
|} | |} | ||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 314 | |||
| steps = 61.9380472360525 | |||
| step size = 19.3741981471691 | |||
| tempered height = 6.262952 | |||
| pure height = 4.11259 | |||
| integral = 0.952068 | |||
| gap = 15.026453 | |||
| octave = 1201.20028512448 | |||
| consistent = 8 | |||
| distinct = 8 | |||
}} | |||
== Regular temperament properties == | == Regular temperament properties == | ||
62edo is contorted 31edo through the 11-limit. | 62edo is contorted 31edo through the 11-limit. | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal <br>8ve | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 462: | Line 846: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br>ratio* | ||
! | ! Temperament | ||
|- | |- | ||
| 1 | | 1 | ||
| 3\62 | | 3\62 | ||
| 58. | | 58.1 | ||
| 27/26 | | 27/26 | ||
| [[Hemisecordite]] | | [[Hemisecordite]] | ||
Line 476: | Line 862: | ||
| 1 | | 1 | ||
| 7\62 | | 7\62 | ||
| 135. | | 135.5 | ||
| 13/12 | | 13/12 | ||
| [[Doublethink]] | | [[Doublethink]] | ||
Line 482: | Line 868: | ||
| 1 | | 1 | ||
| 13\62 | | 13\62 | ||
| 251. | | 251.6 | ||
| 15/13 | | 15/13 | ||
| [[Hemimeantone]] | | [[Hemimeantone]] | ||
Line 488: | Line 874: | ||
| 1 | | 1 | ||
| 17\62 | | 17\62 | ||
| 329. | | 329.0 | ||
| 16/11 | | 16/11 | ||
| [[Mabon]] | | [[Mabon]] | ||
|- | |||
| 1 | |||
| 29\62 | |||
| 561.3 | |||
| 18/13 | |||
| [[Demivalentine]] | |||
|- | |- | ||
| 2 | | 2 | ||
| 3\62 | | 3\62 | ||
| 58. | | 58.1 | ||
| 27/26 | | 27/26 | ||
| [[Semihemisecordite]] | | [[Semihemisecordite]] | ||
Line 500: | Line 892: | ||
| 2 | | 2 | ||
| 4\62 | | 4\62 | ||
| 77. | | 77.4 | ||
| 21/20 | | 21/20 | ||
| [[Semivalentine]] | | [[Semivalentine]] | ||
Line 506: | Line 898: | ||
| 2 | | 2 | ||
| 6\62 | | 6\62 | ||
| 116. | | 116.1 | ||
| 15/14 | | 15/14 | ||
| [[Semimiracle]] | | [[Semimiracle]] | ||
Line 512: | Line 904: | ||
| 2 | | 2 | ||
| 26\62 | | 26\62 | ||
| 503. | | 503.2 | ||
| 4/3 | | 4/3 | ||
| [[Semimeantone]] | | [[Semimeantone]] | ||
Line 518: | Line 910: | ||
| 31 | | 31 | ||
| 29\62<br>(1\62) | | 29\62<br>(1\62) | ||
| 561. | | 561.3<br>(19.4) | ||
| 11/8<br>(196/195) | | 11/8<br>(196/195) | ||
| [[Kumhar]] (62e) | | [[Kumhar]] (62e) | ||
Line 524: | Line 916: | ||
| 31 | | 31 | ||
| 19\62<br>(1\62) | | 19\62<br>(1\62) | ||
| 367. | | 367.7<br>(19.4) | ||
| 16/13<br>(77/76) | | 16/13<br>(77/76) | ||
| [[Gallium]] | | [[Gallium]] | ||
|} | |} | ||
<nowiki>* | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Instruments == | |||
=== Lumatone === | |||
* [[Lumatone mapping for 62edo]] | |||
=== Skip fretting === | |||
'''[[Skip fretting]] system 62 6 11''' has strings tuned 11\62 apart, while frets are 6\62. | |||
On a 4-string bass, here are your open strings: | |||
0 11 22 33 | |||
A good supraminor 3rd is found on the 2nd string, 1st fret. A supermajor third is found on the open 3rd string. The major 6th can be found on the 4th string, 2nd fret. | |||
5-string bass | |||
51 0 11 22 33 | |||
This adds an interval of a major 7th (minus an 8ve) at the first string, 1st fret. | |||
6-string guitar | |||
0 11 22 33 44 55 | |||
”Major” 020131 | |||
7-string guitar | |||
0 11 22 33 44 55 4 | |||
'''Skip fretting system 62 9 11''' is another 62edo skip fretting system. The 5th is on the 5th string. The major 3rd is on the 2nd string, 1st fret. | |||
{{todo|add illustration|text=Base it off of the diagram from [[User:MisterShafXen/Skip fretting system 62 9 11]]}} | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/UerD0NqBbng ''microtonal improvisation in 62edo''] (2025) |