56edo: Difference between revisions

Francium (talk | contribs)
m +categories
Music: Add Bryan Deister's ''Waltz in 56edo'' (2025)
 
(26 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|56}}  
{{ED intro}}  


== Theory ==
== Theory ==
56edo shares its near perfect quality of classical major third with [[28edo]], which it doubles, while also adding a superpythagorean 5th that is a convergent towards the [[Metallic harmonic series|bronze metallic mean]], following [[17edo]] and preceding [[185edo]]. Because it contains 28edo's major third and also has a step size very close to the syntonic comma, 56edo contains very accurate approximations of both the classic major third [[5/4]] and the Pythagorean major third [[81/64]]. Unfortunately, this "Pythagorean major third" is not the major third as is stacked by fifths in 56edo.  
56edo shares its near perfect quality of classical major third with [[28edo]], which it doubles, while also adding a superpythagorean 5th that is a convergent towards the [[Metallic harmonic series|bronze metallic mean]], following [[17edo]] and preceding [[185edo]]. Because it contains 28edo's major third and also has a step size very close to the syntonic comma, 56edo contains very accurate approximations of both the classic major third [[5/4]] and the Pythagorean major third [[81/64]]. Unfortunately, this "Pythagorean major third" is not the major third as is stacked by fifths in 56edo.  
One step of 56edo is the closest direct approximation to the syntonic comma, [[81/80]], with the number of directly approximated syntonic commas per octave being 55.7976. (However, note that by [[patent val]] mapping, 56edo actually maps the syntonic comma inconsistently, to two steps.) [[Barium]] temperament realizes this proximity through regular temperament theory, and is supported by notable edos like [[224edo]], [[1848edo]], and [[2520edo]], which is a highly composite edo.


56edo can be used to tune [[hemithirds]], [[superkleismic]], [[sycamore]] and [[keen]] temperaments, and using {{val| 56 89 130 158 }} (56d) as the equal temperament val, for [[pajara]]. It provides the [[optimal patent val]] for 7-, 11- and 13-limit [[sycamore]], and the 11-limit 56d val is close to the [[POTE tuning]] for 11-limit pajara.  
56edo can be used to tune [[hemithirds]], [[superkleismic]], [[sycamore]] and [[keen]] temperaments, and using {{val| 56 89 130 158 }} (56d) as the equal temperament val, for [[pajara]]. It provides the [[optimal patent val]] for 7-, 11- and 13-limit [[sycamore]], and the 11-limit 56d val is close to the [[POTE tuning]] for 11-limit pajara.  
Line 11: Line 13:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 56 factors into 2<sup>3</sup> × 7, 56edo has subset edos {{EDOs| 2, 4, 7, 8, 14, 28 }}.
Since 56 factors into {{nowrap|2<sup>3</sup> &times; 7}}, 56edo has subset edos {{EDOs| 2, 4, 7, 8, 14, 28 }}.
 
One step of 56edo is the closest direct approximation to the syntonic comma, [[81/80]], with the unrounded value being 55.7976. Barium temperament realizes this proximity through regular temperament theory, and is supported by notable edos like [[224edo]], [[1848edo]], and [[2520edo]], which is a highly composite edo.  


== Intervals ==
== Intervals ==
{| class="wikitable center-all right-2 left-3"
{| class="wikitable center-all right-2 left-3"
|-
! #
! #
! Cents
! Cents
! Approximate Ratios<nowiki>*</nowiki>
! Approximate ratios*
! [[Ups and downs notation|Ups and Downs Notation]]
! [[Ups and downs notation]]
|-
|-
| 0
| 0
| 0.000
| 0.0
| [[1/1]]
| [[1/1]]
| {{UDnote|step=0}}
| {{UDnote|step=0}}
|-
|-
| 1
| 1
| 21.429
| 21.4
| ''[[49/48]]'', [[64/63]]
| ''[[49/48]]'', [[55/54]], [[56/55]], [[64/63]]
| {{UDnote|step=1}}
| {{UDnote|step=1}}
|-
|-
| 2
| 2
| 42.857
| 42.9
| ''[[28/27]]'', [[50/49]], ''[[81/80]]''
| ''[[28/27]]'', [[40/39]], [[45/44]], [[50/49]], ''[[81/80]]''
| {{UDnote|step=2}}
| {{UDnote|step=2}}
|-
|-
| 3
| 3
| 64.286
| 64.3
| [[25/24]], ''[[36/35]]'', ''[[33/32]]''
| [[25/24]], ''[[36/35]]'', ''[[33/32]]''
| {{UDnote|step=3}}
| {{UDnote|step=3}}
|-
|-
| 4
| 4
| 85.714
| 85.7
| [[21/20]], [[22/21]]
| [[19/18]], [[20/19]], [[21/20]], [[22/21]]
| {{UDnote|step=4}}
| {{UDnote|step=4}}
|-
|-
| 5
| 5
| 107.143
| 107.1
| [[16/15]]
| [[16/15]], [[17/16]], [[18/17]]
| {{UDnote|step=5}}
| {{UDnote|step=5}}
|-
|-
| 6
| 6
| 128.571
| 128.6
| [[15/14]], [[13/12]], [[14/13]]
| [[15/14]], [[13/12]], [[14/13]]
| {{UDnote|step=6}}
| {{UDnote|step=6}}
|-
|-
| 7
| 7
| 150.000
| 150.0
| [[12/11]]
| [[12/11]]
| {{UDnote|step=7}}
| {{UDnote|step=7}}
|-
|-
| 8
| 8
| 171.429
| 171.4
| ''[[10/9]]'', [[11/10]]
| ''[[10/9]]'', [[11/10]], [[21/19]]
| {{UDnote|step=8}}
| {{UDnote|step=8}}
|-
|-
| 9
| 9
| 192.857
| 192.9
| [[28/25]]
| [[19/17]], [[28/25]]
| {{UDnote|step=9}}
| {{UDnote|step=9}}
|-
|-
| 10
| 10
| 214.286
| 214.3
| [[9/8]]
| [[9/8]], [[17/15]]
| {{UDnote|step=10}}
| {{UDnote|step=10}}
|-
|-
| 11
| 11
| 235.714
| 235.7
| [[8/7]]
| [[8/7]]
| {{UDnote|step=11}}
| {{UDnote|step=11}}
|-
|-
| 12
| 12
| 257.143
| 257.1
| [[7/6]], [[15/13]]
| [[7/6]]
| {{UDnote|step=12}}
| {{UDnote|step=12}}
|-
|-
| 13
| 13
| 278.571
| 278.6
| [[75/64]], [[13/11]]
| [[13/11]], [[20/17]]
| {{UDnote|step=13}}
| {{UDnote|step=13}}
|-
|-
| 14
| 14
| 300.000
| 300.0
| [[25/21]]
| [[19/16]], [[25/21]]
| {{UDnote|step=14}}
| {{UDnote|step=14}}
|-
|-
| 15
| 15
| 321.429
| 321.4
| [[6/5]]
| [[6/5]]
| {{UDnote|step=15}}
| {{UDnote|step=15}}
|-
|-
| 16
| 16
| 342.857
| 342.9
| [[11/9]], [[39/32]]
| [[11/9]], [[17/14]]
| {{UDnote|step=16}}
| {{UDnote|step=16}}
|-
|-
| 17
| 17
| 364.286
| 364.3
| [[27/22]], [[16/13]], [[26/21]]
| [[16/13]], [[21/17]], [[26/21]]
| {{UDnote|step=17}}
| {{UDnote|step=17}}
|-
|-
| 18
| 18
| 385.714
| 385.7
| [[5/4]]
| [[5/4]]
| {{UDnote|step=18}}
| {{UDnote|step=18}}
|-
|-
| 19
| 19
| 407.143
| 407.1
| [[14/11]]
| [[14/11]], [[19/12]], [[24/19]]
| {{UDnote|step=19}}
| {{UDnote|step=19}}
|-
|-
| 20
| 20
| 428.571
| 428.6
| [[32/25]], [[33/26]]
| [[32/25]], [[33/26]]
| {{UDnote|step=20}}
| {{UDnote|step=20}}
|-
|-
| 21
| 21
| 450.000
| 450.0
| ''[[9/7]]'', [[13/10]]
| ''[[9/7]]'', [[13/10]]
| {{UDnote|step=21}}
| {{UDnote|step=21}}
|-
|-
| 22
| 22
| 471.429
| 471.4
| [[21/16]]
| [[17/13]], [[21/16]]
| {{UDnote|step=22}}
| {{UDnote|step=22}}
|-
|-
| 23
| 23
| 492.857
| 492.9
| [[4/3]]
| [[4/3]]
| {{UDnote|step=23}}
| {{UDnote|step=23}}
|-
|-
| 24
| 24
| 514.286
| 514.3
| [[35/26]]
| [[35/26]]
| {{UDnote|step=24}}
| {{UDnote|step=24}}
|-
|-
| 25
| 25
| 535.714
| 535.7
| ''[[27/20]]'', [[15/11]]
| [[15/11]], [[19/14]], [[26/19]], ''[[27/20]]''
| {{UDnote|step=25}}
| {{UDnote|step=25}}
|-
|-
| 26
| 26
| 557.143
| 557.1
| [[11/8]]
| [[11/8]]
| {{UDnote|step=26}}
| {{UDnote|step=26}}
|-
|-
| 27
| 27
| 578.571
| 578.6
| [[7/5]]
| [[7/5]]
| {{UDnote|step=27}}
| {{UDnote|step=27}}
|-
|-
| 28
| 28
| 600.000
| 600.0
| [[45/32]], [[64/45]]
| [[17/12]], [[24/17]]
| {{UDnote|step=28}}
| {{UDnote|step=28}}
|-
|-
Line 172: Line 173:
| …
| …
|}
|}
<nowiki>*</nowiki> The following table assumes the [[patent val]] {{val| 56 89 130 157 194 207 }}. Other approaches are possible. Inconsistent intervals are marked ''italic''.
<nowiki/>* The following table assumes the 19-limit [[patent val]]; other approaches are possible. Inconsistent intervals are marked in ''italics''.
 
== Notation ==
 
=== Ups and downs notation ===
 
56edo can be notated using [[ups and downs notation|ups and downs]]. Trup is equivalent to quudsharp, trudsharp is equivalent to quup, etc.
{{Sharpness-sharp7a}}
 
Alternatively, sharps and flats with arrows borrowed from [[Helmholtz–Ellis notation]] can be used:
{{Sharpness-sharp7}}
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as [[63edo#Sagittal notation|63-EDO]].
 
==== Evo flavor ====
<imagemap>
File:56-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 575 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[64/63]]
rect 120 80 220 106 [[81/80]]
rect 220 80 340 106 [[33/32]]
default [[File:56-EDO_Evo_Sagittal.svg]]
</imagemap>
 
==== Revo flavor ====
<imagemap>
File:56-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 543 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[64/63]]
rect 120 80 220 106 [[81/80]]
rect 220 80 340 106 [[33/32]]
default [[File:56-EDO_Revo_Sagittal.svg]]
</imagemap>
 
== Approximation to JI ==
{{Q-odd-limit intervals}}


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 187: Line 229:
| 2.3
| 2.3
| {{monzo| 89 -56 }}
| {{monzo| 89 -56 }}
| [{{val| 56 89 }}]
| {{mapping| 56 89 }}
| -1.64
| −1.64
| 1.63
| 1.63
| 7.64
| 7.64
Line 194: Line 236:
| 2.3.5
| 2.3.5
| 2048/2025, 1953125/1889568
| 2048/2025, 1953125/1889568
| [{{val| 56 89 130 }}]
| {{mapping| 56 89 130 }}
| -1.01
| −1.01
| 1.61
| 1.61
| 7.50
| 7.50
Line 201: Line 243:
| 2.3.5.7
| 2.3.5.7
| 686/675, 875/864, 1029/1024
| 686/675, 875/864, 1029/1024
| [{{val| 56 89 130 157 }}]
| {{mapping| 56 89 130 157 }}
| -0.352
| −0.352
| 1.80
| 1.80
| 8.38
| 8.38
Line 208: Line 250:
| 2.3.5.7.11
| 2.3.5.7.11
| 100/99, 245/242, 385/384, 686/675
| 100/99, 245/242, 385/384, 686/675
| [{{val| 56 89 130 157 194 }}]
| {{mapping| 56 89 130 157 194 }}
| -0.618
| −0.618
| 1.69
| 1.69
| 7.90
| 7.90
Line 215: Line 257:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 91/90, 100/99, 169/168, 245/242, 385/384
| 91/90, 100/99, 169/168, 245/242, 385/384
| [{{val| 56 89 130 157 194 207 }}]
| {{mapping| 56 89 130 157 194 207 }}
| -0.299
| −0.299
| 1.70
| 1.70
| 7.95
| 7.95
Line 223: Line 265:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+ Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated Ratio<br>(Reduced)
! Associated<br>ratio*
! Temperament
! Temperament
|-
|-
Line 282: Line 324:
| 23\56<br>(1\56)
| 23\56<br>(1\56)
| 492.86<br>(21.43)
| 492.86<br>(21.43)
| 4/3<br>(?)
| 4/3<br>(250/243)
| [[Sevond]]
| [[Sevond]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Scales ==
== Scales ==
* [[Supra7]]
* [[Supra7]]
* [[Supra12]]  
* [[Supra12]]
* Subsets of [[echidnic]][16] (6u8d):
** Frankincense{{idio}} (this is the original/default tuning): 364.3 - 492.9 - 707.1 - 835.7 - 1200.0
** Quasi-[[equipentatonic]]: 257.1 - 492.9 - 707.1 - 964.3 - 1200.0
** Sakura-like scale containing [[phi]]: 107.1 - 492.9 - 707.1 - 835.7 - 1200.0
* Subsets of [[sevond]][14]
** Evened minor pentatonic (approximated from [[72edo]]): 321.4 - 492.9 - 685.7 - 1028.6 - 1200.0


== Instruments ==
[[Lumatone mapping for 56edo|Lumatone mappings for 56edo]] are available.
== Music ==
== Music ==
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/o0imqFPDh9k ''56edo''] (2023)
* [https://www.youtube.com/watch?v=xkfao6yGKGE ''Curious Light - DOORS (microtonal cover in 56edo)''] (2025)
* [https://www.youtube.com/watch?v=qzMOnS-lgWs ''Waltz in 56edo''] (2025)
; [[Budjarn Lambeth]]
* [https://www.youtube.com/watch?v=VsBXIvBZY6A ''56edo Track (Echidnic16 Scale)''] (2025)
; [[Claudi Meneghin]]
; [[Claudi Meneghin]]
* [https://www.youtube.com/watch?v=xWKa59qDkXQ ''Prelude & Fugue in Pajara''] (2020) – in pajara, 56edo tuning
* [https://www.youtube.com/watch?v=xWKa59qDkXQ ''Prelude & Fugue in Pajara''] (2020) – in pajara, 56edo tuning
Line 296: Line 356:
* [https://www.youtube.com/watch?v=s1h083BRWXU ''Canon 3-in-1 on a Ground''] (2020)
* [https://www.youtube.com/watch?v=s1h083BRWXU ''Canon 3-in-1 on a Ground''] (2020)


== See also ==
* [[Lumatone mapping for 56edo]]   
[[Category:Hemithirds]]
[[Category:Hemithirds]]
[[Category:Keen]]
[[Category:Keen]]
[[Category:Listen]]
[[Category:Pajara]]
[[Category:Pajara]]
[[Category:Superkleismic]]
[[Category:Superkleismic]]
[[Category:Sycamore]]
[[Category:Sycamore]]
[[Category:Listen]]