Tour of regular temperaments: Difference between revisions
m Amendments +1 |
→Rank-2 temperaments: dimipent -> diminished |
||
(2 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
; Blackwood family (P8/5, ^1) | ; Blackwood family (P8/5, ^1) | ||
: This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp | : This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp fifth. Its color name is Sawati. | ||
; [[Whitewood family]] (P8/7, ^1) | ; [[Whitewood family]] (P8/7, ^1) | ||
Line 65: | Line 65: | ||
: The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | : The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | ||
; [[ | ; [[Diminished family]] (P8/4, P5) | ||
: The | : The diminished family tempers out the major diesis or diminished comma, {{monzo| 3 4 -4 }} or [[648/625]], the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]]. 5/4 is equated to 1 fifth minus 1 period. Its color name is Quadguti. | ||
; [[Undim family]] (P8/4, P5) | ; [[Undim family]] (P8/4, P5) | ||
Line 123: | Line 123: | ||
; [[Wesley family]] (P8, ccP4/7) | ; [[Wesley family]] (P8, ccP4/7) | ||
: This tempers out the [[wesley comma]], 78125/73728 ({{monzo| -13 -2 7 }}). The generator is {{nowrap| ~125/96 {{=}} ~412{{c}} }}. Seven generators equals a double-compound | : This tempers out the [[wesley comma]], 78125/73728 ({{monzo| -13 -2 7 }}). The generator is {{nowrap| ~125/96 {{=}} ~412{{c}} }}. Seven generators equals a double-compound fourth of ~16/3. 5/4 is equated to 1 octave minus 2 generators. Its color name is Lasepyobiti. An obvious 7-limit interpretation of the generator is 9/7, leading to the Lasepruti temperament. An obvious 3-limit interpretation of the generator is 81/64, implying [[29edo]]. | ||
; [[Sensipent family]] (P8, ccP5/7) | ; [[Sensipent family]] (P8, ccP5/7) | ||
: The sensipent family tempers out the [[sensipent comma]], 78732/78125 ({{monzo| 2 9 -7 }}), also known as the medium semicomma. Its generator is {{nowrap| ~162/125 {{=}} ~443{{c}} }}. Seven generators equals a double-compound | : The sensipent family tempers out the [[sensipent comma]], 78732/78125 ({{monzo| 2 9 -7 }}), also known as the medium semicomma. Its generator is {{nowrap| ~162/125 {{=}} ~443{{c}} }}. Seven generators equals a double-compound fifth of ~6/1. 5/4 is equated to 9 generators minus 3 octaves. Tunings include [[8edo]], [[19edo]], [[46edo]], and [[65edo]]. Its color name is Sepguti. An obvious 7-limit interpretation of the generator is 9/7, leading to the Sasepzoti temperament. | ||
; [[Vishnuzmic family]] (P8/2, P4/7) | ; [[Vishnuzmic family]] (P8/2, P4/7) | ||
Line 135: | Line 135: | ||
; [[Würschmidt family]] (P8, ccP5/8) | ; [[Würschmidt family]] (P8, ccP5/8) | ||
: The würschmidt family tempers out the [[würschmidt comma]], 393216/390625 ({{monzo| 17 1 -8 }}). Würschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a double-compound perfect | : The würschmidt family tempers out the [[würschmidt comma]], 393216/390625 ({{monzo| 17 1 -8 }}). Würschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a double-compound perfect fifth); that is, {{nowrap| (5/4)<sup>8</sup>⋅(393216/390625) {{=}} 6 }}. It tends to generate the same mos scales as the [[magic]] temperament, but is tuned slightly more accurately. Both [[31edo]] and [[34edo]] can be used as würschmidt tunings, as can [[65edo]], which is quite accurate. Its color name is Saquadbiguti. | ||
; [[Escapade family]] (P8, P4/9) | ; [[Escapade family]] (P8, P4/9) | ||
Line 141: | Line 141: | ||
; [[Mabila family]] (P8, c4P4/10) | ; [[Mabila family]] (P8, c4P4/10) | ||
: The mabila family tempers out the mabila comma, {{monzo| 28 -3 -10 }} (268435456/263671875). The generator is {{nowrap| ~512/375 {{=}} ~530{{c}} }}, three generators equals ~5/2 and ten of them equals a quadruple-compound | : The mabila family tempers out the [[mabila comma]], {{monzo| 28 -3 -10 }} (268435456/263671875). The generator is {{nowrap| ~512/375 {{=}} ~530{{c}} }}, three generators equals ~5/2 and ten of them equals a quadruple-compound fourth of ~64/3. Its color name is Sasa-quinbiguti. An obvious 11-limit interpretation of the generator is ~15/11. | ||
; [[Sycamore family]] (P8, P5/11) | ; [[Sycamore family]] (P8, P5/11) | ||
: The sycamore family tempers out the sycamore comma, {{monzo| -16 -6 11 }} (48828125/47775744), which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4. Eleven of these generators equals ~3/2. Its color name is Laleyoti. | : The sycamore family tempers out the [[sycamore comma]], {{monzo| -16 -6 11 }} (48828125/47775744), which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4. Eleven of these generators equals ~3/2. Its color name is Laleyoti. | ||
; [[Quartonic family]] (P8, P4/11) | ; [[Quartonic family]] (P8, P4/11) | ||
: The quartonic family tempers out the quartonic comma, {{monzo| 3 -18 11 }} (390625000/387420489). The generator is {{nowrap| ~250/243 {{=}} ~45{{c}} }}, seven generators equals ~6/5, and eleven generators equals ~4/3. Its color name is Saleyoti. An obvious 7-limit interpretation of the generator is ~36/35. | : The quartonic family tempers out the [[quartonic comma]], {{monzo| 3 -18 11 }} (390625000/387420489). The generator is {{nowrap| ~250/243 {{=}} ~45{{c}} }}, seven generators equals ~6/5, and eleven generators equals ~4/3. Its color name is Saleyoti. An obvious 7-limit interpretation of the generator is ~36/35. | ||
; [[Lafa family]] (P8, P12/12) | ; [[Lafa family]] (P8, P12/12) | ||
: This tempers out the lafa comma, {{monzo| 77 -31 -12 }}. The generator is {{nowrap| ~4982259375/4294967296 {{=}} ~258.6{{c}} }}. Twelve generators equals a twelfth (~3/1). 5/4 is equated to 7 octaves minus 31 generators. Its color name is Tribisa-quadtriguti. | : This tempers out the [[lafa comma]], {{monzo| 77 -31 -12 }}. The generator is {{nowrap| ~4982259375/4294967296 {{=}} ~258.6{{c}} }}. Twelve generators equals a twelfth (~3/1). 5/4 is equated to 7 octaves minus 31 generators. Its color name is Tribisa-quadtriguti. | ||
; [[Ditonmic family]] (P8, c4P4/13) | ; [[Ditonmic family]] (P8, c4P4/13) | ||
: This tempers out the ditonma, {{monzo| -27 -2 13 }} (1220703125/1207959552). Thirteen ~{{monzo| -12 -1 6 }} generators of about 407{{c}} equals a quadruple-compound | : This tempers out the [[ditonma]], {{monzo| -27 -2 13 }} (1220703125/1207959552). Thirteen ~{{monzo| -12 -1 6 }} generators of about 407{{c}} equals a quadruple-compound fourth. 5/4 is equated to 1 octave minus 2 generators. An obvious 3-limit interpretation of the generator is 81/64, which implies 53edo, which is a good tuning for this high-accuracy family of temperaments. Its color name is Lala-theyoti. | ||
; [[Luna family]] (P8, ccP4/15) | ; [[Luna family]] (P8, ccP4/15) | ||
: This tempers out the luna comma, {{monzo| 38 -2 -15 }} (274877906944/274658203125). The generator is ~{{monzo| 18 -1 -7 }} at ~193{{c}}. Two generators equals ~5/4, and fifteen generators equals a double-compound | : This tempers out the [[luna comma]], {{monzo| 38 -2 -15 }} (274877906944/274658203125). The generator is ~{{monzo| 18 -1 -7 }} at ~193{{c}}. Two generators equals ~5/4, and fifteen generators equals a double-compound fourth of ~16/3. Its color name is Sasa-quintriguti. | ||
; [[Vavoom family]] (P8, P12/17) | ; [[Vavoom family]] (P8, P12/17) | ||
: This tempers out the vavoom comma, {{monzo| -68 18 17 }}. The generator is {{nowrap| ~16/15 {{=}} ~111.9{{c}} }}. Seventeen generators equals a twelfth (~3/1). 5/4 is equated to two octaves minus 18 generators. Its color name is Quinla-seyoti. | : This tempers out the [[vavoom comma]], {{monzo| -68 18 17 }}. The generator is {{nowrap| ~16/15 {{=}} ~111.9{{c}} }}. Seventeen generators equals a twelfth (~3/1). 5/4 is equated to two octaves minus 18 generators. Its color name is Quinla-seyoti. | ||
; [[Minortonic family]] (P8, ccP5/17) | ; [[Minortonic family]] (P8, ccP5/17) | ||
: This tempers out the minortone comma, {{monzo| -16 35 -17 }}. The head of the family is minortonic temperament, with a generator of a minor tone (~10/9). Seventeen generators equals a double-compound | : This tempers out the [[minortone comma]], {{monzo| -16 35 -17 }}. The head of the family is minortonic temperament, with a generator of a minor tone (~10/9). Seventeen generators equals a double-compound fifth (~6/1). 5/4 is equated to 35 generators minus 5 octaves. Its color name is Trila-seguti. | ||
; [[Maja family]] (P8, c<sup>6</sup>P4/17) | ; [[Maja family]] (P8, c<sup>6</sup>P4/17) | ||
: This tempers out the maja comma, {{monzo| -3 -23 17 }} (762939453125/753145430616). The generator is {{nowrap| ~162/125 {{=}} ~453{{c}} }}. Seventeen generators equals a sextuple-compound | : This tempers out the [[maja comma]], {{monzo| -3 -23 17 }} (762939453125/753145430616). The generator is {{nowrap| ~162/125 {{=}} ~453{{c}} }}. Seventeen generators equals a sextuple-compound fourth. 5/4 is equated to 9 octaves minus 23 generators. Its color name is Saseyoti. | ||
; [[Maquila family]] (P8, c<sup>7</sup>P5/17) | ; [[Maquila family]] (P8, c<sup>7</sup>P5/17) | ||
: This tempers out the maquila comma, {{monzo| 49 -6 -17 }} (562949953421312/556182861328125). The generator is {{nowrap| ~512/375 {{=}} ~535{{c}} }}. Seventeen generators equals a septuple-compound | : This tempers out the [[maquila comma]], {{monzo| 49 -6 -17 }} (562949953421312/556182861328125). The generator is {{nowrap| ~512/375 {{=}} ~535{{c}} }}. Seventeen generators equals a septuple-compound fifth. 5/4 is equated to 3 octaves minus 6 generators. Its color name is Trisa-seguti. An obvious 11-limit interpretation of the generator is 11/8, leading to the Lala-seloti temperament. However, Lala-seloti is not nearly as accurate as Trisa-seguti. | ||
; [[Gammic family]] (P8, P5/20) | ; [[Gammic family]] (P8, P5/20) | ||
: The gammic family tempers out the gammic comma, {{monzo| -29 -11 20 }}. Nine generators of about 35{{c}} equals ~6/5, eleven equals ~5/4 and twenty equals ~3/2. 34edo is an obvious tuning. The head of the family is 5-limit gammic, whose generator chain is [[Carlos Gamma]]. Another member is the [[neptune]] temperament. Its color name is Laquinquadyoti. | : The gammic family tempers out the [[gammic comma]], {{monzo| -29 -11 20 }}. Nine generators of about 35{{c}} equals ~6/5, eleven equals ~5/4 and twenty equals ~3/2. 34edo is an obvious tuning. The head of the family is 5-limit gammic, whose generator chain is [[Carlos Gamma]]. Another member is the [[neptune]] temperament. Its color name is Laquinquadyoti. | ||
=== Clans defined by a 2.3.7 comma === | === Clans defined by a 2.3.7 comma === | ||
Line 471: | Line 471: | ||
; [[Landscape microtemperaments]] | ; [[Landscape microtemperaments]] | ||
: Landscape rank-2 temperaments temper out the [[landscape comma]], {{monzo| -4 6 -6 3 }} (250047/250000). These have a period of 1/3 octave, but ~5/4 is not equated with a period, resulting in small intervals. Its color name is Trizoguguti. | : Landscape rank-2 temperaments temper out the [[landscape comma]], {{monzo| -4 6 -6 3 }} (250047/250000). These have a period of 1/3 octave, but ~5/4 is not equated with a period, resulting in small intervals. Its color name is Trizoguguti. | ||
== Rank-3 temperaments == | == Rank-3 temperaments == | ||
Line 562: | Line 562: | ||
; [[Cataharry family]] (P8, P4/2, ^1) | ; [[Cataharry family]] (P8, P4/2, ^1) | ||
: Cataharry temperaments temper out the cataharry comma, {{monzo| -4 9 -2 -2 }} (19683/19600). In the pergen, half a | : Cataharry temperaments temper out the cataharry comma, {{monzo| -4 9 -2 -2 }} (19683/19600). In the pergen, half a fourth is ~81/70, and {{nowrap| ^1 {{=}} ~81/80 }}. Its color name is Labiruguti. | ||
; [[Breed family]] (P8, P5/2, ^1) | ; [[Breed family]] (P8, P5/2, ^1) | ||
Line 624: | Line 624: | ||
; [[Alphaxenic rank three clan|Alphaxenic rank-3 clan]] | ; [[Alphaxenic rank three clan|Alphaxenic rank-3 clan]] | ||
: These temper out the [[Alpharabian comma]], {{monzo| -17 2 0 0 4 }} (131769/131072). In the corresponding [[#Clans defined by a 2.3.11 comma|2.3.11 rank-2 temperament]], the pergen is (P8/2, M2/4). Its color name is Laquadloti. | : These temper out the [[Alpharabian comma]], {{monzo| -17 2 0 0 4 }} (131769/131072). In the corresponding [[#Clans defined by a 2.3.11 comma|2.3.11 rank-2 temperament]], the pergen is (P8/2, M2/4). Its color name is Laquadloti. | ||
; [[Keenanismic temperaments]] | |||
: These temper out the [[keenanisma]], {{monzo| -7 -1 1 1 1 }} (385/384). Its color name is Lozoyoti. | |||
; [[Werckismic temperaments]] | |||
: These temper out the [[werckisma]], {{monzo| -3 2 -1 2 -1 }} (441/440). Its color name is Luzozoguti. | |||
; [[Swetismic temperaments]] | |||
: These temper out the [[swetisma]], {{monzo| 2 3 1 -2 -1 }} (540/539). Its color name is Lururuyoti. | |||
; [[Lehmerismic temperaments]] | |||
: These temper out the [[lehmerisma]], {{monzo| -4 -3 2 -1 2 }} (3025/3024). Its color name is Loloruyoyoti. | |||
; [[Kalismic temperaments]] | |||
: These temper out the [[kalisma]], {{monzo| -3 4 -2 -2 2 }} (9801/9800). Its color name is Biloruguti. | |||
== Rank-4 temperaments == | == Rank-4 temperaments == | ||
Line 630: | Line 645: | ||
Even less explored than rank-3 temperaments are rank-4 temperaments. In fact, unless one counts 7-limit JI they do not seem to have been explored at all. However, they could be used; for example [[hobbit]] scales can be constructed for them. | Even less explored than rank-3 temperaments are rank-4 temperaments. In fact, unless one counts 7-limit JI they do not seem to have been explored at all. However, they could be used; for example [[hobbit]] scales can be constructed for them. | ||
; [[Keenanismic | ; [[Keenanismic family]] (P8, P5, ^1, /1) | ||
: These temper out the keenanisma, {{monzo| -7 -1 1 1 1 }} (385/384). In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Lozoyoti. | : These temper out the keenanisma, {{monzo| -7 -1 1 1 1 }} (385/384). In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Lozoyoti. | ||
; | ; Werckismic family (P8, P5, ^1, /1) | ||
: These temper out the werckisma, {{monzo| -3 2 -1 2 -1 }} (441/440). 11/8 is equated to {{monzo| -6 2 -1 2 }} and 5/4 is equated to {{monzo| -5 2 0 2 -1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 is either ~81/80, ~33/32 or ~729/704. Its color name is Luzozoguti. | : These temper out the werckisma, {{monzo| -3 2 -1 2 -1 }} (441/440). 11/8 is equated to {{monzo| -6 2 -1 2 }} and 5/4 is equated to {{monzo| -5 2 0 2 -1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 is either ~81/80, ~33/32 or ~729/704. Its color name is Luzozoguti. | ||
; | ; Swetismic family (P8, P5, ^1, /1) | ||
: These temper out the swetisma, {{monzo| 2 3 1 -2 -1 }} (540/539). 11/8 is equated to {{monzo| -1 3 1 -2 }} (135/98) and 5/4 is equated to {{monzo| -4 -3 0 2 1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 can be either ~81/80, ~33/32 or ~729/704. Its color name is Lururuyoti. | : These temper out the swetisma, {{monzo| 2 3 1 -2 -1 }} (540/539). 11/8 is equated to {{monzo| -1 3 1 -2 }} (135/98) and 5/4 is equated to {{monzo| -4 -3 0 2 1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 can be either ~81/80, ~33/32 or ~729/704. Its color name is Lururuyoti. | ||
; | ; Lehmerismic family (P8, P5, ^1, /1) | ||
: These temper out the lehmerisma, {{monzo| -4 -3 2 -1 2 }} (3025/3024). Since 7/4 is equated to a no-7's 11-limit (color name: yala) interval, both the pergen and the lattice are identical to that of no-7's 11-limit JI. In the pergen, {{nowrap| ^1 {{=}} ~81/80 }} and /1 is either ~33/32 or ~729/704. Its color name is Loloruyoyoti. | : These temper out the lehmerisma, {{monzo| -4 -3 2 -1 2 }} (3025/3024). Since 7/4 is equated to a no-7's 11-limit (color name: yala) interval, both the pergen and the lattice are identical to that of no-7's 11-limit JI. In the pergen, {{nowrap| ^1 {{=}} ~81/80 }} and /1 is either ~33/32 or ~729/704. Its color name is Loloruyoyoti. | ||
; | ; Kalismic family (P8/2, P5, ^1, /1) | ||
: These temper out the kalisma, {{monzo| -3 4 -2 -2 2 }} (9801/9800). The octave is split into two ~99/70 periods. In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Biloruguti. | : These temper out the kalisma, {{monzo| -3 4 -2 -2 2 }} (9801/9800). The octave is split into two ~99/70 periods. In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Biloruguti. | ||