|
|
(13 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| {{MOS intro}}{{Infobox MOS
| | {{Infobox MOS |
| | Periods = 1 | | | Periods = 1 |
| | nLargeSteps = 4 | | | nLargeSteps = 4 |
Line 7: |
Line 7: |
| | Pattern = LssLssLssLs | | | Pattern = LssLssLssLs |
| }} | | }} |
| | | {{MOS intro}} |
| One of the [[harmonic entropy]] minimums in this range is [[Kleismic family|Kleismic/Hanson]]. | | One of the [[harmonic entropy]] minimums in this range is [[Kleismic family|Kleismic/Hanson]]. |
|
| |
|
| The [[TAMNAMS]] name for this scale used to be ''kleistonic'', but is now simply called '''p-chro smitonic''' in the latest [[TAMNAMS Extension|extension]] (the [[User:Frostburn/TAMNAMS_Extension|euphonic name]] being '''smipechromic'''). The prefix for mossteps is '''klei-'''.
| | == Name == |
| | TAMNAMS formerly used the name ''kleistonic'' for the name of this scale (prefix ''klei-''). Other names include '''p-chro smitonic''' or '''smipechromic'''. |
|
| |
|
| == Notation == | | == Scale properties == |
| The notation used in this article is LssLsLssLss = АВГДЕЅЗИѲІѦА, based on old Cyrillic numerals 1-10, and the addition of the small yus (Ѧ) for 11 (old "ya" symbolically representing І҃А҃=11). A titlo can be optionally used as a numeric sign (А҃), depending on font rendering, clarity, and style. Chromas are represented by regular sharps and flats.
| | {{TAMNAMS use}} |
|
| |
|
| Thus the 15edo gamut is as follows: '''А''' А#/Вb '''В Г Д''' Д#/Еb '''Е Ѕ''' Ѕ#/Зb '''З И Ѳ''' Ѳ#/Іb '''І Ѧ А'''
| | === Intervals === |
| | {{MOS intervals}} |
|
| |
|
| ==== Letter names ==== | | === Generator chain === |
| The letters can be named in English as such: Az, Vede, Glagol, Dobro, Yest, Dzelo, Zemlya, Izhe, Thita, I (Ee), Yas. They can also be named as numbers 1-11.
| | {{MOS genchain}} |
|
| |
|
| == Intervals == | | === Modes === |
| {| class="wikitable center-all"
| | {{MOS mode degrees}} |
| |-
| |
| ! Generators
| |
| ! Notation (1/1 = А҃)
| |
| ! Interval category name
| |
| ! Generators
| |
| ! Notation of 2/1 inverse
| |
| ! Interval category name
| |
| |-
| |
| | colspan="6" style="text-align:left" | The 11-note MOS has the following intervals (from some root):
| |
| |-
| |
| | 0
| |
| | А
| |
| | perfect unison
| |
| | 0
| |
| | А
| |
| | dodecave (same as octave)
| |
| |-
| |
| | 1
| |
| | Д
| |
| | perfect kleifourth (minor third)
| |
| | -1
| |
| | Ѳ
| |
| | perfect kleininth (major sixth)
| |
| |-
| |
| | 2
| |
| | Зb
| |
| | minor kleiseventh
| |
| | -2
| |
| | Ѕ
| |
| | major kleisixth
| |
| |-
| |
| | 3
| |
| | Іb
| |
| | minor kleitenth
| |
| | -3
| |
| | Г
| |
| | major kleithird
| |
| |-
| |
| | 4
| |
| | Вb
| |
| | minor kleisecond
| |
| | -4
| |
| | Ѧ
| |
| | major kleieleventh
| |
| |-
| |
| | 5
| |
| | Еb
| |
| | minor kleififth
| |
| | -5
| |
| | И
| |
| | major kleieighth
| |
| |-
| |
| | 6
| |
| | Иb
| |
| | minor kleieighth
| |
| | -6
| |
| | Е
| |
| | major kleififth
| |
| |-
| |
| | 7
| |
| | Ѧb
| |
| | minor kleieleventh
| |
| | -7
| |
| | В
| |
| | major kleisecond
| |
| |-
| |
| | 8
| |
| | Гb
| |
| | minor kleithird
| |
| | -8
| |
| | І
| |
| | major kleitenth
| |
| |-
| |
| | 9
| |
| | Ѕb
| |
| | minor kleisixth
| |
| | -9
| |
| | З
| |
| | major kleiseventh
| |
| |-
| |
| | 10
| |
| | Ѳb
| |
| | diminished kleininth
| |
| | -10
| |
| | Д#
| |
| | augmented kleithird
| |
| |-
| |
| | colspan="6" style="text-align:left" | The chromatic 15-note MOS (either [[4L 11s]], [[11L 4s]], or [[15edo]]) also has the following intervals (from some root):
| |
| |-
| |
| | 11
| |
| | Аb
| |
| | diminished dodecave
| |
| | -11
| |
| | А#
| |
| | augmented unison (chroma)
| |
| |-
| |
| | 12
| |
| | Дb
| |
| | diminished kleifourth
| |
| | -12
| |
| | Ѳ#
| |
| | augmented kleininth
| |
| |-
| |
| | 13
| |
| | Зbb
| |
| | diminished kleiseventh
| |
| | -13
| |
| | Ѕ#
| |
| | augmented kleisixth
| |
| |-
| |
| | 14
| |
| | Іbb
| |
| | diminished kleitenth
| |
| | -14
| |
| | Г#
| |
| | augmented kleithird
| |
| |}
| |
|
| |
|
| == Genchain ==
| | == Tuning ranges== |
| The generator chain for this scale is as follows:
| |
| {| class="wikitable center-all"
| |
| |-
| |
| | Дb
| |
| | Аb
| |
| | Ѳb
| |
| | Ѕb
| |
| | Гb
| |
| | Ѧb
| |
| | Иb
| |
| | Еb
| |
| | Вb
| |
| | Іb
| |
| | Зb
| |
| | Д
| |
| | А
| |
| | Ѳ
| |
| | Ѕ
| |
| | Г
| |
| | Ѧ
| |
| | И
| |
| | Е
| |
| | В
| |
| | І
| |
| | З
| |
| | Д#
| |
| | А#
| |
| | Ѳ#
| |
| | Ѕ#
| |
| | Г#
| |
| | Ѧ#
| |
| | И#
| |
| | Е#
| |
| | В#
| |
| | І#
| |
| | З#
| |
| |-
| |
| | d4
| |
| | d12
| |
| | d9
| |
| | m6
| |
| | m3
| |
| | m11
| |
| | m8
| |
| | m5
| |
| | m2
| |
| | m10
| |
| | m7
| |
| | P4
| |
| | P1
| |
| | P9
| |
| | M6
| |
| | M3
| |
| | M11
| |
| | M8
| |
| | M5
| |
| | M2
| |
| | M10
| |
| | M7
| |
| | A4
| |
| | A1
| |
| | A9
| |
| | A6
| |
| | A3
| |
| | A11
| |
| | A8
| |
| | A5
| |
| | A2
| |
| | A10
| |
| | A7
| |
| |}
| |
| | |
| == Tuning ranges == | |
| === Soft range === | | === Soft range === |
| The soft range for tunings of p-chro smitonic encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than 4\15 = 320¢. | | The soft range for tunings of 4L 7s encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than {{nowrap|4\15 {{=}} 320{{c}}}}. |
|
| |
|
| This is the range associated with extensions of [[Orgone|Orgone[7]]]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds. | | This is the range associated with extensions of [[Orgone|Orgone[7]]]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds. |
|
| |
|
| Soft p-chro smitonic edos include [[15edo]] and [[26edo]]. | | Soft edos include [[15edo]] and [[26edo]]. |
| The sizes of the generator, large step and small step of p-chro smitonic are as follows in various soft tunings: | | The sizes of the generator, large step and small step of 4L 7s are as follows in various soft tunings: |
| {| class="wikitable right-2 right-3 right-4" | | {| class="wikitable right-2 right-3 right-4" |
| |- | | |- |
| ! | | ! |
| ![[15edo]] (basic) | | ! [[15edo]] (basic) |
| ! [[26edo]] (soft) | | ! [[26edo]] (soft) |
| ! Some JI approximations | | ! Some JI approximations |
Line 245: |
Line 57: |
|
| |
|
| === Hypohard === | | === Hypohard === |
| [[File:19EDO_Kleistonic_cheat_sheet.png|400px|thumb|right|Cheat sheet for 19EDO p-chro smitonic, a hard p-chro smitonic tuning]]
| | Hypohard tunings of 4L 7s have step ratios between 2/1 and 3/1, implying a generator sharper than {{nowrap|5\19 {{=}} 315.79{{c}}}} and flatter than {{nowrap|4\15 {{=}} 320{{c}}}}. |
| Hypohard tunings of p-chro smitonic have step ratios between 2/1 and 3/1, implying a generator sharper than 5\19 = 315.79¢ and flatter than 4\15 = 320¢. | |
|
| |
|
| This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth ([[3/2]]), an octave above. This is the range associated with the eponymous Kleismic (aka [[Hanson]]) temperament and its extensions. | | This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth ([[3/2]]), an octave above. This is the range associated with the eponymous Kleismic (aka [[Hanson]]) temperament and its extensions. |
|
| |
|
| Hypohard p-chro smitonic edos include [[15edo]], [[19edo]], and [[34edo]]. | | Hypohard edos include [[15edo]], [[19edo]], and [[34edo]]. |
| The sizes of the generator, large step and small step of p-chro smitonic are as follows in various hypohard p-chro smitonic tunings: | | The sizes of the generator, large step and small step of 4L 7s are as follows in various hypohard tunings: |
| {| class="wikitable right-2 right-3 right-4" | | {| class="wikitable right-2 right-3 right-4" |
| |- | | |- |
Line 266: |
Line 77: |
| | 6/5 | | | 6/5 |
| |- | | |- |
| | L (octave - 3g) | | | L ({{nowrap|octave − 3g}}) |
| | 2\15, 160.00 | | | 2\15, 160.00 |
| | 3\19, 189.47 | | | 3\19, 189.47 |
Line 272: |
Line 83: |
| | 10/9, 11/10 (in 15edo) | | | 10/9, 11/10 (in 15edo) |
| |- | | |- |
| | s (4g - octave) | | | s ({{nowrap|4g − octave}}) |
| | 1\15, 80.00 | | | 1\15, 80.00 |
| | 1\19, 63.16 | | | 1\19, 63.16 |
Line 280: |
Line 91: |
|
| |
|
| === Parahard === | | === Parahard === |
| Parahard tunings of p-chro smitonic have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢. | | Parahard tunings of 4L 7s have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢. |
|
| |
|
| The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone. | | The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone. |
|
| |
|
| Parahard p-chro smitonic edos include [[19edo]], 23[[23edo|edo]], and [[42edo]]. | | Parahard edos include [[19edo]], 23[[23edo|edo]], and [[42edo]]. |
| The sizes of the generator, large step and small step of p-chro smitonic are as follows in various parahard p-chro smitonic tunings: | | The sizes of the generator, large step and small step of 4L 7s are as follows in various parahard tunings: |
| {| class="wikitable right-2 right-3 right-4" | | {| class="wikitable right-2 right-3 right-4" |
| |- | | |- |
| ! | | ! |
| ![[19edo]] (hard) | | ! [[19edo]] (hard) |
| ![[23edo]] (superhard) | | ! [[23edo]] (superhard) |
| ! [[42edo]] (parahard) | | ! [[42edo]] (parahard) |
| ! Some JI approximations | | ! Some JI approximations |
Line 300: |
Line 111: |
| | 6/5 | | | 6/5 |
| |- | | |- |
| | L (octave - 3g) | | | L ({{nowrap|octave − 3g}}) |
| | 3\19, 189.47 | | | 3\19, 189.47 |
| | 4\23, 208.70 | | | 4\23, 208.70 |
Line 306: |
Line 117: |
| | 10/9, 9/8 | | | 10/9, 9/8 |
| |- | | |- |
| | s (4g - octave) | | | s ({{nowrap|4g − octave}}) |
| | 1\19, 63.16 | | | 1\19, 63.16 |
| | 1\23, 52.17 | | | 1\23, 52.17 |
Line 313: |
Line 124: |
| |} | | |} |
|
| |
|
| === Hyperhard === | | === Hyperhard=== |
| Hyperhard tunings of p-chro smitonic have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢. | | Hyperhard tunings of 4L 7s have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢. |
|
| |
|
| The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above. | | The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above. |
| These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone. | | These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone. |
|
| |
|
| Hyperhard p-chro smitonic edos include [[23edo]], [[31edo]], and [[27edo]]. | | Hyperhard edos include [[23edo]], [[31edo]], and [[27edo]]. |
| The sizes of the generator, large step and small step of p-chro smitonic are as follows in various hyperhard p-chro smitonic tunings: | | The sizes of the generator, large step and small step of 4L 7s are as follows in various hyperhard tunings: |
| {| class="wikitable right-2 right-3 right-4" | | {| class="wikitable right-2 right-3 right-4" |
| |- | | |- |
Line 335: |
Line 146: |
| | 6/5 | | | 6/5 |
| |- | | |- |
| | L (octave - 3g) | | | L ({{nowrap|octave − 3g}}) |
| | 4\23, 208.70 | | | 4\23, 208.70 |
| | 6\31, 232.26 | | | 6\31, 232.26 |
Line 341: |
Line 152: |
| | 8/7, 9/8 | | | 8/7, 9/8 |
| |- | | |- |
| | s (4g - octave) | | | s ({{nowrap|4g − octave}}) |
| | 1\23, 52.17 | | | 1\23, 52.17 |
| | 1\31, 38.71 | | | 1\31, 38.71 |
| | 1\27, 44.44 | | | 1\27, 44.44 |
| | 36/35, 45/44 | | | 36/35, 45/44 |
| |}
| |
|
| |
| == Modes ==
| |
| The names are based on smitonic modes, modified with the "super-" prefix, with thematic additions, as there are an extra 4 modes available.
| |
|
| |
| {| class="wikitable center-all"
| |
| |-
| |
| ! Mode
| |
| ! [[Modal UDP Notation|UDP]]
| |
| ! Name
| |
| |-
| |
| | LsLssLssLss
| |
| | <nowiki>10|0</nowiki>
| |
| | Supernerevarine
| |
| |-
| |
| | LssLsLssLss
| |
| | <nowiki>9|1</nowiki>
| |
| | Supervivecan
| |
| |-
| |
| | LssLssLsLss
| |
| | <nowiki>8|2</nowiki>
| |
| | Superbaardauan
| |
| |-
| |
| | LssLssLssLs
| |
| | <nowiki>7|3</nowiki>
| |
| | Superlorkhanic
| |
| |-
| |
| | sLsLssLssLs
| |
| | <nowiki>6|4</nowiki>
| |
| | Supervvardenic
| |
| |-
| |
| | sLssLsLssLs
| |
| | <nowiki>5|5</nowiki>
| |
| | Supersothic
| |
| |-
| |
| | sLssLssLsLs
| |
| | <nowiki>4|6</nowiki>
| |
| | Supernumidian
| |
| |-
| |
| | sLssLssLssL
| |
| | <nowiki>3|7</nowiki>
| |
| | Superkagrenacan
| |
| |-
| |
| | ssLsLssLssL
| |
| | <nowiki>2|8</nowiki>
| |
| | Supernecromic
| |
| |-
| |
| | ssLssLsLssL
| |
| | <nowiki>1|9</nowiki>
| |
| | Superalmalexian
| |
| |-
| |
| | ssLssLssLsL
| |
| | <nowiki>0|10</nowiki>
| |
| | Superdagothic
| |
| |} | | |} |
|
| |
|
| == Temperaments == | | == Temperaments == |
|
| |
| == Scales == | | == Scales == |
| * [[Oregon11]] | | * [[Oregon11]] |
Line 413: |
Line 169: |
|
| |
|
| == Scale tree == | | == Scale tree == |
| The spectrum looks like this:
| | {{MOS tuning spectrum |
| {| class="wikitable center-all"
| | | 6/5 = [[Oregon]] |
| ! colspan="6" rowspan="2" | Generator
| | | 10/7 = [[Orgone]] |
| ! colspan="2" | Cents
| | | 11/7 = [[Magicaltet]] |
| ! rowspan="2" | L
| | | 13/8 = Golden superklesimic |
| ! rowspan="2" | s
| | | 5/3 = [[Superkleismic]] |
| ! rowspan="2" | L/s
| | | 7/3 = [[Catalan]] |
| ! rowspan="2" | Comments
| | | 13/5 = [[Countercata]] |
| |-
| | | 8/3 = [[Hanson]]/[[cata]] |
| ! Chroma-positive
| | | 11/4 = [[Catakleismic]] |
| ! Chroma-negative
| | | 10/3 = [[Parakleismic]] |
| |-
| | | 9/2 = [[Oolong]] |
| | 8\11 || || || || || || 872.727 || 327.273 || 1 || 1 || 1.000 ||
| | | 5/1 = [[Starlingtet]] |
| |-
| | | 6/1 = [[Myna]] |
| | || || || || || 43\59 || 874.576 || 325.424 || 6 || 5 || 1.200 || Oregon
| | }} |
| |-
| | |
| | || || || || 35\48 || || 875.000 || 325.000 || 5 || 4 || 1.250 ||
| | == Gallery == |
| |-
| | [[File:19EDO_Kleistonic_cheat_sheet.png|825x825px|thumb|Cheat sheet for 19EDO, a hard tuning for 4L 7s (or kleistonic).|alt=|left]] |
| | || || || || || 62\85 || 875.294 || 324.706 || 9 || 7 || 1.286 ||
| |
| |-
| |
| | || || || 27\37 || || || 875.676 || 324.324 || 4 || 3 || 1.333 ||
| |
| |-
| |
| | || || || || || 73\100 || 876.000 || 324.000 || 11 || 8 || 1.375 ||
| |
| |-
| |
| | || || || || 46\63 || || 876.190 || 323.810 || 7 || 5 || 1.400 ||
| |
| |-
| |
| | || || || || || 65\89 || 876.404 || 323.596 || 10 || 7 || 1.428 || Orgone
| |
| |- | |
| | || || 19\26 || || || || 876.923 || 323.077 || 3 || 2 || 1.500 || L/s = 3/2
| |
| |-
| |
| | || || || || || 68\93 || 877.419 || 322.581 || 11 || 7 || 1.571 || Magicaltet
| |
| |-
| |
| | || || || || 49\67 || || 877.612 || 322.388 || 8 || 5 || 1.600 ||
| |
| |-
| |
| | || || || || || 79\108 || 877.778 || 322.222 || 13 || 8 || 1.625 || Golden superkleismic
| |
| |-
| |
| | || || || 30\41 || || || 878.049 || 321.951 || 5 || 3 || 1.667 || Superkleismic
| |
| |-
| |
| | || || || || || 71\97 || 878.351 || 321.649 || 12 || 7 || 1.714 ||
| |
| |-
| |
| | || || || || 41\56 || || 878.571 || 321.429 || 7 || 4 || 1.750 ||
| |
| |-
| |
| | || || || || || 52\71 || 878.873 || 321.127 || 9 || 5 || 1.800 ||
| |
| |-
| |
| | || 11\15 || || || || || 880.000 || 320.000 || 2 || 1 || 2.000 || Basic p-chro smitonic<br>(Generators smaller than this are proper)
| |
| |-
| |
| | || || || || || 47\64 || 881.250 || 318.750 || 9 || 4 || 2.250 ||
| |
| |-
| |
| | || || || || 36\49 || || 881.633 || 318.367 || 7 || 3 || 2.333 || Catalan
| |
| |-
| |
| | || || || || || 61\83 || 881.928 || 318.072 || 12 || 5 || 2.400 ||
| |
| |-
| |
| | || || || 25\34 || || || 882.353 || 317.647 || 5 || 2 || 2.500 ||
| |
| |-
| |
| | || || || || || 64\87 || 882.759 || 317.241 || 13 || 5 || 2.600 || Countercata
| |
| |-
| |
| | || || || || 39\53 || || 883.019 || 316.981 || 8 || 3 || 2.667 || Hanson/cata
| |
| |-
| |
| | || || || || || 53\72 || 883.333 || 316.667 || 11 || 4 || 2.750 || Catakleismic
| |
| |- | |
| | || || 14\19 || || || || 884.211 || 315.789 || 3 || 1 || 3.000 || L/s = 3/1
| |
| |-
| |
| | || || || || || 45\61 || 885.246 || 314.754 || 10 || 3 || 3.333 || Parakleismic
| |
| |-
| |
| | || || || || 31\42 || || 885.714 || 314.286 || 7 || 2 || 3.500 ||
| |
| |-
| |
| | || || || || || 48\65 || 886.154 || 313.846 || 11 || 3 || 3.667 ||
| |
| |-
| |
| | || || || 17\23 || || || 886.957 || 313.043 || 4 || 1 || 4.000 ||
| |
| |-
| |
| | || || || || || 37\50 || 888.000 || 312.000 || 9 || 2 || 4.500 || Oolong
| |
| |-
| |
| | || || || || 20\27 || || 888.889 || 311.111 || 5 || 1 || 5.000 || Starlingtet
| |
| |-
| |
| | || || || || || 23\31 || 890.323 || 309.677 || 6 || 1 || 6.000 || Myna
| |
| |-
| |
| | 3\4 || || || || || || 900.000 || 300.000 || 1 || 0 || → inf || | |
| |}
| |
|
| |
|
| [[Category:11-tone scales]] | | [[Category:11-tone scales]] |
| [[Category:Kleistonic]] <!-- main article --> | | [[Category:Kleistonic]] <!-- main article --> |