137edo: Difference between revisions

Francium (talk | contribs)
+regular temperament properties
ArrowHead294 (talk | contribs)
mNo edit summary
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|137}}
{{ED intro}}


== Theory ==
== Theory ==
137edo provides the [[optimal patent val]] for 7-limit [[orwell]] temperament and for the planar temperament tempering out [[2430/2401]]. It tempers out 2109375/2097152 ([[semicomma]]) in the 5-limit; [[225/224]] and [[1728/1715]] in the 7-limit; [[243/242]] in the 11-limit; [[351/350]] in the 13-limit; [[375/374]] and [[442/441]] in the 17-limit; and [[324/323]] and [[495/494]] in the 19-limit.  
137edo is a fairly accurate 5-limit temperament and also a strong no-7 19-limit temperament. The equal temperament [[tempering out|tempers out]] 2109375/2097152 ([[semicomma]]), {{monzo| -13 17 -6 }} ([[graviton]]), {{monzo| 8 14 -13 }} ([[parakleisma]]), and {{monzo| -29 -11 20 }} (gammic comma) in the 5-limit. Using the [[patent val]], it tempers out [[225/224]], [[1728/1715]], 2430/2401 in the 7-limit; [[243/242]] in the 11-limit; [[351/350]] in the 13-limit; [[375/374]] and [[442/441]] in the 17-limit; and [[324/323]] and [[495/494]] in the 19-limit. It provides the [[optimal patent val]] for 7-limit [[orwell]] temperament and for the planar temperament [[tempering out]] [[2430/2401]].  


=== Prime harmonics ===
=== Prime harmonics ===
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 137 is the 33rd [[prime number]], 137edo has no proper divisors aside from 1.
137edo is the 33rd [[prime edo]], following [[131edo]] and before [[139edo]]. [[274edo]], which doubles it, provides a correction for its approximation to harmonic 7.  


[[274edo]], which doubles it, provides a correction for its approximation to harmonic 7.
== Regular temperament properties ==
 
==Regular temperament properties==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|-
|2.3
! rowspan="2" | [[Subgroup]]
|{{monzo|-217 137}}
! rowspan="2" | [[Comma list]]
|{{val|137 217}}
! rowspan="2" | [[Mapping]]
| 0.3865
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -217 137 }}
| {{mapping| 137 217 }}
| +0.3865
| 0.3866
| 0.3866
| 4.41
| 4.41
|-
|-
|2.3.5
| 2.3.5
|{{monzo|-21 3 7}}, {{monzo|-13 17 -6}}
| {{monzo| -21 3 7 }}, {{monzo| -13 17 -6 }}
|{{val|137 217 318}}
| {{mapping| 137 217 318 }}
| 0.3887
| +0.3887
| 0.3157
| 0.3157
| 3.60
| 3.60
|}
|}
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|3\137
| 3\137
|26.28
| 26.28
|1594323/1562500
| 1594323/1562500
|[[Sfourth]] (5-limit)
| [[Sfourth]] (5-limit)
|-
| 1
| 4\137
| 35.04
| 1990656/1953125
| [[Gammic]] (137d) / [[gammy]] (137)
|-
|-
|1
| 1
|4\137
| 31\137
|35.04
| 271.53
|1990656/1953125
| 75/64
|[[Gammic]]
| [[Orwell]] (137e) / [[sabric]] (137d)
|-
|-
|1
| 1
|31\137
| 36\137
|271.53
| 315.33
|75/64
| 6/5
|[[Orson]]
| [[Parakleismic]]
|-
|-
|1
| 1
|36\137
| 53\137
|315.33
| 464.23
|6/5
| 72/55
|[[Parakleismic]]
| [[Borwell]]
|-
|-
|1
| 1
|59\137
| 59\137
|516.79
| 516.79
|27/20
| 27/20
|[[Gravity]]
| [[Marvo]] (137)
|-
|-
|1
| 1
|63\137
| 63\137
|551.82
| 551.82
|9765625/7077888
| 11/8
|[[Emka]] (5-limit)
| [[Emka]] (137d) / [[emkay]] (137)
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Diagrams ==
== Diagrams ==