Tour of regular temperaments: Difference between revisions
Wikispaces>genewardsmith **Imported revision 147200685 - Original comment: ** |
→Rank-2 temperaments: dimipent -> diminished |
||
(414 intermediate revisions by 36 users not shown) | |||
Line 1: | Line 1: | ||
The following is a tour of many of the [[regular temperament]]s that contributors to this wiki have found notable. It is of course not meant to be comprehensive, and is not the result of a systematic search. | |||
[[ | == Rank-2 temperaments == | ||
A rank-2 temperament maps all JI intervals within its [[JI subgroup]] to a 2-dimensional lattice. This lattice has two generators. The larger generator is called the period, as the temperament will repeat periodically at that interval. The period is usually the octave, or some unit fraction of the octave. If the period is a full octave, the temperament is said to be a '''linear temperament'''. The smaller generator, referred to as "the" generator, is stacked repeatedly to generate a scale within that period. | |||
A rank-2 temperament is defined by a period-generator mapping, a set of 2 vals, one val for the period and one for the generator. Each member of the JI subgroup is mapped to a period-generator pair. | |||
Rank-2 temperaments can be reduced to a related rank-1 temperament by tempering out an additional comma. For example, 5-limit meantone temperament, which is rank-2 (defined by tempering the syntonic comma 81/80 out of 3-dimensional 5-limit JI), can be reduced to 1-dimensional 12-ET by tempering out the Pythagorean comma. | |||
=== Families defined by a 2.3 comma === | |||
These are families defined by a 3-limit (color name: wa) comma. If only primes 2 and 3 are part of the [[subgroup]], the comma creates a rank-1 temperament, an [[edo]]. But if another prime such as 5 is present, the comma creates a rank-2 temperament. Since edos are discussed elsewhere, this section assumes the presence of at least one additional prime. The rank-2 temperament created consists of multiple "copies" of an edo. The edo copies can be thought of as being offset from one another by a small comma. This small comma is represented in the [[pergen]] by ^1. | |||
; Blackwood family (P8/5, ^1) | |||
: This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp fifth. Its color name is Sawati. | |||
; [[Whitewood family]] (P8/7, ^1) | |||
: This family tempers out the apotome, {{monzo| -11 7 }} (2187/2048). It equates 7 fifths with 4 octaves, which creates multiple copies of [[7edo]]. The fifth is ~685¢, which is very flat. This family includes the [[whitewood]] temperament. Its color name is Lawati. | |||
; [[Compton family]] (P8/12, ^1) | |||
: This tempers out the [[Pythagorean comma]], {{monzo| -19 12 }} (531441/524288). It equates 12 fifths with 7 octaves, which creates multiple copies of [[12edo]]. Temperaments in this family include [[compton]] and [[catler]]. In the 5-limit compton temperament, the edo copies are offset from one another by a justly tuned 5/4, or alternatively by a tempered 81/80. Several 12edo instruments slightly detuned from each other provide an easy way to make music with these temperaments. Its color name is Lalawati. | |||
; [[Countercomp family]] (P8/41, ^1) | |||
: This family tempers out the [[41-comma|Pythagorean countercomma]], {{monzo| 65 -41 }}, which creates multiple copies of [[41edo]]. Its color name is Wa-41. | |||
; [[Mercator family]] (P8/53, ^1) | |||
: This family tempers out the [[Mercator's comma]], {{monzo| -84 53 }}, which creates multiple copies of [[53edo]]. Its color name is Wa-53. | |||
=== | === Families defined by a 2.3.5 comma === | ||
These are families defined by a 5-limit (color name: ya) comma. As we go up in rank 2, the various 5-limit temperaments often break up as families of related temperaments, depending on how higher primes are mapped (or equivalently, on which higher limit commas are introduced.) The same comment applies to 7-limit temperaments and rank 3, etc. Members of families and their relationships can be classified by the [[normal lists|normal comma list]] of the various temperaments. Families include weak extensions as well as strong, in other words, the [[pergen]] shown here may change. | |||
; [[Meantone family]] (P8, P5) | |||
The | : The meantone family tempers out [[81/80]], also called the syntonic comma. This comma manifests as the difference between a stack of four 3/2's (81/16, or (3/2)<sup>4</sup>) and 5/1 harmonic (5/1, or 80/16). It is so named because it splits the major third into two equal sized tones, signifying that 9/8 and 10/9 are equated, with each tone being sized as a mean of the two tones. It has a flattened fifth or sharpened fourth as generator. Some meantone tunings are [[12edo|12-]], [[19edo|19-]], [[31edo|31-]], [[43edo|43-]], [[50edo|50-]], [[55edo|55-]] and [[81edo]]. Aside from tuning meantone as a subset of some equal division of the octave, some common rank-2 tunings include having a generator of 3/2 flattened by 1/3, 2/7, 1/4, 1/5 or 1/6 of the syntonic comma. Its color name is Guti. | ||
; [[Schismatic family]] (P8, P5) | |||
The | : The schismatic family tempers out the schisma of {{monzo| -15 8 1 }} ([[32805/32768]]), which is the amount by which the Pythagorean comma exceeds the syntonic comma. The 5-limit version of the temperament is a [[microtemperament]] which flattens the fifth by a fraction of a schisma, but other members of the family are less accurate. As a 5-limit system, it is far more accurate than meantone but still with manageable complexity; whereas meantone equates four 3/2's with 5/1, schismatic equates eight 4/3's with 10/1, so that the Pythagorean diminished fourth of 8192/6561 is equated with 5/4. Tunings include [[12edo|12-]], [[29edo|29-]], [[41edo|41-]], [[53edo|53-]], and [[118edo]]. Its color name is Layoti. | ||
; [[Mavila family]] (P8, P5) | |||
: This tempers out the mavila comma, {{monzo| -7 3 1 }} ([[135/128]]), also known as the major chroma or major limma. These temperaments are notable for having 3/2's tuned so flat that four of them stacked together and octave reduced leads you to 6/5 instead of 5/4, and one consequence of this is that it generates [[2L 5s]] (antidiatonic) scales. 5/4 is equated to 3 fourths minus 1 octave. Septimal mavila and armodue are some of the most notable temperaments associated with the mavila comma. Tunings include [[9edo|9-]], [[16edo|16-]], [[23edo|23-]], and [[25edo]]. Its color name is Layobiti. | |||
; [[Father family]] (P8, P5) | |||
: This tempers out [[16/15]], the just diatonic semitone, and equates 5/4 with 4/3. Its color name is Gubiti. | |||
; [[Diaschismic family]] (P8/2, P5) | |||
: The diaschismic family tempers out the [[diaschisma]], {{monzo| 11 -4 -2 }} (2048/2025), such that two classic major thirds and a [[81/64|Pythagorean major third]] stack to an octave (i.e. {{nowrap| (5/4)⋅(5/4)⋅(81/64) → 2/1 }}). It has a half-octave period of an approximate 45/32 or 64/45, and its generator is an approximate 3/2. 5/4 is equated to 3 periods minus 2 fifths. The major second ~9/8 is divided in half, with each half equated to ~16/15. Diaschismic tunings include [[12edo|12-]], [[22edo|22-]], [[34edo|34-]], [[46edo|46-]], [[56edo|56-]], [[58edo|58-]] and [[80edo]]. Its color name is Saguguti. An obvious 7-limit interpretation of the period is 7/5, which makes [[pajara]] temperament, where the intervals 50/49 and 64/63 are tempered out. [[22edo]] is an excellent pajara tuning. | |||
; [[Bug family]] (P8, P4/2) | |||
: This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or {{nowrap| 10/9 {{=}} ~250{{c}} }}, two of which make ~4/3. 5/4 is equated to 1 octave minus 3 generators. Its color name is Guguti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | |||
; [[Immunity family]] (P8, P4/2) | |||
: This tempers out the immunity comma, {{monzo| 16 -13 2 }} (1638400/1594323). Its generator is {{nowrap| ~729/640 {{=}} ~247{{c}} }}, two of which make ~4/3. 5/4 is equated to 3 octaves minus 13 generators. Its color name is Sasa-yoyoti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | |||
; [[Dicot family]] (P8, P5/2) | |||
: The dicot family is a low-accuracy family of temperaments which temper out the chromatic semitone, [[25/24]] (the difference between 5/4 and 6/5, or alternatively the difference between two 5/4's and 3/2 or between two 6/5's and 3/2). This temperament hence equates major and minor thirds, evening them out into a neutral-sized third of ~350¢ that is taken to approximate both. [[7edo]] makes for a "good" dicot tuning, although it is questionable whether this temperament bears any actual resemblance to 5-limit harmony. Two of the neutral dicot thirds span a 3/2. Tunings include 7edo, [[10edo]], and [[17edo]]. Its color name is Yoyoti. An obvious 2.3.11 interpretation of the generator is ~11/9, which leads to neutral or Luluti. | |||
; [[Augmented family]] (P8/3, P5) | |||
: The augmented family tempers out the diesis of {{monzo| 7 0 -3 }} ([[128/125]]), the difference between three 5/4 major thirds and a 2/1 octave, and so identifies the major third with the third-octave. Hence it has the same 400-cent 5/4-approximations as [[12edo]], which is an excellent tuning for augmented. It is the temperament that results in what is commonly called the "augmented scale" ([[3L 3s]]) in common 12edo-based music theory, as well as what is commonly called "[http://www.tcherepnin.com/alex/basic_elem1.htm#9step Tcherepnin's scale]" ([[3L 6s]]). Its color name is Triguti. | |||
; [[Misty family]] (P8/3, P5) | |||
: The misty family tempers out the [[misty comma]] of {{monzo| 26 -12 -3 }}, the difference between the [[Pythagorean comma]] and a stack of three [[schisma]]s. The period is ~512/405 and the generator is ~3/2 (or alternatively ~135/128). 5/4 is equated to 8 periods minus 4 fifths, thus 5/4 is split into 4 equal parts, each 2 periods minus a fifth. Its color name is Sasa-triguti. | |||
; [[Porcupine family]] (P8, P4/3) | |||
: The porcupine family tempers out {{monzo| 1 -5 3 }} ([[250/243]]), the difference between three 10/9's (1000/729) and 4/3, known as the maximal diesis or porcupine comma. It subdivides the fourth into three equal parts, each taken as an approximated 10/9, of which two approximate 6/5. It also manifests itself as the difference between three 6/5's and 16/9, as the difference between 10/9 and 27/25, and as the difference between 81/80 and 25/24. 5/4 is equated to 1 octave minus 5 generators. Some porcupine temperaments include [[15edo|15-]], [[22edo|22-]], [[37edo|37-]], and [[59edo]]. Its color name is Triyoti. An important 7-limit extension also tempers out 64/63. | |||
; [[Alphatricot family]] (P8, P11/3) | |||
: The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | |||
; [[Diminished family]] (P8/4, P5) | |||
: The diminished family tempers out the major diesis or diminished comma, {{monzo| 3 4 -4 }} or [[648/625]], the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]]. 5/4 is equated to 1 fifth minus 1 period. Its color name is Quadguti. | |||
; [[Undim family]] (P8/4, P5) | |||
: The undim family tempers out the [[undim comma]] of {{monzo| 41 -20 -4 }}, the difference between the Pythagorean comma and a stack of four schismas. Its color name is Trisa-quadguti. | |||
; Negri family (P8, P4/4) | |||
: This tempers out the [[negri comma]], {{monzo| -14 3 4 }}. Its only member so far is [[negri]]. Its generator is ~16/15, four of which make ~4/3. 5/4 is equated to 3 generators. Its color name is Laquadyoti. | |||
; [[Tetracot family]] (P8, P5/4) | |||
: The tetracot family is a much higher accuracy affair than the dicot family. Instead of taking two neutral thirds to reach 3/2, it takes four minor (10/9) whole tones. Four of these exceed 3/2 by {{monzo| 5 -9 4 }} (20000/19683), the minimal diesis or [[tetracot comma]]. 5/4 is equated to 9 generators minus an octave. [[7edo]] can also be considered a tetracot tuning, as can [[20edo]], [[27edo]], [[34edo]], and [[41edo]]. Its color name is Saquadyoti. | |||
; [[Smate family]] (P8, P11/4) | |||
: This tempers out the [[symbolic comma]], {{monzo| 11 -1 -4 }} (2048/1875). Its generator is {{nowrap| ~5/4 {{=}} ~421{{c}} }}, four of which make ~8/3. Its color name is Saquadguti. | |||
; [[Vulture family]] (P8, P12/4) | |||
: This tempers out the [[vulture comma]], {{monzo| 24 -21 4 }}. Its generator is {{nowrap| ~320/243 {{=}} ~475{{c}} }}, four of which make ~3/1. 5/4 is equated to 21 generators minus 8 octaves. Its color name is Sasa-quadyoti. An obvious 7-limit interpretation of the generator is 21/16, which makes buzzard or Saquadruti. | |||
; [[Quintile family]] (P8/5, P5) | |||
: This tempers out the [[quintile comma]], 847288609443/838860800000 ({{monzo| -28 25 -5 }}). The period is ~59049/51200, and 5 periods make an octave. The generator is a fifth, or equivalently, 3/5 of an octave minus a fifth. This alternate generator is only about 18{{c}}, thus the scales have a very lopsided L/s ratio. 5/4 is equated to 2/5 of an octave minus 5 of these 18{{c}} generators. Its color name is Trila-quinguti. An obvious 7-limit interpretation of the generator is 8/7, which leads to Laquinzoti. | |||
; [[Ripple family]] (P8, P4/5) | |||
: |