247edo: Difference between revisions

Expand on theory; +subsets and supersets
ArrowHead294 (talk | contribs)
mNo edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro}}
{{ED intro}}


[[Prime harmonic]]s [[3/1|3]], [[5/1|5]], [[7/1|7]], and [[11/1|11]] are all about halfway between 247edo's steps, so 247edo lacks [[consistency]] to the [[5-odd-limit|5]] and higher odd limits. It is the largest numbered edo that the closest approximation to 3/2 is flatter than that of [[12edo]] (700¢, [[Compton family|compton fifth]]). Using the [[patent val]], it tempers out [[126/125]], [[243/242]] and [[1029/1024]] in the 11-limit , so it [[support]]s the ''hemivalentino'' temperament (31 & 61e).  
[[Prime harmonic]]s [[3/1|3]], [[5/1|5]], [[7/1|7]], and [[11/1|11]] are all about halfway between 247edo's steps, so 247edo lacks [[consistency]] to the [[5-odd-limit|5]] and higher odd limits. It is the largest numbered edo that the closest approximation to 3/2 is flatter than that of [[12edo]] (700¢, [[Compton family|compton fifth]]). 247edo tunes the 2.9.13.15.21 [[subgroup]] very well, as every other step of the monstrous [[494edo]].


As every other step of the monstrous [[494edo]], 247edo can be used in the 2.9.15.21 [[subgroup]].  
The [[wart_notation|247cg val]] has lower errors: this edo has a [[stretched_and_compressed_tuning|flat tendency]], so its tuning accuracy may be improved by an octave stretch of approximately +0.8{{c}}. 247cg is a good tuning for [[miracle]], tempering out [[225/224]] and [[1029/1024]] in the [[7-limit]], [[243/242]], [[385/384]], [[441/440]], and [[540/539]] in the [[11-limit]], [[847/845]] in the [[13-limit]], and [[375/374]] and [[561/560]] in the [[17-limit]]. Alternatively, using the [[patent val]], 247edo tempers out [[126/125]], [[243/242]] and [[1029/1024]] in the 11-limit, [[support]]ing the {{nowrap|31 & 61e}} temperament known as [[hemivalentino]].


=== Odd harmonics ===
=== Odd harmonics ===