Ed5/2: Difference between revisions
m Recategorize; misc. cleanup |
m Removing from Category:Edonoi using Cat-a-lot |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
== Properties == | == Properties == | ||
Division of 5/2 into equal parts does not necessarily imply directly using this interval as an [[equivalence]] | Division of 5/2 into equal parts does not necessarily imply directly using this interval as an [[equivalence]]. Many, though not all, ed5/2 scales have a perceptually important [[Pseudo-octave|false octave]], with various degrees of accuracy. | ||
The structural utility of 5/2 (or another tenth) is apparent by its being the base of so much common practice tonal harmony{{clarify}}, and by 5/2 being the best option for “no-threes” harmony excluding the octave{{clarify}}. | |||
Another option is to treat ed5/2's as "no-threes" systems (like how [[edt]]s are usually treated as no-twos), using the 4:5:7:(10) chord as the fundamental complete sonority instead of 4:5:6:(8). Whereas in meantone it takes four [[4/3]] to get to [[6/5]], here it takes one [[10/7]] to get to [[7/5]] (tempering out the comma [[50/49]] in the no-threes 7-limit), producing a nonoctave version of jubilic temperament. Doing this yields 5-, 8-, 13-, and 21-note mos. | One way to approach ed5/2 tunings is the use of the 2:3:4:(5) chord as the fundamental complete sonority in a very similar way to the 3:4:5:(6) chord in [[meantone]]. Whereas in meantone it takes three 4/3 to get to 6/5, here it takes three 3/2 to get to 6/5 (tempering out the comma 3125/3048). So, doing this yields 5-, 7-, and 12-note [[mos]], just like meantone. While the notes are rather closer together, the scheme shares the scale shape of meantone. | ||
[[Joseph Ruhf]] proposes the term "[[Macrodiatonic and microdiatonic scales|Macrodiatonic]]"{{idiosyncratic}} for the above approach because it uses a scheme that turns out exactly identical to meantone, though severely stretched. These are also the [[MOS]] scales formerly known as Middletown{{idiosyncratic}} because a tenth base stretches the meantone scheme to the point where it tempers out 64/63. | |||
Another option is to treat ed5/2's as "no-threes" systems (like how [[edt]]s are usually treated as no-twos), using the 4:5:7:(10) chord as the fundamental complete sonority instead of 4:5:6:(8). Whereas in meantone it takes four [[4/3]] to get to [[6/5]], here it takes one [[10/7]] to get to [[7/5]] (tempering out the comma [[50/49]] in the no-threes 7-limit), producing a nonoctave version of [[jubilic]] temperament. Doing this yields 5-, 8-, 13-, and 21-note mos. | |||
== Individual pages for ed5/2's == | == Individual pages for ed5/2's == | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|+ style=white-space:nowrap | | |+ style=white-space:nowrap | 0…99 | ||
| [[0ed5/2|0]] | | [[0ed5/2|0]] | ||
| [[1ed5/2|1]] | | [[1ed5/2|1]] | ||
Line 41: | Line 46: | ||
| [[26ed5/2|26]] | | [[26ed5/2|26]] | ||
| [[27ed5/2|27]] | | [[27ed5/2|27]] | ||
| [[28ed5/|28]] | | [[28ed5/2|28]] | ||
| [[29ed5/2|29]] | | [[29ed5/2|29]] | ||
|- | |- | ||
Line 65: | Line 70: | ||
| [[48ed5/2|48]] | | [[48ed5/2|48]] | ||
| [[49ed5/2|49]] | | [[49ed5/2|49]] | ||
|- | |||
| [[50ed5/2|50]] | |||
| [[51ed5/2|51]] | |||
| [[52ed5/2|52]] | |||
| [[53ed5/2|53]] | |||
| [[54ed5/2|54]] | |||
| [[55ed5/2|55]] | |||
| [[56ed5/2|56]] | |||
| [[57ed5/2|57]] | |||
| [[58ed5/2|58]] | |||
| [[59ed5/2|59]] | |||
|- | |||
| [[60ed5/2|60]] | |||
| [[61ed5/2|61]] | |||
| [[62ed5/2|62]] | |||
| [[63ed5/2|63]] | |||
| [[64ed5/2|64]] | |||
| [[65ed5/2|65]] | |||
| [[66ed5/2|66]] | |||
| [[67ed5/2|67]] | |||
| [[68ed5/2|68]] | |||
| [[69ed5/2|69]] | |||
|- | |||
| [[70ed5/2|70]] | |||
| [[71ed5/2|71]] | |||
| [[72ed5/2|72]] | |||
| [[73ed5/2|73]] | |||
| [[74ed5/2|74]] | |||
| [[75ed5/2|75]] | |||
| [[76ed5/2|76]] | |||
| [[77ed5/2|77]] | |||
| [[78ed5/2|78]] | |||
| [[79ed5/2|79]] | |||
|- | |||
| [[80ed5/2|80]] | |||
| [[81ed5/2|81]] | |||
| [[82ed5/2|82]] | |||
| [[83ed5/2|83]] | |||
| [[84ed5/2|84]] | |||
| [[85ed5/2|85]] | |||
| [[86ed5/2|86]] | |||
| [[87ed5/2|87]] | |||
| [[88ed5/2|88]] | |||
| [[89ed5/2|89]] | |||
|- | |||
| [[90ed5/2|90]] | |||
| [[91ed5/2|91]] | |||
| [[92ed5/2|92]] | |||
| [[93ed5/2|93]] | |||
| [[94ed5/2|94]] | |||
| [[95ed5/2|95]] | |||
| [[96ed5/2|96]] | |||
| [[97ed5/2|97]] | |||
| [[98ed5/2|98]] | |||
| [[99ed5/2|99]] | |||
|} | |} | ||
[[Category:Ed5/2| ]] <!-- main article --> | [[Category:Ed5/2's| ]] | ||
<!-- main article --> | |||
[[Category:Lists of scales]] | [[Category:Lists of scales]] | ||
{{todo|inline=1|cleanup|explain edonoi|text=Most people do not think 5/2 sounds like an equivalence, so there must be some other reason why people are dividing it — some property ''other than'' equivalence that makes people want to divide it. Please add to this page an explanation of what that reason is... The page also needs a general overall cleanup.}} |