|
|
(8 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-30 16:34:41 UTC</tt>.<br>
| |
| : The original revision id was <tt>239553053</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The Cube Root of the [[Perfect fourth]] ([[4_3|4:3]]) is a nonoctave scale which divides the just perfect fourth (frequency ratio 4:3) into three steps of approximately 166.015[[cent|¢]] each.
| |
|
| |
|
| ==Intervals== | | == Theory == |
| | === Harmonics === |
| | {{Harmonics in equal|3|4|3|intervals=integer|columns=11}} |
| | {{Harmonics in equal|3|4|3|intervals=integer|columns=11|start=12|collapsed=true|title=Approximation of harmonics in 3ed4/3 (continued)}} |
|
| |
|
| || degrees of CRP4 || cents value || cents value [[octave-reduce]]d || | | == Intervals == |
| || 0 || 0.00 || || | | {| class="wikitable" |
| || 1 || 166.01 || ||
| | |- |
| || 2 || 332.03 || ||
| | ! # |
| || 3 || 498.04 || ||
| | ! Cents |
| || 4 || 664.06 || ||
| | ! Approximate ratios |
| || 5 || 830.07 || ||
| | |- |
| || 6 || 996.09 || ||
| | | 0 |
| || 7 || 1162.10 || ||
| | | 0.000 |
| || 8 || 1328.12 || 128.12 ||
| | | [[1/1]] |
| || 9 || 1494.13 || 294.13 ||
| | |- |
| || 10 || 1660.15 || 460.15 ||
| | | 1 |
| || 11 || 1826.16 || 626.16 ||
| | | 166.015 |
| || 12 || 1992.18 || 792.18 ||
| | | [[11/10]] |
| || 13 || 2158.19 || 958.19 ||
| | |- |
| || 14 || 2324.21 || 1124.21 ||
| | | 2 |
| || 15 || 2490.22 || 90.22 ||
| | | 332.030 |
| || 16 || 2656.24 || 256.24 ||
| | | |
| || 17 || 2822.25 || 422.25 ||
| | |- |
| || 18 || 2988.27 || 588.27 ||
| | | 3 |
| || 19 || 3154.28 || 754.28 ||
| | | 498.045 |
| || 20 || 3320.30 || 920.30 ||
| | | [[4/3]] |
| || 21 || 3486.31 || 1086.31 ||
| | |- |
| || 22 || 3652.33 || 52.33 ||
| | | 4 |
| || 23 || 3818.34 || 218.34 ||</pre></div>
| | | 664.060 |
| <h4>Original HTML content:</h4>
| | | [[22/15]] |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Cube Root of P4</title></head><body>The Cube Root of the <a class="wiki_link" href="/Perfect%20fourth">Perfect fourth</a> (<a class="wiki_link" href="/4_3">4:3</a>) is a nonoctave scale which divides the just perfect fourth (frequency ratio 4:3) into three steps of approximately 166.015<a class="wiki_link" href="/cent">¢</a> each.<br />
| | |- |
| <br />
| | | 5 |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h2>
| | | 830.075 |
| <br />
| | | [[13/8]] |
| | |- |
| | | 6 |
| | | 996.090 |
| | | [[16/9]] |
| | |- |
| | | 7 |
| | | 1162.105 |
| | | 88/45 |
| | |- |
| | | 8 |
| | | 1328.120 |
| | | [[13/6]] |
| | |- |
| | | 9 |
| | | 1494.135 |
| | | [[64/27]] |
| | |- |
| | | 10 |
| | | 1660.150 |
| | | |
| | |- |
| | | 11 |
| | | 1826.165 |
| | | [[13/9]] |
| | |- |
| | | 12 |
| | | 1992.180 |
| | | |
| | |- |
| | | 13 |
| | | 2158.195 |
| | | |
| | |- |
| | | 14 |
| | | 2324.210 |
| | | |
| | |- |
| | | 15 |
| | | 2490.225 |
| | | [[135/32]] |
| | |- |
| | | 16 |
| | | 2656.240 |
| | | |
| | |- |
| | | 17 |
| | | 2822.255 |
| | | |
| | |- |
| | | 18 |
| | | 2988.270 |
| | | [[45/8]] |
| | |- |
| | | 19 |
| | | 3154.285 |
| | | |
| | |- |
| | | 20 |
| | | 3320.300 |
| | | [[17/5]] |
| | |- |
| | | 21 |
| | | 3486.315 |
| | | [[15/2]] |
| | |- |
| | | 22 |
| | | 3652.330 |
| | | |
| | |- |
| | | 23 |
| | | 3818.345 |
| | | [[68/15]] |
| | |- |
| | | 24 |
| | | 3984.360 |
| | | [[10/1]] |
| | |} |
|
| |
|
| | == Regular temperaments == |
| | 3ed4/3 tuning is related to temperaments which temper out [[4000/3993]] (wizardharry temperament). The unit step of 3ed4/3 is approximately a cent sharp of [[11/10]]. Tempering out 4000/3993 leads equating three 11/10s with 4/3, hence wizardharry temperaments split the fourth in three. |
|
| |
|
| <table class="wiki_table">
| | Tempering out both [[55/54]] and [[100/99]] (equating 10/9 with 11/10 and 12/11) leads to [[porcupine]] (2.3.5.11 subgroup) or [[sonic]] (full 11-limit). Sonic temperaments include [[porcupine]], [[hystrix]], [[porky]], [[coendou]], [[hedgehog]], [[nautilus]], [[ammonite]], [[ceratitid]], and [[opossum]]. |
| <tr>
| |
| <td>degrees of CRP4<br />
| |
| </td>
| |
| <td>cents value<br />
| |
| </td>
| |
| <td>cents value <a class="wiki_link" href="/octave-reduce">octave-reduce</a>d<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0.00<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>166.01<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>332.03<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>498.04<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>664.06<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>830.07<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>996.09<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>1162.10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>1328.12<br />
| |
| </td>
| |
| <td>128.12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>1494.13<br />
| |
| </td>
| |
| <td>294.13<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>1660.15<br />
| |
| </td>
| |
| <td>460.15<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>1826.16<br />
| |
| </td>
| |
| <td>626.16<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>1992.18<br />
| |
| </td>
| |
| <td>792.18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>2158.19<br />
| |
| </td>
| |
| <td>958.19<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>2324.21<br />
| |
| </td>
| |
| <td>1124.21<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>2490.22<br />
| |
| </td>
| |
| <td>90.22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>2656.24<br />
| |
| </td>
| |
| <td>256.24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>2822.25<br />
| |
| </td>
| |
| <td>422.25<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>2988.27<br />
| |
| </td>
| |
| <td>588.27<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>3154.28<br />
| |
| </td>
| |
| <td>754.28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>3320.30<br />
| |
| </td>
| |
| <td>920.30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>3486.31<br />
| |
| </td>
| |
| <td>1086.31<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>3652.33<br />
| |
| </td>
| |
| <td>52.33<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>3818.34<br />
| |
| </td>
| |
| <td>218.34<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | Other wizardharry temperaments include [[octoid]], [[harry]], [[tritikleismic]], [[wizard]], [[Porwell temperaments #Septisuperfourth|septisuperfourth]], [[unthirds]], [[supers]], [[alphaquarter]], [[quincy]], [[stearnscape]], [[pogo]], [[marvolo]], [[cotritone]], [[echidna]], [[marvo]], [[mystery]], [[zarvo]], [[escaped]], [[thuja]], and [[escapade]]. |
| | |
| | [[Category:Equal-step tuning]] |
| | [[Category:Nonoctave]] |
| | [[Category:Perfect fourth]] |