Augmented family: Difference between revisions
Switch to Sintel's badness, WE & CWE tunings, per community consensus |
→Augene: note the tuning difference in the 11-limit |
||
(5 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
}} | }} | ||
{{Technical data page}} | {{Technical data page}} | ||
The | The '''augmented family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the diesis a.k.a. augmented comma, [[128/125]], the amount by which three [[5/4]] major thirds fall short of an [[2/1|octave]], and so identifies the major third with the 1/3-octave. Hence it has the same 400-cent 5/4-approximations as [[12edo]]. | ||
== Augmented == | == Augmented == | ||
The [[period]] is 1/3 octave, and this is what is used for 5/4, the classical major third. The [[generator]] can be taken as a fifth or a semitone, and [[12edo]], with its excellent fifth, is an obvious tuning for [[5-limit]] augmented, though a sharper fifth might be preferred to go with the sharp third. Its [[ploidacot]] is triploid monocot. | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 20: | Line 22: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 705.0691{{c}} (~16/15 = 94.9309{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 705.0691{{c}} (~16/15 = 94.9309{{c}}) | ||
: error map: {{val| 0.000 +3.114 +13.686 }} | : error map: {{val| 0.000 +3.114 +13.686 }} | ||
{{Optimal ET sequence|legend=1| 3, 9, 12, 27, 39, 51c, 90cc }} | {{Optimal ET sequence|legend=1| 3, 9, 12, 27, 39, 51c, 90cc }} | ||
Line 30: | Line 28: | ||
=== Overview to extensions === | === Overview to extensions === | ||
The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which [[7-limit]] family member we are looking at. | The second comma of the [[Normal lists #Normal interval list|normal comma list]] defines which [[7-limit]] family member we are looking at. Augene adds [[64/63]], august [[36/35]], hexe [[256/245]], hemiaug [[245/243]], and triforce [[49/48]]. Hexe splits the [[period]] to 1/6 octave, and hemiaug the [[generator]], giving quartertones instead of semitones. | ||
== Augene == | == Augene == | ||
{{Main| Augene }} | {{Main| Augene }} | ||
Augene tempers out 64/63 and [[126/125]]. It may be described as the {{nowrap| 12 & 15 }} temperament. [[27edo]] and [[39edo]] in the 39d val make for good tunings. In the 11-limit, it tempers together [[7/5]] and [[11/8]], and 27edo in the 27e val may be recommended as a tuning. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 118: | Line 46: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 709.3249{{c}} (~21/20 = 90.6751{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 709.3249{{c}} (~21/20 = 90.6751{{c}}) | ||
: error map: {{val| 0.000 +7.370 +13.686 +12.524 }} | : error map: {{val| 0.000 +7.370 +13.686 +12.524 }} | ||
{{Optimal ET sequence|legend=1| 12, 27, 39d, 66cd }} | {{Optimal ET sequence|legend=1| 12, 27, 39d, 66cd }} | ||
Line 137: | Line 61: | ||
* WE: ~5/4 = 398.4962{{c}}, ~3/2 = 708.5030{{c}} (~21/20 = 88.4895{{c}}) | * WE: ~5/4 = 398.4962{{c}}, ~3/2 = 708.5030{{c}} (~21/20 = 88.4895{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 711.6031{{c}} (~21/20 = 88.3969{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 711.6031{{c}} (~21/20 = 88.3969{{c}}) | ||
{{Optimal ET sequence|legend=0| 12, 15, 27e }} | {{Optimal ET sequence|legend=0| 12, 15, 27e }} | ||
Line 154: | Line 76: | ||
* WE: ~5/4 = 398.0488{{c}}, ~3/2 = 708.5402{{c}} (~21/20 = 87.5574{{c}}) | * WE: ~5/4 = 398.0488{{c}}, ~3/2 = 708.5402{{c}} (~21/20 = 87.5574{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.6704{{c}} (~21/20 = 87.3296{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.6704{{c}} (~21/20 = 87.3296{{c}}) | ||
{{Optimal ET sequence|legend=0| 12f, 15, 27eff }} | {{Optimal ET sequence|legend=0| 12f, 15, 27eff }} | ||
Line 171: | Line 91: | ||
* WE: ~5/4 = 398.6473{{c}}, ~3/2 = 710.1987{{c}} (~21/20 = 87.0959{{c}}) | * WE: ~5/4 = 398.6473{{c}}, ~3/2 = 710.1987{{c}} (~21/20 = 87.0959{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.5057{{c}} (~21/20 = 87.4943{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 712.5057{{c}} (~21/20 = 87.4943{{c}}) | ||
{{Optimal ET sequence|legend=0| 12, 15, 27e, 69bceef }} | {{Optimal ET sequence|legend=0| 12, 15, 27e, 69bceef }} | ||
Line 188: | Line 106: | ||
* WE: ~5/4 = 398.5229{{c}}, ~3/2 = 707.0562{{c}} (~21/20 = 89.9897{{c}}) | * WE: ~5/4 = 398.5229{{c}}, ~3/2 = 707.0562{{c}} (~21/20 = 89.9897{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 710.1903{{c}} (~21/20 = 89.8097{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 710.1903{{c}} (~21/20 = 89.8097{{c}}) | ||
{{Optimal ET sequence|legend=0| 12f, 27e, 66cdeeef }} | {{Optimal ET sequence|legend=0| 12f, 27e, 66cdeeef }} | ||
Line 205: | Line 121: | ||
* WE: ~5/4 = 399.1743{{c}}, ~3/2 = 712.6763{{c}} (~21/20 = 85.6723{{c}}) | * WE: ~5/4 = 399.1743{{c}}, ~3/2 = 712.6763{{c}} (~21/20 = 85.6723{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 713.9414{{c}} (~21/20 = 86.0586{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 713.9414{{c}} (~21/20 = 86.0586{{c}}) | ||
{{Optimal ET sequence|legend=0| 12e, 15, 27, 42 }} | {{Optimal ET sequence|legend=0| 12e, 15, 27, 42 }} | ||
Badness (Sintel): 1.18 | Badness (Sintel): 1.18 | ||
== August == | |||
August tempers out 36/35 and 225/224. It may be described as the {{nowrap| 9 & 12 }} temperament. Unlike augene, august calls for a flat tuning of the fifth, and besides [[12edo]], [[21edo]] is among the possible tunings. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 36/35, 128/125 | |||
{{Mapping|legend=1| 3 0 7 -1 | 0 1 0 2 }} | |||
[[Optimal tuning]]s: | |||
* [[WE]]: ~5/4 = 399.1036{{c}}, ~3/2 = 694.4509{{c}} (~16/15 = 103.7564{{c}}) | |||
: [[error map]]: {{val| -2.689 -10.193 +7.412 +15.594 }} | |||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 694.6812{{c}} (~16/15 = 105.3188{{c}}) | |||
: error map: {{val| 0.000 -7.274 +13.686 +20.537 }} | |||
{{Optimal ET sequence|legend=1| 9, 12, 45cd }} | |||
[[Badness]] (Sintel): 0.670 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 36/35, 45/44, 56/55 | |||
Mapping: {{mapping| 3 0 7 -1 1 | 0 1 0 2 2 }} | |||
Optimal tunings: | |||
* WE: ~5/4 = 398.9225{{c}}, ~3/2 = 690.6486{{c}} (~16/15 = 107.1966{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 690.8519{{c}} (~16/15 = 109.1481{{c}}) | |||
{{Optimal ET sequence|legend=0| 9, 12, 21, 33e }} | |||
Badness (Sintel): 0.668 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 27/26, 36/35, 45/44, 56/55 | |||
Mapping: {{mapping| 3 0 7 -1 1 -3 | 0 1 0 2 2 3 }} | |||
Optimal tunings: | |||
* WE: ~5/4 = 399.0956{{c}}, ~3/2 = 687.2261{{c}} (~16/15 = 110.9651{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 687.5057{{c}} (~16/15 = 112.4943{{c}}) | |||
{{Optimal ET sequence|legend=0| 9, 12f, 21, 33ef }} | |||
Badness (Sintel): 0.762 | |||
==== Augustus ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 26/25, 36/35, 45/44, 56/55 | |||
Mapping: {{mapping| 3 0 7 -1 1 11 | 0 1 0 2 2 0 }} | |||
Optimal tunings: | |||
* WE: ~5/4 = 400.4230{{c}}, ~3/2 = 686.0809{{c}} (~16/15 = 114.7650{{c}}) | |||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 685.8446{{c}} (~16/15 = 114.1554{{c}}) | |||
{{Optimal ET sequence|legend=0| 9, 12 }} | |||
Badness (Sintel): 0.919 | |||
== Inflated == | == Inflated == | ||
Line 224: | Line 202: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 721.0196{{c}} (~25/24 = 78.9804{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 721.0196{{c}} (~25/24 = 78.9804{{c}}) | ||
: error map: {{val| 0.000 +19.065 +13.686 -5.767 }} | : error map: {{val| 0.000 +19.065 +13.686 -5.767 }} | ||
{{Optimal ET sequence|legend=1| 3d, 12d, 15 }} | {{Optimal ET sequence|legend=1| 3d, 12d, 15 }} | ||
Line 243: | Line 217: | ||
* WE: ~5/4 = 398.4016{{c}}, ~3/2 = 719.7758{{c}} (~25/24 = 77.0275{{c}}) | * WE: ~5/4 = 398.4016{{c}}, ~3/2 = 719.7758{{c}} (~25/24 = 77.0275{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 720.9386{{c}} (~25/24 = 79.0614{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 720.9386{{c}} (~25/24 = 79.0614{{c}}) | ||
{{Optimal ET sequence|legend=0| 3de, 12de, 15 }} | {{Optimal ET sequence|legend=0| 3de, 12de, 15 }} | ||
Line 262: | Line 234: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 682.2587{{c}} (~16/15 = 117.7413{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~3/2 = 682.2587{{c}} (~16/15 = 117.7413{{c}}) | ||
: error map: {{val| 0.000 -19.696 +13.686 -51.085 }} | : error map: {{val| 0.000 -19.696 +13.686 -51.085 }} | ||
{{Optimal ET sequence|legend=1| 3, 6b, 9 }} | {{Optimal ET sequence|legend=1| 3, 6b, 9 }} | ||
Line 281: | Line 249: | ||
* WE: ~5/4 = 402.1799{{c}}, ~3/2 = 683.7477{{c}} (~16/15 = 120.6120{{c}}) | * WE: ~5/4 = 402.1799{{c}}, ~3/2 = 683.7477{{c}} (~16/15 = 120.6120{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 680.0162{{c}} (~16/15 = 119.9838{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~3/2 = 680.0162{{c}} (~16/15 = 119.9838{{c}}) | ||
{{Optimal ET sequence|legend=0| 3, 6b, 9 }} | {{Optimal ET sequence|legend=0| 3, 6b, 9 }} | ||
Line 289: | Line 255: | ||
== Hexe == | == Hexe == | ||
Hexe tempers out 50/49 and may be described as {{nowrap| 6 & 12 }}, viewed as [[6edo|6et]] with an independent generator for prime 3. Its ploidacot is hexaploid monocot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 302: | Line 270: | ||
* [[CWE]]: ~28/25 = 200.0000{{c}}, ~3/2 = 708.6907{{c}} (~25/24 = 91.3093{{c}}) | * [[CWE]]: ~28/25 = 200.0000{{c}}, ~3/2 = 708.6907{{c}} (~25/24 = 91.3093{{c}}) | ||
: error map: {{val| 0.000 +6.735 +13.686 +31.174 }} | : error map: {{val| 0.000 +6.735 +13.686 +31.174 }} | ||
{{Optimal ET sequence|legend=1| 6, 12, 30d, 42dd, 54cdd }} | {{Optimal ET sequence|legend=1| 6, 12, 30d, 42dd, 54cdd }} | ||
Line 321: | Line 285: | ||
* WE: ~28/25 = 198.6942{{c}}, ~3/2 = 709.6404{{c}} (~25/24 = 85.1362{{c}}) | * WE: ~28/25 = 198.6942{{c}}, ~3/2 = 709.6404{{c}} (~25/24 = 85.1362{{c}}) | ||
* CWE: ~28/25 = 200.0000{{c}}, ~3/2 = 711.8043{{c}} (~25/24 = 88.1957{{c}}) | * CWE: ~28/25 = 200.0000{{c}}, ~3/2 = 711.8043{{c}} (~25/24 = 88.1957{{c}}) | ||
{{Optimal ET sequence|legend=0| 6, 12, 30dee, 42ddeee }} | {{Optimal ET sequence|legend=0| 6, 12, 30dee, 42ddeee }} | ||
Line 338: | Line 300: | ||
* WE: ~28/25 = 198.4492{{c}}, ~3/2 = 704.4994{{c}} (~25/24 = 89.2973{{c}}) | * WE: ~28/25 = 198.4492{{c}}, ~3/2 = 704.4994{{c}} (~25/24 = 89.2973{{c}}) | ||
* CWE: ~28/25 = 200.0000{{c}}, ~3/2 = 706.6050{{c}} (~16/15 = 93.3950{{c}}) | * CWE: ~28/25 = 200.0000{{c}}, ~3/2 = 706.6050{{c}} (~16/15 = 93.3950{{c}}) | ||
{{Optimal ET sequence|legend=0| 6f, 12f }} | {{Optimal ET sequence|legend=0| 6f, 12f }} | ||
Line 347: | Line 307: | ||
== Triforce == | == Triforce == | ||
[[File:triforce9.jpg|thumb|alt=triforce9.jpg|Lattice of triforce]] | [[File:triforce9.jpg|thumb|alt=triforce9.jpg|Lattice of triforce]] | ||
Triforce tempers out 49/48 and may be described as {{nowrap| 9 & 15 }}. Its ploidacot is triploid alpha-dicot. [[24edo]] and [[39edo]] are among the possible tunings. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 361: | Line 323: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~7/4 = 952.7463{{c}} (~35/32 = 152.7463{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~7/4 = 952.7463{{c}} (~35/32 = 152.7463{{c}}) | ||
: error map: {{val| 0.000 +3.538 +13.686 -16.080 }} | : error map: {{val| 0.000 +3.538 +13.686 -16.080 }} | ||
{{Optimal ET sequence|legend=1| 6, 9, 15, 24, 39 }} | {{Optimal ET sequence|legend=1| 6, 9, 15, 24, 39 }} | ||
Line 380: | Line 338: | ||
* WE: ~5/4 = 399.7654{{c}}, ~7/4 = 952.3730{{c}} (~12/11 = 152.8421{{c}}) | * WE: ~5/4 = 399.7654{{c}}, ~7/4 = 952.3730{{c}} (~12/11 = 152.8421{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~7/4 = 952.7447{{c}} (~12/11 = 152.7447{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~7/4 = 952.7447{{c}} (~12/11 = 152.7447{{c}}) | ||
{{Optimal ET sequence|legend=0| 6, 9, 15, 24, 39 }} | {{Optimal ET sequence|legend=0| 6, 9, 15, 24, 39 }} | ||
Line 388: | Line 344: | ||
; Music | ; Music | ||
* [https://cityoftheasleep.bandcamp.com/track/the-triforce-of-courage-24edo ''The Triforce of Courage (24edo)''] by [[Igliashon Jones]] (2018) | * [https://cityoftheasleep.bandcamp.com/track/the-triforce-of-courage-24edo ''The Triforce of Courage (24edo)'']{{dead link}} by [[Igliashon Jones]] (2018) | ||
* [ | * [https://www.chrisvaisvil.com/2-2-1-2-2-1-2-2-1-mode-of-15-edo/ ''2-2-1-2-2-1-2-2-1 mode of 15 edo''] [https://web.archive.org/web/20201127015017/http://micro.soonlabel.com/15-ET/20130831_221of15.mp3 play] by [[Chris Vaisvil]] (2013) | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 401: | Line 357: | ||
* WE: ~5/4 = 399.7107{{c}}, ~7/4 = 950.9983{{c}} (~12/11 = 151.5768{{c}}) | * WE: ~5/4 = 399.7107{{c}}, ~7/4 = 950.9983{{c}} (~12/11 = 151.5768{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~7/4 = 951.4465{{c}} (~12/11 = 151.4465{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~7/4 = 951.4465{{c}} (~12/11 = 151.4465{{c}}) | ||
{{Optimal ET sequence|legend=0| 6f, 9, 15, 24 }} | {{Optimal ET sequence|legend=0| 6f, 9, 15, 24 }} | ||
Line 412: | Line 366: | ||
==== Semitriforce ==== | ==== Semitriforce ==== | ||
This extension splits the period into 1/6-octave for ~44/39. Its ploidacot is hexaploid dicot. | |||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Line 423: | Line 379: | ||
* WE: ~44/39 = 199.8321{{c}}, ~7/4 = 952.5580{{c}} (~40/39 = 46.6024{{c}}) | * WE: ~44/39 = 199.8321{{c}}, ~7/4 = 952.5580{{c}} (~40/39 = 46.6024{{c}}) | ||
* CWE: ~44/39 = 200.0000{{c}}, ~7/4 = 953.2005{{c}} (~40/39 = 46.7995{{c}}) | * CWE: ~44/39 = 200.0000{{c}}, ~7/4 = 953.2005{{c}} (~40/39 = 46.7995{{c}}) | ||
{{Optimal ET sequence|legend=0| 6, 18bd, 24 }} | {{Optimal ET sequence|legend=0| 6, 18bd, 24 }} | ||
Line 431: | Line 385: | ||
== Hemiaug == | == Hemiaug == | ||
Hemiaug tempers out 245/243 and may be described as {{nowrap| 24 & 27 }}. The generator may be taken as ~14/9, but also a neutral third or a neutral second that stand in for 11/9~16/13 and 12/11~13/12 in the higher limits, respectively. Hemiaug's ploidacot is triploid dicot. [[27edo]] makes for a recommendable tuning in the 7-limit, but [[51edo]] serves better in the higher limits. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 444: | Line 400: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~14/9 = 754.2078{{c}} (~36/35 = 45.7922{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~14/9 = 754.2078{{c}} (~36/35 = 45.7922{{c}}) | ||
: error map: {{val| 0.000 +6.461 +13.686 +2.213 }} | : error map: {{val| 0.000 +6.461 +13.686 +2.213 }} | ||
{{Optimal ET sequence|legend=1| 24, 27 }} | {{Optimal ET sequence|legend=1| 24, 27 }} | ||
Line 463: | Line 415: | ||
* WE: ~5/4 = 398.8946{{c}}, ~14/9 = 752.1272{{c}} (~36/35 = 45.6619{{c}}) | * WE: ~5/4 = 398.8946{{c}}, ~14/9 = 752.1272{{c}} (~36/35 = 45.6619{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~14/9 = 753.5000{{c}} (~36/35 = 46.5000{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~14/9 = 753.5000{{c}} (~36/35 = 46.5000{{c}}) | ||
{{Optimal ET sequence|legend=0| 24, 27e, 51ce }} | {{Optimal ET sequence|legend=0| 24, 27e, 51ce }} | ||
Line 473: | Line 423: | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 56/55, 91/90, 128/125, | Comma list: 56/55, 91/90, 128/125, 243/242 | ||
Mapping: {{mapping| 3 1 7 -1 1 13 | 0 2 0 5 5 -1 }} | Mapping: {{mapping| 3 1 7 -1 1 13 | 0 2 0 5 5 -1 }} | ||
Line 480: | Line 430: | ||
* WE: ~5/4 = 399.1053{{c}}, ~14/9 = 752.0643{{c}} (~36/35 = 46.1463{{c}}) | * WE: ~5/4 = 399.1053{{c}}, ~14/9 = 752.0643{{c}} (~36/35 = 46.1463{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~14/9 = 753.3806{{c}} (~36/35 = 46.6194{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~14/9 = 753.3806{{c}} (~36/35 = 46.6194{{c}}) | ||
{{Optimal ET sequence|legend=0| 24, 27e, 51ce }} | {{Optimal ET sequence|legend=0| 24, 27e, 51ce }} | ||
Line 488: | Line 436: | ||
== Hemiug == | == Hemiug == | ||
Hemiug tempers out 1323/1250 and may be described as {{nowrap| 21 & 24 }}. The generator is a similar interval but for ~32/21 instead of ~14/9, and the ploidacot is triploid dicot, the same as hemiaug. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 501: | Line 451: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~32/21 = 747.9138{{c}} (~21/20 = 52.0862{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~32/21 = 747.9138{{c}} (~21/20 = 52.0862{{c}}) | ||
: error map: {{val| 0.000 -6.127 +13.686 -12.567 }} | : error map: {{val| 0.000 -6.127 +13.686 -12.567 }} | ||
{{Optimal ET sequence|legend=1| 21, 24, 45c }} | {{Optimal ET sequence|legend=1| 21, 24, 45c }} | ||
Line 520: | Line 466: | ||
* WE: ~5/4 = 400.0637{{c}}, ~32/21 = 748.4638{{c}} (~33/32 = 51.6637{{c}}) | * WE: ~5/4 = 400.0637{{c}}, ~32/21 = 748.4638{{c}} (~33/32 = 51.6637{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~32/21 = 748.3383{{c}} (~33/32 = 51.6617{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~32/21 = 748.3383{{c}} (~33/32 = 51.6617{{c}}) | ||
{{Optimal ET sequence|legend=0| 21, 24 }} | {{Optimal ET sequence|legend=0| 21, 24 }} | ||
Line 537: | Line 481: | ||
* WE: ~5/4 = 399.8855{{c}}, ~32/21 = 748.2378{{c}} (~33/32 = 51.5332{{c}}) | * WE: ~5/4 = 399.8855{{c}}, ~32/21 = 748.2378{{c}} (~33/32 = 51.5332{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~32/21 = 748.4655{{c}} (~33/32 = 51.5345{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~32/21 = 748.4655{{c}} (~33/32 = 51.5345{{c}}) | ||
{{Optimal ET sequence|legend=0| 21, 24 }} | {{Optimal ET sequence|legend=0| 21, 24 }} | ||
Line 545: | Line 487: | ||
== Oodako == | == Oodako == | ||
Oodako tempers out 2401/2400 and may be described as {{nowrap| 21 & 27 }}. It is generated by a quarter of a fifth, which stands in for ~28/25. Its ploidacot is triploid tetracot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 558: | Line 502: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~28/25 = 176.2984{{c}} (~49/48 = 47.4031{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~28/25 = 176.2984{{c}} (~49/48 = 47.4031{{c}}) | ||
: error map: {{val| 0.000 +3.239 +13.686 +7.473 }} | : error map: {{val| 0.000 +3.239 +13.686 +7.473 }} | ||
{{Optimal ET sequence|legend=1| 6, 21, 27, 75c, 102ccd, 129bccd }} | {{Optimal ET sequence|legend=1| 6, 21, 27, 75c, 102ccd, 129bccd }} | ||
Line 577: | Line 517: | ||
* WE: ~5/4 = 398.6615{{c}}, ~11/10 = 176.3886{{c}} (~49/48 = 45.8843{{c}}) | * WE: ~5/4 = 398.6615{{c}}, ~11/10 = 176.3886{{c}} (~49/48 = 45.8843{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~11/10 = 176.5471{{c}} (~49/48 = 46.9059{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~11/10 = 176.5471{{c}} (~49/48 = 46.9059{{c}}) | ||
{{Optimal ET sequence|legend=0| 6, 21, 27e }} | {{Optimal ET sequence|legend=0| 6, 21, 27e }} | ||
Line 594: | Line 532: | ||
* WE: ~5/4 = 398.8612{{c}}, ~11/10 = 176.0486{{c}} (~49/48 = 46.7640{{c}}) | * WE: ~5/4 = 398.8612{{c}}, ~11/10 = 176.0486{{c}} (~49/48 = 46.7640{{c}}) | ||
* CWE: ~5/4 = 400.0000{{c}}, ~11/10 = 176.3326{{c}} (~49/48 = 47.3348{{c}}) | * CWE: ~5/4 = 400.0000{{c}}, ~11/10 = 176.3326{{c}} (~49/48 = 47.3348{{c}}) | ||
{{Optimal ET sequence|legend=0| 6, 21, 27e }} | {{Optimal ET sequence|legend=0| 6, 21, 27e }} | ||
Line 602: | Line 538: | ||
== Hemisemiaug == | == Hemisemiaug == | ||
Hemisemiaug tempers out 12005/11664 and splits both the period and generator of augmented in two. Its ploidacot is hexaploid alpha-dicot. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 615: | Line 553: | ||
* [[CWE]]: ~54/49 = 200.0000{{c}}, ~45/28 = 854.7144{{c}} (~36/35 = 54.7144{{c}}) | * [[CWE]]: ~54/49 = 200.0000{{c}}, ~45/28 = 854.7144{{c}} (~36/35 = 54.7144{{c}}) | ||
: error map: {{val| 0.000 +7.474 +13.686 -4.683 }} | : error map: {{val| 0.000 +7.474 +13.686 -4.683 }} | ||
{{Optimal ET sequence|legend=1| 18, 24, 42 }} | {{Optimal ET sequence|legend=1| 18, 24, 42 }} | ||
Line 634: | Line 568: | ||
* WE: ~54/49 = 199.5188{{c}}, ~18/11 = 853.1623{{c}} (~36/35 = 55.0872{{c}}) | * WE: ~54/49 = 199.5188{{c}}, ~18/11 = 853.1623{{c}} (~36/35 = 55.0872{{c}}) | ||
* CWE: ~54/49 = 200.0000{{c}}, ~18/11 = 854.3545{{c}} (~36/35 = 54.3545{{c}}) | * CWE: ~54/49 = 200.0000{{c}}, ~18/11 = 854.3545{{c}} (~36/35 = 54.3545{{c}}) | ||
{{Optimal ET sequence|legend=0| 18e, 24, 42e, 66ce, 108bccee }} | {{Optimal ET sequence|legend=0| 18e, 24, 42e, 66ce, 108bccee }} | ||
Line 642: | Line 574: | ||
== Niner == | == Niner == | ||
Niner gives 9 as the complexity of | Niner tempers out 686/675 and may be described as the {{nowrap| 9 & 27 }} temperament. Its ploidacot is enneaploid monocot. It gives 9 as the complexity of a [[harmonic seventh chord]], tying it with augene as a temperament supported by 27edo. Niner[18], therefore, has nine such tetrads. 27edo, [[36edo]] and [[63edo]] in the 63c val are among the possible tunings. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 657: | Line 589: | ||
* [[CWE]]: ~49/45 = 133.3333{{c}}, ~3/2 = 705.5157{{c}} (~36/35 = 38.8490{{c}}) | * [[CWE]]: ~49/45 = 133.3333{{c}}, ~3/2 = 705.5157{{c}} (~36/35 = 38.8490{{c}}) | ||
: error map: {{val| 0.000 +3.561 +13.686 +3.356 }} | : error map: {{val| 0.000 +3.561 +13.686 +3.356 }} | ||
{{Optimal ET sequence|legend=1| 9, 18, 27, 63c, 90cc }} | {{Optimal ET sequence|legend=1| 9, 18, 27, 63c, 90cc }} | ||
Line 676: | Line 604: | ||
* WE: ~12/11 = 132.9553{{c}}, ~3/2 = 704.7217{{c}} (~36/35 = 39.9453{{c}}) | * WE: ~12/11 = 132.9553{{c}}, ~3/2 = 704.7217{{c}} (~36/35 = 39.9453{{c}}) | ||
* CWE: ~12/11 = 133.3333{{c}}, ~3/2 = 704.5723{{c}} (~36/35 = 37.9056{{c}}) | * CWE: ~12/11 = 133.3333{{c}}, ~3/2 = 704.5723{{c}} (~36/35 = 37.9056{{c}}) | ||
{{Optimal ET sequence|legend=0| 9, 18e, 27e, 63cee }} | {{Optimal ET sequence|legend=0| 9, 18e, 27e, 63cee }} | ||
Line 693: | Line 619: | ||
* WE: ~14/13 = 133.0143{{c}}, ~3/2 = 705.1969{{c}} (~36/35 = 40.1256{{c}}) | * WE: ~14/13 = 133.0143{{c}}, ~3/2 = 705.1969{{c}} (~36/35 = 40.1256{{c}}) | ||
* CWE: ~14/13 = 133.3333{{c}}, ~3/2 = 705.0176{{c}} (~36/35 = 38.3510{{c}}) | * CWE: ~14/13 = 133.3333{{c}}, ~3/2 = 705.0176{{c}} (~36/35 = 38.3510{{c}}) | ||
{{Optimal ET sequence|legend=0| 9, 18e, 27e }} | {{Optimal ET sequence|legend=0| 9, 18e, 27e }} | ||
Line 701: | Line 625: | ||
== Trug == | == Trug == | ||
Trug tempers out 360/343. It is generated by an interval of ~48/35, tuned very close to a perfect fourth, but the perfect fourth is mapped to three generator steps and a period. Its ploidacot is triploid alpha-tricot. 12edo is about as accurate as it can be tuned. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 714: | Line 640: | ||
* [[CWE]]: ~5/4 = 400.0000{{c}}, ~48/35 = 500.9654{{c}} (~15/14 = 100.9654{{c}}) | * [[CWE]]: ~5/4 = 400.0000{{c}}, ~48/35 = 500.9654{{c}} (~15/14 = 100.9654{{c}}) | ||
: error map: {{val| 0.000 +3.561 +13.686 +3.356 }} | : error map: {{val| 0.000 +3.561 +13.686 +3.356 }} | ||
{{Optimal ET sequence|legend=1| 3b, 9bd, 12 }} | {{Optimal ET sequence|legend=1| 3b, 9bd, 12 }} | ||
Line 724: | Line 646: | ||
== External links == | == External links == | ||
* [https://www.prismnet.com/~hmiller/music/temp-augmented.html Herman Miller's page about augmented temperament] | * [https://web.archive.org/web/20211201070113/https://www.prismnet.com/~hmiller/music/temp-augmented.html Herman Miller's page about augmented temperament] | ||
[[Category:Temperament families]] | [[Category:Temperament families]] |