Jubilismic clan: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 202569598 - Original comment: **
m Update linking
 
(108 intermediate revisions by 17 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are both equated to the 600-cent tritone and the [[octave]] is divided in two.  
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-02-16 20:25:28 UTC</tt>.<br>
: The original revision id was <tt>202569598</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two. Doublewide and lemba are discussed below; others in the clan are pajara, diminished, decimal, injera, octokaidecal, hedgehog, bipelog and hexe, which are discussed elsewhere.


No-threes [[POTE tuning|POTE generator]]: 380.840
== Jubilic ==
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]]. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.


No-threes map: [&lt;2 0 1 1|, &lt;0 0 1 1|]
[[Subgroup]]: 2.5.7
EDOs: 10, 12, 16, 22, 104


==Diminished==
[[Comma list]]: 50/49
Commas: 36/35, 50/49


[[POTE tuning|POTE generator]]: ~3/2 = 699.523
{{Mapping|legend=2| 2 0 1 | 0 1 1 }}


Map: [&lt;4 0 3 5|, &lt;0 1 1 1|]
: sval mapping generators: ~7/5, ~5
EDOs: 4, 12
Badness: 0.0224


===11-limit===
{{Mapping|legend=3| 2 0 0 1 | 0 0 1 1 }}
Commas: 36/35, 50/49, 56/55


[[POTE tuning|POTE generator]]: ~3/2 = 709.109
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 599.6673{{c}}, ~5/4 = 380.6287{{c}} (~8/7 = 219.0386{{c}})
: [[error map]]: {{val| -0.665 -7.016 +10.139 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
: error map: {{val| 0.000 -6.305 +11.183 }}


Map: [&lt;4 0 3 5 14|, &lt;0 1 1 1 0|]
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}
EDOs: 4, 8, 12, 44
Badness: 0.0221


==Doublewide==
[[Badness]] (Sintel): 0.140
Commas: 50/49, 875/864


[[POTE tuning|POTE generator]]: ~6/5 = 325.719
=== Overview to extensions ===
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Walid merges ~5/4 and ~4/3 by tempering out [[16/15]].  


Map: [&lt;2 1 3 4|, &lt;0 4 3 3|]
Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.  
EDOs: 18, 22, 48, 70
Badness: 0.0435


===11-limit===
Temperaments discussed elsewhere are:
Commas: 50/49, 99/98, 875/864
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
* ''[[Injera]]'' (+81/80) → [[Meantone family #Injera|Meantone family]]
* ''[[Octokaidecal]]'' (+28/27) → [[Trienstonic clan #Octokaidecal|Trienstonic clan]]
* ''[[Bipelog]]'' (+135/128) → [[Mavila #Bipelog|Mavila family]]
* ''[[Hexe]]'' (+128/125) → [[Augmented family #Hexe|Augmented family]]
* ''[[Hedgehog]]'' (+250/243) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Crepuscular]]'' (+4375/4374) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Byhearted]]'' (+19683/19208) → [[Tetracot family #Byhearted|Tetracot family]]


[[POTE tuning|POTE generator]]: ~6/5 = 325.548
Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.


Map: [&lt;2 1 3 4 8|, &lt;0 4 3 3 -2|]
== Lemba ==
EDOs: 18, 22, 48, 70, 188
{{Main| Lemba }}
Badness: 0.0321
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''


==Lemba==
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the {{nowrap| 10 & 16 }} temperament; its [[ploidacot]] is diploid tricot.
Commas: 50/49, 525/512


[[POTE tuning|POTE generator]]: ~8/7 = 232.089
[[Subgroup]]: 2.3.5.7


Map: [&lt;2 2 5 6|, &lt;0 3 -1 -1|]
[[Comma list]]: 50/49, 525/512
EDOs: 10, 16, 26, 62
 
Badness: 0.0622</pre></div>
{{Mapping|legend=1| 2 2 5 6 | 0 3 -1 -1 }}
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Jubilismic clan&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two. Doublewide and lemba are discussed below; others in the clan are pajara, diminished, decimal, injera, octokaidecal, hedgehog, bipelog and hexe, which are discussed elsewhere.&lt;br /&gt;
: mapping generators: ~7/5, ~8/7
&lt;br /&gt;
 
No-threes &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 380.840&lt;br /&gt;
[[Optimal tuning]]s:  
&lt;br /&gt;
* [[WE]]: ~7/5 = 601.4623{{c}}, ~8/7 = 232.6544{{c}}
No-threes map: [&amp;lt;2 0 1 1|, &amp;lt;0 0 1 1|]&lt;br /&gt;
: [[error map]]: {{val| +2.925 -1.067 -11.656 +7.294 }}
EDOs: 10, 12, 16, 22, 104&lt;br /&gt;
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
&lt;br /&gt;
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Diminished"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Diminished&lt;/h2&gt;
 
Commas: 36/35, 50/49&lt;br /&gt;
{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~3/2 = 699.523&lt;br /&gt;
[[Badness]] (Sintel): 1.57
&lt;br /&gt;
 
Map: [&amp;lt;4 0 3 5|, &amp;lt;0 1 1 1|]&lt;br /&gt;
=== 11-limit ===
EDOs: 4, 12&lt;br /&gt;
Subgroup: 2.3.5.7.11
Badness: 0.0224&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 45/44, 50/49, 385/384
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Diminished-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;11-limit&lt;/h3&gt;
 
Commas: 36/35, 50/49, 56/55&lt;br /&gt;
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~3/2 = 709.109&lt;br /&gt;
Optimal tunings:
&lt;br /&gt;
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
Map: [&amp;lt;4 0 3 5 14|, &amp;lt;0 1 1 1 0|]&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}
EDOs: 4, 8, 12, 44&lt;br /&gt;
 
Badness: 0.0221&lt;br /&gt;
{{Optimal ET sequence|legend=0| 10, 16, 26 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Doublewide"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Doublewide&lt;/h2&gt;
Badness (Sintel): 1.37
Commas: 50/49, 875/864&lt;br /&gt;
 
&lt;br /&gt;
=== 13-limit ===
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~6/5 = 325.719&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
&lt;br /&gt;
 
Map: [&amp;lt;2 1 3 4|, &amp;lt;0 4 3 3|]&lt;br /&gt;
Comma list: 45/44, 50/49, 65/64, 78/77
EDOs: 18, 22, 48, 70&lt;br /&gt;
 
Badness: 0.0435&lt;br /&gt;
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="x-Doublewide-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h3&gt;
Optimal tunings:
Commas: 50/49, 99/98, 875/864&lt;br /&gt;
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~6/5 = 325.548&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 10, 16, 26 }}
Map: [&amp;lt;2 1 3 4 8|, &amp;lt;0 4 3 3 -2|]&lt;br /&gt;
 
EDOs: 18, 22, 48, 70, 188&lt;br /&gt;
Badness (Sintel): 1.05
Badness: 0.0321&lt;br /&gt;
 
&lt;br /&gt;
== Astrology ==
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="x-Lemba"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Lemba&lt;/h2&gt;
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the {{nowrap| 16 & 22 }} temperament; its ploidacot is diploid pentacot.
Commas: 50/49, 525/512&lt;br /&gt;
 
&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~8/7 = 232.089&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 50/49, 3125/3072
Map: [&amp;lt;2 2 5 6|, &amp;lt;0 3 -1 -1|]&lt;br /&gt;
 
EDOs: 10, 16, 26, 62&lt;br /&gt;
{{Mapping|legend=1| 2 0 4 5 | 0 5 1 1 }}
Badness: 0.0622&lt;/body&gt;&lt;/html&gt;</pre></div>
 
: mapping geenerators: ~7/5, ~5/4
 
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 599.6999{{c}}, ~5/4 = 380.3881{{c}} (~8/7 = 219.3119{{c}})
: [[error map]]: {{val| -0.600 -0.015 -7.126 +10.062 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}
 
{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}
 
[[Badness]] (Sintel): 2.09
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 121/120, 176/175
 
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}
 
Optimal tunings:  
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})
 
{{Optimal ET sequence|legend=0| 6, 16, 22 }}
 
Badness (Sintel): 1.29
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 65/64, 78/77, 121/120
 
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}
 
Optimal tunings:
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})
 
{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}
 
Badness (Sintel): 1.42
 
; Music
* [https://soundcloud.com/joelgranttaylor/astrology-percussion-quintet ''Astrology Percussion Quintet No 1'']{{dead link}} [http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/AstrologyPercQuintet1_c.mp3 play]{{dead link}} by [[Joel Taylor]]
 
==== Horoscope ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 66/65, 105/104, 121/120
 
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}
 
Optimal tunings:
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})
 
{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}
 
Badness (Sintel): 1.46
 
== Walid ==
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]]. Its ploidacot is diploid monocot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 16/15, 50/49
 
{{Mapping|legend=1| 2 0 8 9 | 0 1 -1 -1 }}
 
: mapping generators: ~7/5, ~3
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 589.0384{{c}}, ~3/2 = 735.7242{{c}} (~15/14 = 146.6857{{c}})
: [[error map]]: {{val| -21.923 +11.846 +12.193 +18.719 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}
 
{{Optimal ET sequence|legend=1| 2, 6, 8d }}
 
[[Badness]] (Sintel): 1.24
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 16/15, 22/21, 50/49
 
Mapping: {{mapping| 2 0 8 9 7 | 0 1 -1 -1 0 }}
 
Optimal tunings:
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})
 
{{Optimal ET sequence|legend=0| 2, 6, 8d }}
 
Badness (Sintel): 0.965
 
== Antikythera ==
Named by [[Gene Ward Smith]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101481.html Yahoo! Tuning Group | ''Antikythera'']</ref>, antikythera is every other step of [[pajara]].
 
[[Subgroup]]: 2.9.5.7
 
[[Comma list]]: 50/49, 64/63
 
{{Mapping|legend=2| 2 0 11 12 | 0 1 -1 -1 }}
 
: mapping generators: ~7/5, ~9
 
{{Mapping|legend=3| 2 3 5 6 | 0 1/2 -1 -1 }}
 
: [[gencom]]: [7/5 8/7; 50/49 64/63]
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.8483{{c}}, ~9/8 = 213.6844{{c}}
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
 
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}
 
[[Badness]] (Sintel): 0.253
 
== Doublewide ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''
 
Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the {{nowrap| 22 & 26 }} temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. [[48edo]] makes for an excellent tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 875/864
 
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}
 
: mapping generators: ~7/5, ~6/5
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 600.0365{{c}}, ~6/5 = 325.7389{{c}} (~7/6 = 274.2975{{c}})
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
 
{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}
 
[[Badness]] (Sintel): 1.10
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 99/98, 385/384
 
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}
 
Optimal tunings:
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})
 
{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}
 
Badness (Sintel): 1.06
 
=== Fleetwood ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 55/54, 176/175
 
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}
 
Optimal tunings:
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})
 
{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}
 
Badness (Sintel): 1.16
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 55/54, 65/63, 176/175
 
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}
 
Optimal tunings:
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})
 
{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}
 
Badness (Sintel): 1.32
 
=== Cavalier ===
Subgroup: 2.3.5.7.11
 
Comma list: 45/44, 50/49, 875/864
 
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}
 
Optimal tunings:
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})
 
{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}
 
Badness (Sintel): 1.75
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 45/44, 50/49, 78/77, 325/324
 
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}
 
Optimal tunings:
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})
 
{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}
 
Badness (Sintel): 1.45
 
== Elvis ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''
 
Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[26edo]] makes for an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 8505/8192
 
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}
 
: mapping generators: ~7/5, ~64/45
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.6846{{c}}, ~64/45 = 648.0937{{c}} (~64/63 = 46.4091{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
 
[[Badness]] (Sintel): 3.58
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 45/44, 50/49, 1344/1331
 
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}
 
Optimal tunings:
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})
 
{{Optimal ET sequence|legend=0| 2, 24c, 26 }}
 
Badness (Sintel): 2.09
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 45/44, 50/49, 78/77, 1053/1024
 
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}
 
Optimal tunings:
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})
 
{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}
 
Badness (Sintel): 1.82
 
== Comic ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''
 
Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[22edo]] makes for an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 2240/2187
 
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}
 
: mapping generators: ~7/5, ~40/27
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.9554{{c}}, ~40/27 = 653.5596{{c}} (~28/27 = 54.6042{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}
 
[[Badness]] (Sintel): 2.14
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 99/98, 2662/2625
 
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}
 
Optimal tunings:
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})
 
{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}
 
Badness (Sintel): 1.49
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 65/63, 99/98, 968/945
 
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}
 
Optimal tunings:
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})
 
{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}
 
Badness (Sintel): 1.71
 
== Bipyth ==
Bipyth tempers out the 5-limit [[superpyth comma]], 20480/19683, making it an alternative extension of 5-limit [[superpyth]]. Its ploidacot is diploid monocot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 20480/19683
 
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}
 
: mapping generators: ~7/5, ~3
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.7533{{c}}, ~3/2 = 707.9630{{c}} (~15/14 = 109.2098{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}
 
[[Badness]] (Sintel): 4.18
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 121/120, 896/891
 
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}
 
Optimal tunings:
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})
 
{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}
 
Badness (Sintel): 2.34
 
== Sedecic ==
Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 546875/524288
 
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}
 
[[Optimal tuning]]s:
* [[WE]]: ~128/125 = 75.0539{{c}}, ~3/2 = 701.0578{{c}} (~525/512 = 25.5726{{c}})
: [[error map]]: {{val| 0.000 0.000 -11.314 +6.174 }}
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}
 
{{Optimal ET sequence|legend=1| 16, 32, 48 }}
 
[[Badness]] (Sintel): 6.73
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 385/384, 1331/1323
 
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}
 
Optimal tunings:
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})
 
{{Optimal ET sequence|legend=0| 16, 32, 48 }}
 
Badness (Sintel): 3.07
 
== Notes ==
 
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic| ]] <!-- key article -->
[[Category:Rank 2]]