Augmented family: Difference between revisions
Update keys |
Intro to some of these temps |
||
(25 intermediate revisions by 7 users not shown) | |||
Line 3: | Line 3: | ||
| de = Übermässige Temperaturen | | de = Übermässige Temperaturen | ||
}} | }} | ||
The | {{Technical data page}} | ||
The '''augmented family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the diesis a.k.a. augmented comma, [[128/125]], the amount by which three [[5/4]] major thirds fall short of an [[2/1|octave]], and so identifies the major third with the 1/3-octave. Hence it has the same 400-cent 5/4-approximations as [[12edo]]. | |||
== Augmented == | == Augmented == | ||
The [[period]] is 1/3 octave, and this is what is used for 5/4, the classical major third. The [[generator]] can be taken as a fifth or a semitone, and [[12edo]], with its excellent fifth, is an obvious tuning for [[5-limit]] augmented, though a sharper fifth might be preferred to go with the sharp third. Its [[ploidacot]] is triploid monocot. | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 14: | Line 17: | ||
: mapping generators: ~5/4, ~3 | : mapping generators: ~5/4, ~3 | ||
[[Optimal tuning]] ([[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 399.0128{{c}}, ~3/2 = 704.8937{{c}} (~16/15 = 93.1320{{c}}) | |||
: [[error map]]: {{val| -2.962 -0.023 +6.776 }} | |||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 705.0691{{c}} (~16/15 = 94.9309{{c}}) | |||
: error map: {{val| 0.000 +3.114 +13.686 }} | |||
{{Optimal ET sequence|legend=1| 3, 12, 27, 39, 51c, 90cc }} | {{Optimal ET sequence|legend=1| 3, 9, 12, 27, 39, 51c, 90cc }} | ||
[[Badness]]: 0. | [[Badness]] (Sintel): 0.523 | ||
=== Overview to extensions === | === Overview to extensions === | ||
The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which [[7-limit]] family member we are looking at. | The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which [[7-limit]] family member we are looking at. Augene adds [[64/63]], august [[36/35]], hexe [[256/245]], hemiaug [[245/243]], and triforce [[49/48]]. Hexe splits the [[period]] to 1/6 octave, and hemiaug the [[generator]], giving quartertones instead of semitones. | ||
== Augene == | |||
{{Main| Augene }} | |||
Augene tempers out 64/63 and 126/125. It may be described as the {{nowrap| 12 & 15 }} temperament. [[27edo]] and [[39edo]] in the 39d val make for good tunings. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: | [[Comma list]]: 64/63, 126/125 | ||
{{Mapping|legend=1| 3 0 7 | {{Mapping|legend=1| 3 0 7 18 | 0 1 0 -2 }} | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 398.7461{{c}}, ~3/2 = 707.0335{{c}} (~21/20 = 90.4587{{c}}) | |||
: [[error map]]: {{val| -3.762 +1.317 +4.909 +2.060 }} | |||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 709.3249{{c}} (~21/20 = 90.6751{{c}}) | |||
: error map: {{val| 0.000 +7.370 +13.686 +12.524 }} | |||
{{Optimal ET sequence|legend=1| 12, 27, 39d, 66cd }} | |||
[[Badness]] (Sintel): 0.628 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: | Comma list: 56/55, 64/63, 100/99 | ||
Mapping: {{mapping| 3 0 7 | Mapping: {{mapping| 3 0 7 18 20 | 0 1 0 -2 -2 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.4962{{c}}, ~3/2 = 708.5030{{c}} (~21/20 = 88.4895{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 711.6031{{c}} (~21/20 = 88.3969{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 12, 15, 27e }} | ||
Badness: 0. | Badness (Sintel): 0.648 | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 40/39, 56/55, 64/63, 66/65 | ||
Mapping: {{mapping| 3 0 7 | Mapping: {{mapping| 3 0 7 18 20 16 | 0 1 0 -2 -2 -1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.0488{{c}}, ~3/2 = 708.5402{{c}} (~21/20 = 87.5574{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.6704{{c}} (~21/20 = 87.3296{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 12f, 15, 27eff }} | ||
Badness: 0. | Badness (Sintel): 0.859 | ||
==== | ==== Ogene ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 56/55, 64/63, 91/90, 100/99 | ||
Mapping: {{mapping| 3 0 7 - | Mapping: {{mapping| 3 0 7 18 20 -8 | 0 1 0 -2 -2 4 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.6473{{c}}, ~3/2 = 710.1987{{c}} (~21/20 = 87.0959{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.5057{{c}} (~21/20 = 87.4943{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 12, 15, 27e, 69bceef }} | ||
Badness: 0. | Badness (Sintel): 0.946 | ||
== | ==== Agene ==== | ||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 56/55, 64/63, 78/77, 100/99 | |||
{{ | Mapping: {{mapping| 3 0 7 18 20 35 | 0 1 0 -2 -2 -5 }} | ||
{{ | Optimal tunings: | ||
* WE: ~5/4 = 398.5229{{c}}, ~3/2 = 707.0562{{c}} (~21/20 = 89.9897{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 710.1903{{c}} (~21/20 = 89.8097{{c}}) | |||
{{Optimal ET sequence|legend=0| 12f, 27e, 66cdeeef }} | |||
Badness (Sintel): 0.955 | |||
=== Eugene === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 55/54, 64/63, 77/75 | |||
Mapping: {{mapping| 3 0 7 18 -4 | 0 1 0 -2 3 }} | |||
Optimal tunings: | |||
* WE: ~5/4 = 399.1743{{c}}, ~3/2 = 712.6763{{c}} (~21/20 = 85.6723{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 713.9414{{c}} (~21/20 = 86.0586{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 12e, 15, 27, 42 }} | ||
Badness (Sintel): 1.18 | |||
== August == | |||
August tempers out 36/35 and 225/224. It may be described as the {{nowrap| 9 & 12 }} temperament. Unlike augene, august calls for a flat tuning of the fifth, and besides [[12edo]], [[21edo]] is among the possible tunings. | |||
[[Subgroup]]: 2.3.5.7 | |||
Subgroup: 2.3.5.7 | |||
Comma list: | [[Comma list]]: 36/35, 128/125 | ||
{{Mapping|legend=1| 3 0 7 -1 | 0 1 0 2 }} | |||
Optimal tuning ( | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 399.1036{{c}}, ~3/2 = 694.4509{{c}} (~16/15 = 103.7564{{c}}) | |||
: [[error map]]: {{val| -2.689 -10.193 +7.412 +15.594 }} | |||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 694.6812{{c}} (~16/15 = 105.3188{{c}}) | |||
: error map: {{val| 0.000 -7.274 +13.686 +20.537 }} | |||
{{Optimal ET sequence|legend=1| | {{Optimal ET sequence|legend=1| 9, 12, 45cd }} | ||
Badness: 0. | [[Badness]] (Sintel): 0.670 | ||
=== | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Comma list: | Comma list: 36/35, 45/44, 56/55 | ||
Mapping: {{mapping| 3 0 7 | Mapping: {{mapping| 3 0 7 -1 1 | 0 1 0 2 2 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.9225{{c}}, ~3/2 = 690.6486{{c}} (~16/15 = 107.1966{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 690.8519{{c}} (~16/15 = 109.1481{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 9, 12, 21, 33e }} | ||
Badness: 0. | Badness (Sintel): 0.668 | ||
==== | ==== 13-limit ==== | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 27/26, 36/35, 45/44, 56/55 | ||
Mapping: {{mapping| 3 0 7 | Mapping: {{mapping| 3 0 7 -1 1 -3 | 0 1 0 2 2 3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 399.0956{{c}}, ~3/2 = 687.2261{{c}} (~16/15 = 110.9651{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 687.5057{{c}} (~16/15 = 112.4943{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 9, 12f, 21, 33ef }} | ||
Badness: 0. | Badness (Sintel): 0.762 | ||
=== | ==== Augustus ==== | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: | Comma list: 26/25, 36/35, 45/44, 56/55 | ||
Mapping: {{mapping| 3 0 7 | Mapping: {{mapping| 3 0 7 -1 1 11 | 0 1 0 2 2 0 }} | ||
{{ | Optimal tunings: | ||
* WE: ~5/4 = 400.4230{{c}}, ~3/2 = 686.0809{{c}} (~16/15 = 114.7650{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 685.8446{{c}} (~16/15 = 114.1554{{c}}) | |||
{{Optimal ET sequence|legend=0| 9, 12 }} | |||
Badness (Sintel): 0.919 | |||
== Inflated == | == Inflated == | ||
Line 168: | Line 197: | ||
{{Mapping|legend=1| 3 0 7 -6 | 0 1 0 3 }} | {{Mapping|legend=1| 3 0 7 -6 | 0 1 0 3 }} | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 398.4023{{c}}, ~3/2 = 719.8327{{c}} (~25/24 = 76.9719{{c}}) | |||
[[ | : [[error map]]: {{val| -3.762 +1.317 +4.909 +2.060 }} | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 721.0196{{c}} (~25/24 = 78.9804{{c}}) | |||
: error map: {{val| 0.000 +19.065 +13.686 -5.767 }} | |||
{{Optimal ET sequence|legend=1| 3d, 12d, 15 }} | {{Optimal ET sequence|legend=1| 3d, 12d, 15 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 1.39 | ||
=== 11-limit === | === 11-limit === | ||
Line 183: | Line 214: | ||
Mapping: {{mapping| 3 0 7 -6 -4 | 0 1 0 3 3 }} | Mapping: {{mapping| 3 0 7 -6 -4 | 0 1 0 3 3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.4016{{c}}, ~3/2 = 719.7758{{c}} (~25/24 = 77.0275{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 720.9386{{c}} (~25/24 = 79.0614{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 3de, 12de, 15 }} | ||
Badness: | Badness (Sintel): 1.03 | ||
== Deflated == | == Deflated == | ||
Line 196: | Line 229: | ||
{{Mapping|legend=1| 3 0 7 13 | 0 1 0 -1 }} | {{Mapping|legend=1| 3 0 7 13 | 0 1 0 -1 }} | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 401.9566{{c}}, ~3/2 = 684.9634{{c}} (~16/15 = 118.9497{{c}}) | |||
[[ | : [[error map]]: {{val| +5.870 -11.122 +27.382 -34.224 }} | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 682.2587{{c}} (~16/15 = 117.7413{{c}}) | |||
: error map: {{val| 0.000 -19.696 +13.686 -51.085 }} | |||
{{Optimal ET sequence|legend=1| 3, 9 }} | {{Optimal ET sequence|legend=1| 3, 6b, 9 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 1.50 | ||
=== 11-limit === | === 11-limit === | ||
Line 211: | Line 246: | ||
Mapping: {{mapping| 3 0 7 13 15 | 0 1 0 -1 -1 }} | Mapping: {{mapping| 3 0 7 13 15 | 0 1 0 -1 -1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 402.1799{{c}}, ~3/2 = 683.7477{{c}} (~16/15 = 120.6120{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 680.0162{{c}} (~16/15 = 119.9838{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 3, 6b, 9 }} | ||
Badness: | Badness (Sintel): 1.23 | ||
== Hexe == | == Hexe == | ||
Hexe tempers out 50/49 and may be described as {{nowrap| 6 & 12 }}, viewed as [[6edo|6et]] with an independent generator for prime 3. Its ploidacot is hexaploid monocot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 226: | Line 265: | ||
: mapping generators: ~28/25, ~3 | : mapping generators: ~28/25, ~3 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~28/25 = 199.0488{{c}}, ~3/2 = 707.5815{{c}} (~25/24 = 88.6137{{c}}) | |||
[[ | : [[error map]]: {{val| +5.870 -11.122 +27.382 -34.224 }} | ||
* [[CWE]]: ~28/25 = 200.0000{{c}}, ~3/2 = 708.6907{{c}} (~25/24 = 91.3093{{c}}) | |||
: error map: {{val| 0.000 +6.735 +13.686 +31.174 }} | |||
{{Optimal ET sequence|legend=1| 6, 12, 30d, 42dd, 54cdd }} | {{Optimal ET sequence|legend=1| 6, 12, 30d, 42dd, 54cdd }} | ||
[[Badness]]: | [[Badness]] (Sintel): 1.46 | ||
=== 11-limit === | === 11-limit === | ||
Line 241: | Line 282: | ||
Mapping: {{mapping| 6 0 14 17 21 | 0 1 0 0 0 }} | Mapping: {{mapping| 6 0 14 17 21 | 0 1 0 0 0 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~28/25 = 198.6942{{c}}, ~3/2 = 709.6404{{c}} (~25/24 = 85.1362{{c}}) | |||
* CWE: ~28/25 = 200.0000{{c}}, ~3/2 = 711.8043{{c}} (~25/24 = 88.1957{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6, 12, 30dee, 42ddeee }} | ||
Badness: | Badness (Sintel): 1.27 | ||
=== 13-limit === | === 13-limit === | ||
Line 254: | Line 297: | ||
Mapping: {{mapping| 6 0 14 17 21 13 | 0 1 0 0 0 1 }} | Mapping: {{mapping| 6 0 14 17 21 13 | 0 1 0 0 0 1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~28/25 = 198.4492{{c}}, ~3/2 = 704.4994{{c}} (~25/24 = 89.2973{{c}}) | |||
* CWE: ~28/25 = 200.0000{{c}}, ~3/2 = 706.6050{{c}} (~16/15 = 93.3950{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6f, 12f }} | ||
Badness: | Badness (Sintel): 1.49 | ||
== Triforce == | == Triforce == | ||
[[File:triforce9.jpg|thumb|alt=triforce9.jpg|Lattice of triforce]] | [[File:triforce9.jpg|thumb|alt=triforce9.jpg|Lattice of triforce]] | ||
Triforce tempers out 49/48 and may be described as {{nowrap| 9 & 15 }}. Its ploidacot is triploid alpha-dicot. [[24edo]] and [[39edo]] are among the possible tunings. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 271: | Line 318: | ||
: mapping generators: ~5/4, ~7/4 | : mapping generators: ~5/4, ~7/4 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 399.7480{{c}}, ~7/4 = 952.3507{{c}} (~35/32 = 152.8547{{c}}) | |||
: [[error map]]: {{val| -0.756 +2.746 +11.922 -17.987 }} | |||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~7/4 = 952.7463{{c}} (~35/32 = 152.7463{{c}}) | |||
: error map: {{val| 0.000 +3.538 +13.686 -16.080 }} | |||
{{Optimal ET sequence|legend=1| 6, 9, 15, 24, 39 }} | |||
[[Badness]] (Sintel): 1.39 | |||
[[Badness]]: | |||
=== 11-limit === | === 11-limit === | ||
Line 286: | Line 335: | ||
Mapping: {{mapping| 3 0 7 6 8 | 0 2 0 1 1 }} | Mapping: {{mapping| 3 0 7 6 8 | 0 2 0 1 1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 399.7654{{c}}, ~7/4 = 952.3730{{c}} (~12/11 = 152.8421{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~7/4 = 952.7447{{c}} (~12/11 = 152.7447{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6, 9, 15, 24, 39 }} | ||
Badness: 0. | Badness (Sintel): 0.865 | ||
; Music | ; Music | ||
* [https://cityoftheasleep.bandcamp.com/track/the-triforce-of-courage-24edo ''The Triforce of Courage (24edo)''] by [[Igliashon Jones]] (2018) | * [https://cityoftheasleep.bandcamp.com/track/the-triforce-of-courage-24edo ''The Triforce of Courage (24edo)'']{{dead link}} by [[Igliashon Jones]] (2018) | ||
* [ | * [https://www.chrisvaisvil.com/2-2-1-2-2-1-2-2-1-mode-of-15-edo/ ''2-2-1-2-2-1-2-2-1 mode of 15 edo''] [https://web.archive.org/web/20201127015017/http://micro.soonlabel.com/15-ET/20130831_221of15.mp3 play] by [[Chris Vaisvil]] (2013) | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 303: | Line 354: | ||
Mapping: {{mapping| 3 0 7 6 8 4 | 0 2 0 1 1 3 }} | Mapping: {{mapping| 3 0 7 6 8 4 | 0 2 0 1 1 3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 399.7107{{c}}, ~7/4 = 950.9983{{c}} (~12/11 = 151.5768{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~7/4 = 951.4465{{c}} (~12/11 = 151.4465{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6f, 9, 15, 24 }} | ||
Badness: 0. | Badness (Sintel): 0.837 | ||
; Scales | ; Scales | ||
* [[triphi]], | * [[triphi]], Triforce[9] with L:s = phi | ||
==== Semitriforce ==== | ==== Semitriforce ==== | ||
This extension splits the period into 1/6-octave for ~44/39. Its ploidacot is hexaploid dicot. | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Line 321: | Line 376: | ||
: mapping generators: ~44/39, ~7/4 | : mapping generators: ~44/39, ~7/4 | ||
Optimal | Optimal tunings: | ||
* WE: ~44/39 = 199.8321{{c}}, ~7/4 = 952.5580{{c}} (~40/39 = 46.6024{{c}}) | |||
* CWE: ~44/39 = 200.0000{{c}}, ~7/4 = 953.2005{{c}} (~40/39 = 46.7995{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6, 18bd, 24 }} | ||
Badness: | Badness (Sintel): 2.44 | ||
== Hemiaug == | == Hemiaug == | ||
Hemiaug tempers out 245/243 and may be described as {{nowrap| 24 & 27 }}. The generator may be taken as ~14/9, but also a neutral third or a neutral second that stand in for 11/9~16/13 and 12/11~13/12 in the higher limits, respectively. Hemiaug's ploidacot is triploid dicot. [[27edo]] makes for a recommendable tuning in the 7-limit, but [[51edo]] serves better in the higher limits. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 336: | Line 395: | ||
: mapping generators: ~5/4, ~14/9 | : mapping generators: ~5/4, ~14/9 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 398.9278{{c}}, ~14/9 = 752.8583{{c}} (~36/35 = 44.9973{{c}}) | |||
[[ | : [[error map]]: {{val| -3.217 +2.689 +6.181 -3.462 }} | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~14/9 = 754.2078{{c}} (~36/35 = 45.7922{{c}}) | |||
: error map: {{val| 0.000 +6.461 +13.686 +2.213 }} | |||
{{Optimal ET sequence|legend=1| 24, 27 }} | {{Optimal ET sequence|legend=1| 24, 27 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 1.78 | ||
=== 11-limit === | === 11-limit === | ||
Line 351: | Line 412: | ||
Mapping: {{mapping| 3 1 7 -1 1 | 0 2 0 5 5 }} | Mapping: {{mapping| 3 1 7 -1 1 | 0 2 0 5 5 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.8946{{c}}, ~14/9 = 752.1272{{c}} (~36/35 = 45.6619{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~14/9 = 753.5000{{c}} (~36/35 = 46.5000{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 24, 27e, 51ce }} | ||
Badness: | Badness (Sintel): 1.26 | ||
=== 13-limit === | === 13-limit === | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 56/55, 91/90, 128/125, | Comma list: 56/55, 91/90, 128/125, 243/242 | ||
Mapping: {{mapping| 3 1 7 -1 1 13 | 0 2 0 5 5 -1 }} | Mapping: {{mapping| 3 1 7 -1 1 13 | 0 2 0 5 5 -1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 399.1053{{c}}, ~14/9 = 752.0643{{c}} (~36/35 = 46.1463{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~14/9 = 753.3806{{c}} (~36/35 = 46.6194{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 24, 27e, 51ce }} | ||
Badness: | Badness (Sintel): 1.25 | ||
== Hemiug == | == Hemiug == | ||
Hemiug tempers out 1323/1250 and may be described as {{nowrap| 21 & 24 }}. The generator is a similar interval but for ~32/21 instead of ~14/9, and the ploidacot is triploid dicot, the same as hemiaug. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 379: | Line 446: | ||
: mapping generators: ~5/4, ~32/21 | : mapping generators: ~5/4, ~32/21 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 400.1805{{c}}, ~32/21 = 748.2436{{c}} (~21/20 = 52.1174{{c}}) | |||
[[ | : [[error map]]: {{val| +0.542 -5.287 +14.950 -11.030 }} | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~32/21 = 747.9138{{c}} (~21/20 = 52.0862{{c}}) | |||
: error map: {{val| 0.000 -6.127 +13.686 -12.567 }} | |||
{{Optimal ET sequence|legend=1| 21, 24, 45c }} | {{Optimal ET sequence|legend=1| 21, 24, 45c }} | ||
[[Badness]]: | [[Badness]] (Sintel): 3.49 | ||
=== 11-limit === | === 11-limit === | ||
Line 394: | Line 463: | ||
Mapping: {{mapping| 3 1 7 14 16 | 0 2 0 -3 -3 }} | Mapping: {{mapping| 3 1 7 14 16 | 0 2 0 -3 -3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 400.0637{{c}}, ~32/21 = 748.4638{{c}} (~33/32 = 51.6637{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~32/21 = 748.3383{{c}} (~33/32 = 51.6617{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 21, 24 }} | ||
Badness: | Badness (Sintel): 2.25 | ||
=== 13-limit === | === 13-limit === | ||
Line 407: | Line 478: | ||
Mapping: {{mapping| 3 1 7 14 16 13 | 0 2 0 -3 -3 -1 }} | Mapping: {{mapping| 3 1 7 14 16 13 | 0 2 0 -3 -3 -1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 399.8855{{c}}, ~32/21 = 748.2378{{c}} (~33/32 = 51.5332{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~32/21 = 748.4655{{c}} (~33/32 = 51.5345{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 21, 24 }} | ||
Badness: | Badness (Sintel): 1.75 | ||
== Oodako == | == Oodako == | ||
Oodako tempers out 2401/2400 and may be described as {{nowrap| 21 & 27 }}. It is generated by a quarter of a fifth, which stands in for ~28/25. Its ploidacot is triploid tetracot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 422: | Line 497: | ||
: mapping generators: ~5/4, ~28/25 | : mapping generators: ~5/4, ~28/25 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 399.0296{{c}}, ~28/25 = 176.2174{{c}} (~49/48 = 46.5949{{c}}) | |||
[[ | : [[error map]]: {{val| -2.911 +0.004 +6.894 -0.371 }} | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~28/25 = 176.2984{{c}} (~49/48 = 47.4031{{c}}) | |||
: error map: {{val| 0.000 +3.239 +13.686 +7.473 }} | |||
{{Optimal ET sequence|legend=1| 6, 21, 27, 75c, 102ccd, 129bccd }} | {{Optimal ET sequence|legend=1| 6, 21, 27, 75c, 102ccd, 129bccd }} | ||
[[Badness]]: | [[Badness]] (Sintel): 2.86 | ||
=== 11-limit === | === 11-limit === | ||
Line 437: | Line 514: | ||
Mapping: {{mapping| 3 3 7 8 10 | 0 4 0 1 1 }} | Mapping: {{mapping| 3 3 7 8 10 | 0 4 0 1 1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.6615{{c}}, ~11/10 = 176.3886{{c}} (~49/48 = 45.8843{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~11/10 = 176.5471{{c}} (~49/48 = 46.9059{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6, 21, 27e }} | ||
Badness: | Badness (Sintel): 1.96 | ||
=== 13-limit === | === 13-limit === | ||
Line 450: | Line 529: | ||
Mapping: {{mapping| 3 3 7 8 10 12 | 0 4 0 1 1 -2 }} | Mapping: {{mapping| 3 3 7 8 10 12 | 0 4 0 1 1 -2 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~5/4 = 398.8612{{c}}, ~11/10 = 176.0486{{c}} (~49/48 = 46.7640{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~11/10 = 176.3326{{c}} (~49/48 = 47.3348{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 6, 21, 27e }} | ||
Badness: | Badness (Sintel): 1.75 | ||
== Hemisemiaug == | == Hemisemiaug == | ||
Hemisemiaug tempers out 12005/11664 and splits both the period and generator of augmented in two. Its ploidacot is hexaploid alpha-dicot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 465: | Line 548: | ||
: mapping generators: ~54/49, ~45/28 | : mapping generators: ~54/49, ~45/28 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~54/49 = 199.5469{{c}}, ~45/28 = 853.5468{{c}} (~36/35 = 55.3594{{c}}) | |||
[[ | : [[error map]]: {{val| -2.719 +4.686 +7.342 -9.998 }} | ||
* [[CWE]]: ~54/49 = 200.0000{{c}}, ~45/28 = 854.7144{{c}} (~36/35 = 54.7144{{c}}) | |||
: error map: {{val| 0.000 +7.474 +13.686 -4.683 }} | |||
{{Optimal ET sequence|legend=1| 18, 24, 42 }} | {{Optimal ET sequence|legend=1| 18, 24, 42 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 5.34 | ||
=== 11-limit === | === 11-limit === | ||
Line 480: | Line 565: | ||
Mapping: {{mapping| 6 1 14 4 8 | 0 2 0 3 3 }} | Mapping: {{mapping| 6 1 14 4 8 | 0 2 0 3 3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~54/49 = 199.5188{{c}}, ~18/11 = 853.1623{{c}} (~36/35 = 55.0872{{c}}) | |||
* CWE: ~54/49 = 200.0000{{c}}, ~18/11 = 854.3545{{c}} (~36/35 = 54.3545{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 18e, 24, 42e, 66ce, 108bccee }} | ||
Badness: | Badness (Sintel): 2.67 | ||
== Niner == | == Niner == | ||
Niner gives 9 as the complexity of | Niner tempers out 686/675 and may be described as the {{nowrap| 9 & 27 }} temperament. Its ploidacot is enneaploid monocot. It gives 9 as the complexity of a [[harmonic seventh chord]], tying it with augene as a temperament supported by 27edo. Niner[18], therefore, has nine such tetrads. 27edo, [[36edo]] and [[63edo]] in the 63c val are among the possible tunings. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 497: | Line 584: | ||
: mapping generators: ~49/45, ~3 | : mapping generators: ~49/45, ~3 | ||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~49/45 = 133.0272{{c}}, ~3/2 = 705.5438{{c}} (~36/35 = 40.4075{{c}}) | |||
[[ | : [[error map]]: {{val| -2.755 +0.834 +7.259 -2.737 }} | ||
* [[CWE]]: ~49/45 = 133.3333{{c}}, ~3/2 = 705.5157{{c}} (~36/35 = 38.8490{{c}}) | |||
: error map: {{val| 0.000 +3.561 +13.686 +3.356 }} | |||
{{Optimal ET sequence|legend=1| 9, 18, 27, 63c, 90cc }} | {{Optimal ET sequence|legend=1| 9, 18, 27, 63c, 90cc }} | ||
[[Badness]]: | [[Badness]] (Sintel): 1.70 | ||
=== 11-limit === | === 11-limit === | ||
Line 512: | Line 601: | ||
Mapping: {{mapping| 9 0 21 11 17 | 0 1 0 1 1 }} | Mapping: {{mapping| 9 0 21 11 17 | 0 1 0 1 1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~12/11 = 132.9553{{c}}, ~3/2 = 704.7217{{c}} (~36/35 = 39.9453{{c}}) | |||
* CWE: ~12/11 = 133.3333{{c}}, ~3/2 = 704.5723{{c}} (~36/35 = 37.9056{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 9, 18e, 27e, 63cee }} | ||
Badness: | Badness (Sintel): 1.15 | ||
=== 13-limit === | === 13-limit === | ||
Line 525: | Line 616: | ||
Mapping: {{mapping| 9 0 21 11 17 19 | 0 1 0 1 1 1 }} | Mapping: {{mapping| 9 0 21 11 17 19 | 0 1 0 1 1 1 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~14/13 = 133.0143{{c}}, ~3/2 = 705.1969{{c}} (~36/35 = 40.1256{{c}}) | |||
* CWE: ~14/13 = 133.3333{{c}}, ~3/2 = 705.0176{{c}} (~36/35 = 38.3510{{c}}) | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 9, 18e, 27e }} | ||
Badness: 0. | Badness (Sintel): 0.998 | ||
== Trug == | == Trug == | ||
Trug tempers out 360/343. It is generated by an interval of ~48/35, tuned very close to a perfect fourth, but the perfect fourth is mapped to three generator steps and a period. Its ploidacot is triploid alpha-tricot. 12edo is about as accurate as it can be tuned. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 540: | Line 635: | ||
: mapping generators: ~5/4, ~48/35 | : mapping generators: ~5/4, ~48/35 | ||
[[Optimal tuning]] ([[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~5/4 = 398.2337{{c}}, ~48/35 = 499.7635{{c}} (~15/14 = 101.5299{{c}}) | |||
: [[error map]]: {{val| -2.755 +0.834 +7.259 -2.737 }} | |||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~48/35 = 500.9654{{c}} (~15/14 = 100.9654{{c}}) | |||
: error map: {{val| 0.000 +3.561 +13.686 +3.356 }} | |||
{{Optimal ET sequence|legend=1| 9bd, 12 }} | {{Optimal ET sequence|legend=1| 3b, 9bd, 12 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 3.50 | ||
== External links == | == External links == | ||
* [https://www.prismnet.com/~hmiller/music/temp-augmented.html Herman Miller's page about augmented temperament] | * [https://web.archive.org/web/20211201070113/https://www.prismnet.com/~hmiller/music/temp-augmented.html Herman Miller's page about augmented temperament] | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Augmented family| ]] <!-- main article --> | [[Category:Augmented family| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |