Schismic–Pythagorean equivalence continuum: Difference between revisions

This m-continuum covers most temps of fractional n.
mNo edit summary
 
(27 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The '''schismic-Pythagorean equivalence continuum''' is a continuum of 5-limit temperaments which equate a number of [[32805/32768|schismas (32805/32768)]] with [[Pythagorean comma|Pythagorean comma ({{monzo| -19 12 }})]]. This continuum is theoretically interesting in that these are all 5-limit temperaments supported by [[12edo]].
{{Technical data page}}
The '''schismic–Pythagorean equivalence continuum''' is a [[equivalence continuum|continuum]] of [[5-limit]] [[regular temperament|temperaments]] which equate a number of [[32805/32768|schismas (32805/32768)]] with [[Pythagorean comma|Pythagorean comma ({{monzo| -19 12 }})]]. This continuum is theoretically interesting in that these are all 5-limit temperaments [[support]]ed by [[12edo]].


All temperaments in the continuum satisfy (32805/32768)<sup>''n''</sup> ~ {{monzo| -19 12 }}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[schismic]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[12edo]] due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of ''n'' is approximately 12.0078623975…, and temperaments having ''n'' near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small [[Kirnberger's atom]] (the difference between 12 schismas and the Pythagorean comma) is.
All temperaments in the continuum satisfy {{nowrap|(32805/32768)<sup>''n''</sup> ~ {{monzo| -19 12 }}}}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[schismic]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all 5-limit temperaments supported by 12edo due to it being the unique equal temperament that [[tempering out|tempers out]] both commas and thus tempers out all combinations of them. The just value of ''n'' is approximately 12.0078623975…, and temperaments having ''n'' near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small [[Kirnberger's atom]] (the difference between 12 schismas and the Pythagorean comma) is.
 
The [[Pythagorean comma]] is the characteristic 3-limit comma tempered out in 12edo, and has many advantages as a target. In each case, ''n'' equals the order of [[5/1|harmonic 5]] in the corresponding comma, and equals the number of steps to obtain the interval class of [[3/1|harmonic 3]] in the generator chain. For an ''n'' that is not coprime with 12, however, the corresponding temperament splits the [[octave]] into {{nowrap| gcd(''n'', 12) }} parts, and splits the interval class of 3 into {{nowrap| ''n''/gcd(''n'', 12) }}. For example:
* [[Meantone]] ({{nowrap| ''n'' {{=}} 1 }}) is generated by a fifth with an unsplit octave;
* [[Diaschismic]] ({{nowrap| ''n'' {{=}} 2 }}) splits the octave in two, as 2 divides 12;
* [[Misty]] ({{nowrap| ''n'' {{=}} 3 }}) splits the octave in three, as 3 divides 12;
* [[Undim]]  ({{nowrap| ''n'' {{=}} 4 }}) splits the octave in four, as 4 divides 12;
* [[Quindromeda]]  ({{nowrap| ''n'' {{=}} 5 }}) does not split the octave but splits the fourth in five, as 5 is coprime with 12.
 
Alternatively, because the the 5-limit otonal detemperament of 12edo is a 4×3 rectangle (known as the [[duodene]]), we may be interested in expressing the continuum in terms of the boundary commas of this detemper, that is, as {{nowrap| ([[81/80]])<sup>''k''</sup> ~ ([[128/125]]) }}. This corresponds to these commas' structural significance via 128/125 being entirely in the 2.5 subgroup while 81/80 explains 5 in the simplest way relative to the 3-limit. This choice of coordinates has the advantage of finding all temperaments discussed in a relatively intuitive and simple way so that less accurate but structurally simpler temperaments are found at integer points while microtemperaments converging to atomic are found as successive mediants towards the JIP. Specifically, its JIP is at 1.90915584… which is approximated very closely by the microtemperament atomic at {{nowrap| 21/11 {{=}} 1.90909… }} so that the main continuum can be seen as taking successive mediants towards 2/1 (schismic) starting from 1/1 (diaschismic). It is noted for its nontrivial relation to the other better-motivated (in terms of mapping) coordinates discussed.


{| class="wikitable center-1 center-2"
{| class="wikitable center-1 center-2"
|+ Temperaments with integer ''n''
|+ style="font-size: 105%;" | Temperaments with integer ''n''
|-
|-
! rowspan="2" | ''n''
! rowspan="2" | ''n''
! rowspan="2" | ''k''
! rowspan="2" | Temperament
! rowspan="2" | Temperament
! colspan="2" | Comma
! colspan="2" | Comma
Line 14: Line 25:
|-
|-
| -1
| -1
| [[Marvel temperaments #Gracecordial|Gracecordial]]
| 5/2
| 17433922005/17179869184
| [[Gracecordial]]
| (22 digits)
| {{monzo| -34 20 1 }}
| {{monzo| -34 20 1 }}
|-
|-
| 0
| 0
| [[Compton family|Compton]]
| 3
| [[Compton]]
| [[531441/524288]]
| [[531441/524288]]
| {{monzo| -19 12 }}
| {{monzo| -19 12 }}
|-
|-
| 1
| 1
| [[Meantone family|Meantone]]
| ∞
| [[Meantone]]
| [[81/80]]
| [[81/80]]
| {{monzo| -4 4 -1 }}
| {{monzo| -4 4 -1 }}
|-
|-
| 2
| 2
| [[Diaschismic family|Diaschismic]]
| 1
| [[Diaschismic]]
| [[2048/2025]]
| [[2048/2025]]
| {{monzo| 11 -4 -2 }}
| {{monzo| 11 -4 -2 }}
|-
|-
| 3
| 3
| [[Misty family|Misty]]
| 3/2
| [[Misty]]
| [[67108864/66430125]]
| [[67108864/66430125]]
| {{monzo| 26 -12 -3 }}
| {{monzo| 26 -12 -3 }}
|-
|-
| 4
| 4
| [[Undim family|Undim]]
| 5/3
|  
| [[Undim]]
| (26 digits)
| {{monzo| 41 -20 -4 }}
| {{monzo| 41 -20 -4 }}
|-
|-
| 5
| 5
| [[Quindromeda family|Quindromeda]]
| 7/4
|  
| [[Quindromeda]]
| (34 digits)
| {{monzo| 56 -28 -5 }}
| {{monzo| 56 -28 -5 }}
|-
|-
| 6
| 6
| 9/5
| [[Sextile]]
| [[Sextile]]
|  
| (44 digits)
| {{monzo| 71 -36 -6 }}
| {{monzo| 71 -36 -6 }}
|-
|-
| 7
| 7
| Sepsa-sepgu (12&amp;323)
| 11/6
|
| [[Heptacot]]
| (52 digits)
| {{monzo| 86 -44 -7 }}
| {{monzo| 86 -44 -7 }}
|-
|-
| 8
| 8
| 13/7
| [[World calendar]]
| [[World calendar]]
|  
| (62 digits)
| {{monzo| 101 -52 -8 }}
| {{monzo| 101 -52 -8 }}
|-
|-
| 9
| 9
| Quinbisa-tritrigu (12&amp;441)
| 15/8
|  
| Quinbisa-tritrigu (12 & 441)
| (70 digits)
| {{monzo| 116 -60 -9 }}
| {{monzo| 116 -60 -9 }}
|-
|-
| 10
| 10
| Lesa-quinbigu (12&amp;494)
| 17/9
|  
| Lesa-quinbigu (12 & 494)
| (80 digits)
| {{monzo| 131 -68 -10 }}
| {{monzo| 131 -68 -10 }}
|-
|-
| 11
| 11
| Quadtrisa-legu (12&amp;559)
| 19/10
|  
| Quadtrisa-legu (12 & 559)
| (88 digits)
| {{monzo| 146 -76 -11 }}
| {{monzo| 146 -76 -11 }}
|-
|-
| 12
| 12
| [[Very high accuracy temperaments #Atomic|Atomic]]
| 21/11
|  
| [[Atomic]]
| (98 digits)
| [[Kirnberger's atom|{{monzo| 161 -84 -12 }}]]
| [[Kirnberger's atom|{{monzo| 161 -84 -12 }}]]
|-
|-
| 13
| 13
| Quintrila-theyo (12&amp;677)
| 23/12
|  
| Quintrila-theyo (12 & 677)
| (106 digits)
| {{monzo| -176 92 13 }}
| {{monzo| -176 92 13 }}
|-
|-
| …
| …
| …
| …
| …
Line 94: Line 121:
|-
|-
| ∞
| ∞
| 2
| [[Schismic]]
| [[Schismic]]
| [[32805/32768]]
| [[32805/32768]]
Line 99: Line 127:
|}
|}


We may invert the continuum by setting ''m'' such that 1/''m'' + 1/''n'' = 1. This may be called the ''syntonic-Pythagorean equivalence continuum'', which is essentially the same thing. The just value of ''m'' is 1.0908441588…
We may invert the continuum by setting ''m'' such that {{nowrap| 1/''m'' + 1/''n'' {{=}} 1 }}. This may be called the ''syntonic–Pythagorean equivalence continuum'', which is essentially the same thing. The just value of ''m'' is 1.0908441588…. The [[syntonic comma]] is way larger but much simpler than the schisma. As such, this continuum does not contain as many [[microtemperament]]s, but has more useful lower-complexity temperaments.


{| class="wikitable center-1 center-2"
{| class="wikitable center-1 center-2"
|+ Temperaments with integer ''m''
|+ style="font-size: 105%;" | Temperaments with integer ''m'' (and thus ''k'')
|-
|-
! rowspan="2" | ''m''
! rowspan="2" | ''m''
! rowspan="2" | ''k''
! rowspan="2" | Temperament
! rowspan="2" | Temperament
! colspan="2" | Comma
! colspan="2" | Comma
Line 112: Line 141:
|-
|-
| -1
| -1
| 4
| [[Python]]
| [[Python]]
| [[43046721/41943040]]
| [[43046721/41943040]]
Line 117: Line 147:
|-
|-
| 0
| 0
| [[Compton family|Compton]]
| 3
| [[Compton]]
| [[531441/524288]]
| [[531441/524288]]
| {{monzo| -19 12 }}
| {{monzo| -19 12 }}
|-
|-
| 1
| 1
| 2
| [[Schismic]]
| [[Schismic]]
| [[32805/32768]]
| [[32805/32768]]
Line 127: Line 159:
|-
|-
| 2
| 2
| [[Diaschismic family|Diaschismic]]
| 1
| [[Diaschismic]]
| [[2048/2025]]
| [[2048/2025]]
| {{monzo| 11 -4 -2 }}
| {{monzo| 11 -4 -2 }}
|-
|-
| 3
| 3
| [[Augmented]]
| 0
| [[Augmented (temperament)|Augmented]]
| [[128/125]]
| [[128/125]]
| {{monzo| 7 0 -3 }}
| {{monzo| 7 0 -3 }}
|-
|-
| 4
| 4
| [[Diminished]]
| -1
| [[Diminished (temperament)|Diminished]]
| [[648/625]]
| [[648/625]]
| {{monzo| 3 4 -4 }}
| {{monzo| 3 4 -4 }}
|-
|-
| 5
| 5
| -2
| [[Ripple]]
| [[Ripple]]
| [[6561/6250]]
| [[6561/6250]]
Line 147: Line 183:
|-
|-
| 6
| 6
| -3
| [[Wronecki]]
| [[Wronecki]]
| [[531441/500000]]
| [[531441/500000]]
| {{monzo| -5 12 -6 }}
| {{monzo| -5 12 -6 }}
|-
|-
| …
| …
| …
| …
| …
Line 156: Line 194:
| …
| …
|-
|-
| ∞
| ∞
| ∞
| [[Meantone]]
| [[Meantone]]
Line 163: Line 202:


{| class="wikitable"
{| class="wikitable"
|+ Temperaments with fractional ''n'' and ''m''
|+ style="font-size: 105%;" | Temperaments with fractional ''n'' and ''m''
|-
|-
! Temperament !! ''n'' !! ''m''
! ''n'' !! ''m'' !! ''k'' !! Temperament !! Comma
|-
|-
| [[Passion]] || 5/3 = 1.{{overline|6}} || 5/2 = 2.5
| 5/3 = 1.{{overline|6}} || 5/2 = 2.5 || 1/2 || [[Passion]] || {{monzo| 18 -4 -5 }}
|-
|-
| [[Quintaleap]] || 5/2 = 2.5 || 5/3 = 1.{{overline|6}}
| 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || 4/3 || [[Quintaleap]] || {{monzo| 37 -16 -5 }}
|}
|}


== Compton (12&amp;72) ==
== Python ==
{{See also| Pythagorean comma }} ''and [[Compton family]]''
Python is generated by a fifth, which is typically flatter than 7\12. The ~5/4 is reached by +16 fifths octave reduced, which is a double-augmented second (C–Dx). It can be described as {{nowrap| 12 & 91 }}, and [[103edo]] is a good tuning. It corresponds to {{nowrap| ''m'' {{=}} -1 }} and {{nowrap| ''n'' {{=}} 1/2 }}.  
 
Subgroup: 2.3.5


Comma list: {{monzo| -19 12 }} = 531441/524288
[[Subgroup]]: 2.3.5


Mapping: [{{val| 12 19 28 }}, {{val| 0 0 -1 }}]
[[Comma list]]: 43046721/41943040


{{Multival|legend=1| 0 12 19 }}
{{Mapping|legend=1| 1 0 -23 | 0 1 16 }}


POTE generator: ~5/4 = 384.882
: mapping generators: ~2, ~3


{{Optimal ET sequence|legend=1| 12, 48, 60, 72, 84 }}
[[Optimal tuning]]s:  
 
* [[WE]]: ~2 = 1200.8769{{c}}, ~3/2 = 699.5409{{c}}
Badness: 0.094494
: [[error map]]: {{val| +0.876 -1.537 +0.203 }}
 
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 699.0789{{c}}
== Python (12&amp;79) ==
: error map: {{val| 0.000 -2.876 -1.051 }}
Subgroup: 2.3.5
 
Comma list: {{monzo| -23 16 -1 }} = 43046721/41943040
 
Mapping: [{{val| 1 0 -23 }}, {{val| 0 -1 -16 }}]
 
{{Multival|legend=1| 1 16 23 }}
 
POTE generator: ~4/3 = 500.970


{{Optimal ET sequence|legend=1| 12, …, 79, 91, 103 }}
{{Optimal ET sequence|legend=1| 12, …, 79, 91, 103 }}


Badness: 0.295079
[[Badness]] (Sintel): 6.92


== Quintaleap (12&amp;121) ==
== Gracecordial (5-limit) ==
{{See also| Quintaleap family }}
: ''For extensions, see [[Marvel temperaments #Gracecordial]].''


Subgroup: 2.3.5
The 5-limit version of gracecordial is generated by a fifth, which is typically sharp of 7\12 but flat of just. The ~5/4 is reached by -20 fifths octave reduced, which is a triple-diminished fifth (C–Gbbb). It can be described as {{nowrap| 12 & 125 }}, and [[137edo]] is a good tuning. It corresponds to {{nowrap| ''n'' {{=}} -1 }} and {{nowrap| ''m'' {{=}} 1/2 }}.  


Comma list: {{monzo| 37 -16 -5 }} = 137438953472/134521003125
[[Subgroup]]: 2.3.5


Mapping: [{{val| 1 2 1 }}, {{val| 0 -5 16 }}]
[[Comma list]]: 17433922005/17179869184


{{Multival|legend=1| 5 -16 -37 }}
{{Mapping|legend=1| 1 0 34 | 0 1 -20 }}


POTE generator: ~135/128 = 99.267
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000{{c}}, ~3/2 = 700.691{{c}}
* [[POTE]]: ~2 = 1200.000{{c}}, ~3/2 = 700.734{{c}}


{{Optimal ET sequence|legend=1| 12, , 85, 97, 109, 121, 133, 278c, 411bc, 544bc }}
{{Optimal ET sequence|legend=1| 12, 113, 125, 137, 1221bbcc }}


Badness: 0.444506
[[Badness]] (Sintel): 7.20


== Undim (12&amp;152) ==
== Sextile (5-limit) ==
{{See also| Undim family }}
{{See also| Landscape microtemperaments #Sextile }}


Subgroup: 2.3.5
The 5-limit version of sextile reaches the interval class of 5 by −6 perfect fifths (i.e. a diminished fifth) minus a period of 1/6-octave. It corresponds to {{nowrap| ''n'' {{=}} 6 }}, meaning the Pythagorean comma is equated with a stack of six schismas.  


Comma list: {{monzo| 41 -20 -4 }}
[[Subgroup]]: 2.3.5


Mapping: [{{val| 4 0 41 }}, {{val| 0 1 -5 }}]
[[Comma list]]: {{monzo| 71 -36 -6 }}


{{Multival|legend=1| 4 -20 -41 }}
{{Mapping|legend=1| 6 0 71 | 0 1 -6 }}]


POTE generator: ~3/2 = 702.6054
: mapping generators: ~4096/3645, ~3


{{Optimal ET sequence|legend=1| 12, …, 104, 116, 128, 140, 152, 610, 772, 924c, 1076bc, 1228bc }}
[[Optimal tuning]]s:
* [[WE]]: ~4096/3645 = 199.9836{{c}}, ~3/2 = 702.1782{{c}} (~4428675/4194304 = 97.7564{{c}})
: [[error map]]: {{val| -0.098 +0.125 +0.045 }}
* [[CWE]]: ~4096/3645 = 200.0000{{c}}, ~3/2 = 702.2434{{c}} (~4428675/4194304 = 97.7566{{c}})
: error map: {{val| 0.000 +0.288 +0.226 }}


Badness: 0.241703
{{Optimal ET sequence|legend=1| 12, …, 222, 234, 246, 258, 270, 1068, 1338, 1608, 1878, 4026bc }}


== Quindromeda (12&amp;205) ==
[[Badness]] (Sintel): 13.0
{{See also| Quindromeda family }}


Subgroup: 2.3.5
== Wronecki ==
Wronecki equates a stack of six ~10/9's with the octave. It reaches the interval class of 5 by +2 perfect fifths (i.e. a major second) plus a period of 1/6-octave. It corresponds to {{nowrap| ''m'' {{=}} 6 }}, meaning the Pythagorean comma is equated with a stack of six syntonic commas.  


Comma list: {{monzo| 56 -28 -5 }}
[[Subgroup]]: 2.3.5


Mapping: [{{val| 1 2 0 }}, {{val| 0 -5 28 }}]
[[Comma list]]: 531441/500000


POTE generator: ~4428675/4194304 = 99.526
{{Mapping|legend=1| 6 0 -5 | 0 1 2 }}


{{Multival|legend=1| 5 -28 -56 }}
: mapping generators: ~10/9, ~3


{{Optimal ET sequence|legend=1| 12, …, 181, 193, 205, 217, 422 }}
[[Optimal tuning]]s:
* [[CTE]]: ~10/9 = 200.000{{c}}, ~3/2 = 696.229{{c}}
* [[POTE]]: ~10/9 = 200.000{{c}}, ~3/2 = 695.040{{c}}


Badness: 0.399849
{{Optimal ET sequence|legend=1| 12, 66b, 78b, 90b, 102b }}


== Sextile (12&amp;270) ==
[[Badness]] (Sintel): 8.02
{{See also| Landscape microtemperaments #Sextile }}


Subgroup: 2.3.5
== Heptacot ==
Heptacot tempers out the [[heptacot comma]] and divides the fifth into seven equal parts, the most notable example being [[12edo]] (7\12). It corresponds to {{nowrap| ''n'' {{=}} 7 }}, meaning the Pythagorean comma is equated with a stack of seven schismas.  


Comma list: {{monzo| 71 -36 -6 }}
[[Subgroup]]: 2.3.5


Mapping: [{{val| 6 0 71 }}, {{val| 0 1 -6 }}]
[[Comma list]]: {{monzo| 86 -44 -7 }}


POTE generator: ~3/2 = 702.2356
{{Mapping|legend=1| 1 1 6 | 0 7 -44 }}


{{Multival|legend=1| 6 -36 -77 }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1199.9328{{c}}, ~{{monzo| -37 19 3 }} = 100.3012{{c}}
: [[error map]]: {{val| -0.067 +0.086 +0.029 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~{{monzo| -37 19 3 }} = 100.3076{{c}}
: error map: {{val| 0.000 +0.198 +0.153 }}


{{Optimal ET sequence|legend=1| 12, …, 222, 234, 246, 258, 270, 1068, 1338, 1608, 1878, 4026bc }}
{{Optimal ET sequence|legend=1| 12, …, 287, 299, 311, 323, 981, 1304, 5539bc, 6843bbcc }}


Badness: 0.555423
[[Badness]] (Sintel): 16.0


[[Category:12edo]]
[[Category:12edo]]
[[Category:Equivalence continua]]
[[Category:Equivalence continua]]