|
|
(13 intermediate revisions by 7 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{DISPLAYTITLE:''Das Goldene Tonsystem''}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | '''''[http://d-nb.info/361092458 Das Goldene Tonsystem als Fundament der Theoretischen Akustik]''''' is a book of the Danish music theoretician (music reformer and visionary) '''Thorvald Kornerup''', written in German and published in Copenhagen in 1935, that describes [[golden meantone]]. |
| : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-05-04 15:43:31 UTC</tt>.<br>
| |
| : The original revision id was <tt>139437879</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Das Goldene Tonsystem** als Fundament der Theoretischen Akustik
| |
|
| |
|
| ...is a book of the danish music theoretician (music reformer and visionary) Thorvald Kornerup.
| | [[Category:Golden meantone]] |
| | | [[Category:Resources]] |
| The system is based on the paradigm that the relation between whole and half tone intervals should be the Golden Ratio
| |
| | |
| (sqrt(5)+1)/2 (who does it in <math> ?)
| |
| | |
| Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.
| |
| | |
| == Construction ==
| |
| If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13... you get the following approximations:
| |
| 1, 1 -> [[7edo]]
| |
| 1, 2 -> [[12edo]]
| |
| 2, 3 -> [[19edo]]
| |
| 3, 5 -> [[31edo]]
| |
| 5, 8 -> [[50edo]]
| |
| | |
| == Listening ==
| |
| | |
| For an acoustic example have a look [[Warped canon]] - Kornerup himself had no chance to do so</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Das Goldene Tonsystem</title></head><body><strong>Das Goldene Tonsystem</strong> als Fundament der Theoretischen Akustik<br />
| |
| <br />
| |
| ...is a book of the danish music theoretician (music reformer and visionary) Thorvald Kornerup.<br />
| |
| <br />
| |
| The system is based on the paradigm that the relation between whole and half tone intervals should be the Golden Ratio <br />
| |
| <br />
| |
| (sqrt(5)+1)/2 (who does it in &lt;math&gt; ?)<br />
| |
| <br />
| |
| Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Construction"></a><!-- ws:end:WikiTextHeadingRule:0 --> Construction </h2>
| |
| If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13... you get the following approximations:<br />
| |
| 1, 1 -&gt; <a class="wiki_link" href="/7edo">7edo</a><br />
| |
| 1, 2 -&gt; <a class="wiki_link" href="/12edo">12edo</a><br />
| |
| 2, 3 -&gt; <a class="wiki_link" href="/19edo">19edo</a><br />
| |
| 3, 5 -&gt; <a class="wiki_link" href="/31edo">31edo</a><br />
| |
| 5, 8 -&gt; <a class="wiki_link" href="/50edo">50edo</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-Listening"></a><!-- ws:end:WikiTextHeadingRule:2 --> Listening </h2>
| |
| <br />
| |
| For an acoustic example have a look <a class="wiki_link" href="/Warped%20canon">Warped canon</a> - Kornerup himself had no chance to do so</body></html></pre></div>
| |