2016edo: Difference between revisions
→Fractional-octave temperaments: why this is special |
Neutraldown (talk | contribs) |
||
(11 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | == Theory == | ||
Line 7: | Line 7: | ||
2016edo has two reasonable mappings for 7. The 2016d val, {{val| 2016 3195 4681 5659 }}, tempers out 5250987/5242880, 40353607/40310784 (tritrizo), and {{monzo| 14 11 -22 7 }}. As such, its circle of the interval 7/6 is the same as in [[9edo]]. The patent val, {{val| 2016 3195 4681 5658 }} tempers out [[250047/250000]], along with {{monzo| 7 18 -2 -11 }} and {{monzo| 43 -1 -13 -4 }}. This means that the symmetrical major third (400 cents, 1/3 of the octave) in 2016edo's patent val corresponds to [[63/50]]. | 2016edo has two reasonable mappings for 7. The 2016d val, {{val| 2016 3195 4681 5659 }}, tempers out 5250987/5242880, 40353607/40310784 (tritrizo), and {{monzo| 14 11 -22 7 }}. As such, its circle of the interval 7/6 is the same as in [[9edo]]. The patent val, {{val| 2016 3195 4681 5658 }} tempers out [[250047/250000]], along with {{monzo| 7 18 -2 -11 }} and {{monzo| 43 -1 -13 -4 }}. This means that the symmetrical major third (400 cents, 1/3 of the octave) in 2016edo's patent val corresponds to [[63/50]]. | ||
In the 11-limit, 2016edo tempers out the {{monzo| 0 0 -22 0 3 11 }} comma, which equates a stack of eleven [[25/13]]'s with three [[11/1]]'s. However, it does | In the 11-limit, 2016edo tempers out the {{monzo| 0 0 -22 0 3 11 }} comma, which equates a stack of eleven [[25/13]]'s with three [[11/1]]'s. However, it does ''not'' temper out the [[jacobin comma]]. | ||
2016 has a total of 576 numbers coprime to it, which means this is how many generators can reach any point in the octave by being stacked. One such temperament is 311 & 2016, produced by stacking 1465\2016, and defined for the 2.5.11.13.19.41 subgroup with the comma basis 16777475/16777216, 1171280/1171001, 615288025/615120896, 1180029296875/1179517976576. | 2016 has a total of 576 numbers coprime to it, which means this is how many generators can reach any point in the octave by being stacked. One such temperament is {{nowrap|311 & 2016}}, produced by stacking 1465\2016, and defined for the 2.5.11.13.19.41 subgroup with the comma basis 16777475/16777216, 1171280/1171001, 615288025/615120896, 1180029296875/1179517976576. | ||
=== Fractional-octave temperaments === | === Fractional-octave temperaments === | ||
The patent val 7-limit in 2016edo gives rise to the to rank two temperaments of [[chromium]] with period 24 and the [[akjayland]], period 21. The 2016d val gives rise to 171 & 306, period 9 and 270 & 936bd, period 18. | The patent val 7-limit in 2016edo gives rise to the to rank two temperaments of [[chromium]] with period 24 and the [[akjayland]], period 21. The 2016d val gives rise to {{nowrap|171 & 306}}, period 9 and {{nowrap|270 & 936bd}}, period 18. | ||
In the 2016dijk val, which is tuned better than the patent val, it supports the [[32nd-octave temperaments|dike temperament]], defined as 1600 & 2016dijk in the 37-limit with period 32. | In the 2016dijk val, which is tuned better than the patent val, it supports the [[32nd-octave temperaments|dike temperament]], defined as {{nowrap|1600 & 2016dijk}} in the 37-limit with period 32. | ||
In the 2.5.11.13.19.41.47, 2016edo supports the period 72 Jamala temperament, defined as 1944 & 2016 and named after an eponymous song. It has a comma basis | In the 2.5.11.13.19.41.47, 2016edo supports the period 72 Jamala temperament, defined as {{nowrap|1944 & 2016}} and named after an eponymous song. It has a comma basis of {47012251/47000000, 2502280/2501369, 2680291328/2679296875, 410041489/410000000, 52448351813/52428800000}. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 28: | Line 28: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 38: | Line 39: | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{ | | {{monzo| -83 26 18 }}, {{monzo| 30 47 -45 }} | ||
| | | {{mapping| 2016 3195 4681 }} | ||
| 0.036 | | +0.036 | ||
| 0.050 | | 0.050 | ||
| 8.4 | | 8.4 | ||
Line 46: | Line 47: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 250047/250000, {{monzo| 7 18 -2 -11 }}, {{monzo| 43 -1 -13 -4 }} | | 250047/250000, {{monzo| 7 18 -2 -11 }}, {{monzo| 43 -1 -13 -4 }} | ||
| | | {{mapping| 2016 3195 4681 5660 }} | ||
| 0.007 | | +0.007 | ||
| 0.066 | | 0.066 | ||
| 11.1 | | 11.1 | ||
|- | |- style="border-top: double;" | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 5250987/5242880, 40353607/40310784, {{monzo| 14 11 -22 7 }} | | 5250987/5242880, 40353607/40310784, {{monzo| 14 11 -22 7 }} | ||
| | | {{mapping| 2016 3195 4681 5659 }} (2016d) | ||
| 0.060 | | +0.060 | ||
| 0.060 | | 0.060 | ||
| 10.1 | | 10.1 | ||
|- | |- style="border-top: double;" | ||
| 2.3.5.11 | | 2.3.5.11 | ||
| {{monzo|14 8 -10 -1}}, {{monzo|-26 15 -5 4}}, {{monzo|-29 27 3 -6}} | | {{monzo| 14 8 -10 -1 }}, {{monzo| -26 15 -5 4 }}, {{monzo| -29 27 3 -6 }} | ||
| | | {{mapping| 2016 3195 4681 6974}} | ||
| 0.036 | | +0.036 | ||
| 0.043 | | 0.043 | ||
| 7.3 | | 7.3 | ||
|- | |- | ||
|2.3.5.11.13 | | 2.3.5.11.13 | ||
|196625/196608, 53144100/53094899, {{monzo|14 8 -10 -1 0}}, | | 196625/196608, 53144100/53094899, {{monzo| 14 8 -10 -1 0 }}, {{monzo| -13 9 5 -8 4 }} | ||
| | | {{mapping| 2016 3195 4681 6974 7460 }} | ||
|0.032 | | +0.032 | ||
|0.040 | | 0.040 | ||
|6.7 | | 6.7 | ||
|- | |- | ||
| 2.3.5.11.13.17 | |||
| 2601/2600, 120285/120224, 140625/140608, 161109/161051, 196625/196608 | |||
| {{mapping| 2016 3195 4681 6974 7460 8240}}] | |||
| +0.034 | |||
| 0.036 | |||
| 6.2 | |||
|- style="border-top: double;" | |||
| 2.5.11.13.19.41.47 | | 2.5.11.13.19.41.47 | ||
| 7943/7942, 322465/322373, 415292/415207, 511225/511024, | | 7943/7942, 322465/322373, 415292/415207, 511225/511024, 5078491/5078125, 22151168/22150865 | ||
| | | {{mapping| 2016 4681 6974 7460 8564 10801 11198 }} | ||
| 0.002 | | +0.002 | ||
| 0.019 | | 0.019 | ||
| 3.2 | | 3.2 | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
!Periods<br>per 8ve | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
!Generator | |- | ||
!Cents<br> | ! Periods<br />per 8ve | ||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|21 | | 21 | ||
|983\2016<br>(23\2016) | | 983\2016<br />(23\2016) | ||
| 585.119<br>(13.690) | | 585.119<br />(13.690) | ||
|91875/65536<br>(126/125) | | 91875/65536<br />(126/125) | ||
|[[Akjayland]] | | [[Akjayland]] | ||
|- | |- | ||
|24 | | 24 | ||
|979\2016<br>(55\2016) | | 979\2016<br />(55\2016) | ||
|582.738<br>(32.738) | | 582.738<br />(32.738) | ||
|7/5<br>(?) | | 7/5<br />(?) | ||
|[[Chromium]] | | [[Chromium]] | ||
|- | |- | ||
|32 | | 32 | ||
|29\2016 | | 29\2016 | ||
|17.262 | | 17.262 | ||
|(?) | | (?) | ||
|[[Dike]] (2016dijk) | | [[Dike]] (2016dijk) | ||
|- | |- | ||
|72 | | 72 | ||
|925\2016<br>(1\2016) | | 925\2016<br />(1\2016) | ||
|550.595<br>(0.595) | | 550.595<br />(0.595) | ||
|73205/53248<br>(?) | | 73205/53248<br />(?) | ||
|[[Jamala]] | | [[Jamala]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | == Music == | ||
; [[Mercury Amalgam]] | |||
* [ | * [http://www.youtube.com/watch?v=ILMS8XT1bPs ''Hemoclysm Totem''] (2022) | ||
[[Category:Akjayland]] | [[Category:Akjayland]] | ||
[[Category:Listen]] |