Tour of regular temperaments: Difference between revisions
Color names should not appear in the heads of each entry (see talk). Massive misc. cleanup, wording and linking improvements |
→Rank-2 temperaments: dimipent -> diminished |
||
(4 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
; Blackwood family (P8/5, ^1) | ; Blackwood family (P8/5, ^1) | ||
: This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp | : This family tempers out the [[limma]], {{monzo| 8 -5 }} (256/243). It equates 5 fifths with 3 octaves, which creates multiple copies of [[5edo]]. The fifth is ~720¢, quite sharp. The only member of this family is the [[blackwood]] temperament, which is 5-limit. Blackwood's edo copies are offset from one another by 5/4, or alternatively by 81/80. 5/4 is usually tempered sharp, perhaps ~400¢, to match the sharp fifth. Its color name is Sawati. | ||
; [[Whitewood family]] (P8/7, ^1) | ; [[Whitewood family]] (P8/7, ^1) | ||
Line 45: | Line 45: | ||
; [[Bug family]] (P8, P4/2) | ; [[Bug family]] (P8, P4/2) | ||
: This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or {{nowrap| 10/9 {{=}} ~ | : This low-accuracy family of temperaments tempers out [[27/25]], the large limma or bug comma. The generator is an approximate 6/5 or {{nowrap| 10/9 {{=}} ~250{{c}} }}, two of which make ~4/3. 5/4 is equated to 1 octave minus 3 generators. Its color name is Guguti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | ||
; [[Immunity family]] (P8, P4/2) | ; [[Immunity family]] (P8, P4/2) | ||
: This tempers out the immunity comma, {{monzo| 16 -13 2 }} (1638400/1594323). Its generator is {{nowrap| ~729/640 {{=}} ~ | : This tempers out the immunity comma, {{monzo| 16 -13 2 }} (1638400/1594323). Its generator is {{nowrap| ~729/640 {{=}} ~247{{c}} }}, two of which make ~4/3. 5/4 is equated to 3 octaves minus 13 generators. Its color name is Sasa-yoyoti. An obvious 7-limit interpretation of the generator is 7/6~8/7, which leads to semaphore or Zozoti. | ||
; [[Dicot family]] (P8, P5/2) | ; [[Dicot family]] (P8, P5/2) | ||
Line 65: | Line 65: | ||
: The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | : The alphatricot family tempers out the [[alphatricot comma]], {{monzo| 39 -29 3 }}. The generator is {{nowrap| ~59049/40960 ({{monzo| -13 10 -1 }}) {{=}} 633{{c}} }}, or its octave inverse {{nowrap| ~81920/59049 {{=}} 567{{c}} }}. Three of the former generators equals the third harmonic, ~3/1. 5/4 is equated to 29 of these generators octave-reduced. Its color name is Quadsa-triyoti. An obvious 7-limit interpretation of the generator is {{nowrap| 81/56 {{=}} 639{{c}} }}, a much simpler ratio which leads to the [[Tour of Regular Temperaments #Latriruti clan (P8, P11/3)|Latriruti clan]]. An obvious 13-limit interpretation is {{nowrap| 13/9 {{=}} 637¢ }}, an even simpler ratio implying the [[Tour of Regular Temperaments #Satrithoti clan (P8, P11/3)|Satrithoti clan]]. | ||
; [[ | ; [[Diminished family]] (P8/4, P5) | ||
: The | : The diminished family tempers out the major diesis or diminished comma, {{monzo| 3 4 -4 }} or [[648/625]], the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]]. 5/4 is equated to 1 fifth minus 1 period. Its color name is Quadguti. | ||
; [[Undim family]] (P8/4, P5) | ; [[Undim family]] (P8/4, P5) | ||
Line 113: | Line 113: | ||
: This tempers out the [[trisedodge comma]], 30958682112/30517578125 ({{monzo| 19 10 -15 }}). The period is {{nowrap| ~144/125 {{=}} 240{{c}} }}. The generator is ~6/5. Six periods minus three generators equals ~4/3. 5/4 is equated to 2 generators minus 1 period. Its color name is Saquintriguti. An obvious 7-limit interpretation of the period is 8/7. | : This tempers out the [[trisedodge comma]], 30958682112/30517578125 ({{monzo| 19 10 -15 }}). The period is {{nowrap| ~144/125 {{=}} 240{{c}} }}. The generator is ~6/5. Six periods minus three generators equals ~4/3. 5/4 is equated to 2 generators minus 1 period. Its color name is Saquintriguti. An obvious 7-limit interpretation of the period is 8/7. | ||
; | ; Ampersand family (P8, P5/6) | ||
: This tempers out [[ | : This tempers out the [[ampersand comma]], 34171875/33554432 ({{monzo| -25 7 6 }}). Its only member is [[ampersand]]. The generator is ~16/15, of which six make ~3/2. 5/4 is equated to 1 octave minus 7 generators. Its color name is Lala-tribiyoti. If the generator is also equated to ~15/14, and three generators to ~11/9, one gets the [[miracle]] temperament. | ||
; [[Kleismic family]] (P8, P12/6) | ; [[Kleismic family]] (P8, P12/6) | ||
Line 123: | Line 123: | ||
; [[Wesley family]] (P8, ccP4/7) | ; [[Wesley family]] (P8, ccP4/7) | ||
: This tempers out the [[wesley comma]], 78125/73728 ({{monzo| -13 -2 7 }}). The generator is {{nowrap| ~125/96 {{=}} ~412{{c}} }}. Seven generators equals a double-compound | : This tempers out the [[wesley comma]], 78125/73728 ({{monzo| -13 -2 7 }}). The generator is {{nowrap| ~125/96 {{=}} ~412{{c}} }}. Seven generators equals a double-compound fourth of ~16/3. 5/4 is equated to 1 octave minus 2 generators. Its color name is Lasepyobiti. An obvious 7-limit interpretation of the generator is 9/7, leading to the Lasepruti temperament. An obvious 3-limit interpretation of the generator is 81/64, implying [[29edo]]. | ||
; [[Sensipent family]] (P8, ccP5/7) | ; [[Sensipent family]] (P8, ccP5/7) | ||
: The sensipent family tempers out the [[sensipent comma]], 78732/78125 ({{monzo| 2 9 -7 }}), also known as the medium semicomma. Its generator is {{nowrap| ~162/125 {{=}} ~443{{c}} }}. Seven generators equals a double-compound | : The sensipent family tempers out the [[sensipent comma]], 78732/78125 ({{monzo| 2 9 -7 }}), also known as the medium semicomma. Its generator is {{nowrap| ~162/125 {{=}} ~443{{c}} }}. Seven generators equals a double-compound fifth of ~6/1. 5/4 is equated to 9 generators minus 3 octaves. Tunings include [[8edo]], [[19edo]], [[46edo]], and [[65edo]]. Its color name is Sepguti. An obvious 7-limit interpretation of the generator is 9/7, leading to the Sasepzoti temperament. | ||
; [[Vishnuzmic family]] (P8/2, P4/7) | ; [[Vishnuzmic family]] (P8/2, P4/7) | ||
Line 135: | Line 135: | ||
; [[Würschmidt family]] (P8, ccP5/8) | ; [[Würschmidt family]] (P8, ccP5/8) | ||
: The würschmidt family tempers out the [[würschmidt comma]], 393216/390625 ({{monzo| 17 1 -8 }}). Würschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a double-compound perfect | : The würschmidt family tempers out the [[würschmidt comma]], 393216/390625 ({{monzo| 17 1 -8 }}). Würschmidt itself has a generator of a major third, eight of which give a 6/1 (the 6th harmonic, or a double-compound perfect fifth); that is, {{nowrap| (5/4)<sup>8</sup>⋅(393216/390625) {{=}} 6 }}. It tends to generate the same mos scales as the [[magic]] temperament, but is tuned slightly more accurately. Both [[31edo]] and [[34edo]] can be used as würschmidt tunings, as can [[65edo]], which is quite accurate. Its color name is Saquadbiguti. | ||
; [[Escapade family]] (P8, P4/9) | ; [[Escapade family]] (P8, P4/9) | ||
Line 141: | Line 141: | ||
; [[Mabila family]] (P8, c4P4/10) | ; [[Mabila family]] (P8, c4P4/10) | ||
: The mabila family tempers out the mabila comma, {{monzo| 28 -3 -10 }} (268435456/263671875). The generator is {{nowrap| ~512/375 {{=}} ~530{{c}} }}, three generators equals ~5/2 and ten of them equals a quadruple-compound | : The mabila family tempers out the [[mabila comma]], {{monzo| 28 -3 -10 }} (268435456/263671875). The generator is {{nowrap| ~512/375 {{=}} ~530{{c}} }}, three generators equals ~5/2 and ten of them equals a quadruple-compound fourth of ~64/3. Its color name is Sasa-quinbiguti. An obvious 11-limit interpretation of the generator is ~15/11. | ||
; [[Sycamore family]] (P8, P5/11) | ; [[Sycamore family]] (P8, P5/11) | ||
: The sycamore family tempers out the sycamore comma, {{monzo| -16 -6 11 }} (48828125/47775744), which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4. Eleven of these generators equals ~3/2. Its color name is Laleyoti. | : The sycamore family tempers out the [[sycamore comma]], {{monzo| -16 -6 11 }} (48828125/47775744), which is the amount by which five stacked chromatic semitones, 25/24, exceed 6/5, and hence also the amount six exceeds 5/4. Eleven of these generators equals ~3/2. Its color name is Laleyoti. | ||
; [[Quartonic family]] (P8, P4/11) | ; [[Quartonic family]] (P8, P4/11) | ||
: The quartonic family tempers out the quartonic comma, {{monzo| 3 -18 11 }} (390625000/387420489). The generator is {{nowrap| ~250/243 {{=}} ~45{{c}} }}, seven generators equals ~6/5, and eleven generators equals ~4/3. Its color name is Saleyoti. An obvious 7-limit interpretation of the generator is ~36/35. | : The quartonic family tempers out the [[quartonic comma]], {{monzo| 3 -18 11 }} (390625000/387420489). The generator is {{nowrap| ~250/243 {{=}} ~45{{c}} }}, seven generators equals ~6/5, and eleven generators equals ~4/3. Its color name is Saleyoti. An obvious 7-limit interpretation of the generator is ~36/35. | ||
; [[Lafa family]] (P8, P12/12) | ; [[Lafa family]] (P8, P12/12) | ||
: This tempers out the lafa comma, {{monzo| 77 -31 -12 }}. The generator is {{nowrap| ~4982259375/4294967296 {{=}} ~258.6{{c}} }}. Twelve generators equals a twelfth (~3/1). 5/4 is equated to 7 octaves minus 31 generators. Its color name is Tribisa-quadtriguti. | : This tempers out the [[lafa comma]], {{monzo| 77 -31 -12 }}. The generator is {{nowrap| ~4982259375/4294967296 {{=}} ~258.6{{c}} }}. Twelve generators equals a twelfth (~3/1). 5/4 is equated to 7 octaves minus 31 generators. Its color name is Tribisa-quadtriguti. | ||
; [[Ditonmic family]] (P8, c4P4/13) | ; [[Ditonmic family]] (P8, c4P4/13) | ||
: This tempers out the ditonma, {{monzo| -27 -2 13 }} (1220703125/1207959552). Thirteen ~{{monzo| -12 -1 6 }} generators of about 407{{c}} equals a quadruple-compound | : This tempers out the [[ditonma]], {{monzo| -27 -2 13 }} (1220703125/1207959552). Thirteen ~{{monzo| -12 -1 6 }} generators of about 407{{c}} equals a quadruple-compound fourth. 5/4 is equated to 1 octave minus 2 generators. An obvious 3-limit interpretation of the generator is 81/64, which implies 53edo, which is a good tuning for this high-accuracy family of temperaments. Its color name is Lala-theyoti. | ||
; [[Luna family]] (P8, ccP4/15) | ; [[Luna family]] (P8, ccP4/15) | ||
: This tempers out the luna comma, {{monzo| 38 -2 -15 }} (274877906944/274658203125). The generator is | : This tempers out the [[luna comma]], {{monzo| 38 -2 -15 }} (274877906944/274658203125). The generator is ~{{monzo| 18 -1 -7 }} at ~193{{c}}. Two generators equals ~5/4, and fifteen generators equals a double-compound fourth of ~16/3. Its color name is Sasa-quintriguti. | ||
; [[Vavoom family]] (P8, P12/17) | ; [[Vavoom family]] (P8, P12/17) | ||
: This tempers out the vavoom comma, {{monzo| -68 18 17 }}. The generator is {{nowrap| ~16/15 {{=}} ~111.9{{c}} }}. Seventeen generators equals a twelfth (~3/1). 5/4 is equated to two octaves minus 18 generators. Its color name is Quinla-seyoti. | : This tempers out the [[vavoom comma]], {{monzo| -68 18 17 }}. The generator is {{nowrap| ~16/15 {{=}} ~111.9{{c}} }}. Seventeen generators equals a twelfth (~3/1). 5/4 is equated to two octaves minus 18 generators. Its color name is Quinla-seyoti. | ||
; [[Minortonic family]] (P8, ccP5/17) | ; [[Minortonic family]] (P8, ccP5/17) | ||
: This tempers out the minortone comma, {{monzo| -16 35 -17 }}. The head of the family is minortonic temperament, with a generator of a minor tone (~10/9). Seventeen generators equals a double-compound | : This tempers out the [[minortone comma]], {{monzo| -16 35 -17 }}. The head of the family is minortonic temperament, with a generator of a minor tone (~10/9). Seventeen generators equals a double-compound fifth (~6/1). 5/4 is equated to 35 generators minus 5 octaves. Its color name is Trila-seguti. | ||
; [[Maja family]] (P8, c<sup>6</sup>P4/17) | ; [[Maja family]] (P8, c<sup>6</sup>P4/17) | ||
: This tempers out the maja comma, {{monzo| -3 -23 17 }} (762939453125/753145430616). The generator is {{nowrap| ~162/125 {{=}} ~453{{c}} }}. Seventeen generators equals a sextuple-compound | : This tempers out the [[maja comma]], {{monzo| -3 -23 17 }} (762939453125/753145430616). The generator is {{nowrap| ~162/125 {{=}} ~453{{c}} }}. Seventeen generators equals a sextuple-compound fourth. 5/4 is equated to 9 octaves minus 23 generators. Its color name is Saseyoti. | ||
; [[Maquila family]] (P8, c<sup>7</sup>P5/17) | ; [[Maquila family]] (P8, c<sup>7</sup>P5/17) | ||
: This tempers out the maquila comma, {{monzo| 49 -6 -17 }} (562949953421312/556182861328125). The generator is {{nowrap| ~512/375 {{=}} ~535{{c}} }}. Seventeen generators equals a septuple-compound | : This tempers out the [[maquila comma]], {{monzo| 49 -6 -17 }} (562949953421312/556182861328125). The generator is {{nowrap| ~512/375 {{=}} ~535{{c}} }}. Seventeen generators equals a septuple-compound fifth. 5/4 is equated to 3 octaves minus 6 generators. Its color name is Trisa-seguti. An obvious 11-limit interpretation of the generator is 11/8, leading to the Lala-seloti temperament. However, Lala-seloti is not nearly as accurate as Trisa-seguti. | ||
; [[Gammic family]] (P8, P5/20) | ; [[Gammic family]] (P8, P5/20) | ||
: The gammic family tempers out the gammic comma, {{monzo| -29 -11 20 }}. Nine generators of about 35{{c}} equals ~6/5, eleven equals ~5/4 and twenty equals ~3/2. 34edo is an obvious tuning. The head of the family is 5-limit gammic, whose generator chain is [[Carlos Gamma]]. Another member is the [[neptune]] temperament. Its color name is Laquinquadyoti. | : The gammic family tempers out the [[gammic comma]], {{monzo| -29 -11 20 }}. Nine generators of about 35{{c}} equals ~6/5, eleven equals ~5/4 and twenty equals ~3/2. 34edo is an obvious tuning. The head of the family is 5-limit gammic, whose generator chain is [[Carlos Gamma]]. Another member is the [[neptune]] temperament. Its color name is Laquinquadyoti. | ||
=== Clans defined by a 2.3.7 comma === | === Clans defined by a 2.3.7 comma === | ||
Line 191: | Line 191: | ||
; Sasazoti clan (P8, P5) | ; Sasazoti clan (P8, P5) | ||
: This clan tempers out the leapfrog comma, {{monzo| 21 -15 0 1 }} (14680064/14348907). It equates 7/6 to two apotomes and 7/4 to double augmented fifth. This clan includes [[hemifamity temperaments #Leapday|leapday]], [[sensamagic clan #Leapweek|leapweek]] and [[diaschismic family #Srutal|srutal]]. | : This clan tempers out the [[leapfrog comma]], {{monzo| 21 -15 0 1 }} (14680064/14348907). It equates 7/6 to two apotomes and 7/4 to double augmented fifth. This clan includes [[hemifamity temperaments #Leapday|leapday]], [[sensamagic clan #Leapweek|leapweek]] and [[diaschismic family #Srutal|srutal]]. | ||
; Laruruti clan (P8/2, P5) | ; Laruruti clan (P8/2, P5) | ||
Line 206: | Line 206: | ||
; [[Gamelismic clan]] (P8, P5/3) | ; [[Gamelismic clan]] (P8, P5/3) | ||
: This clan tempers out the gamelisma, {{monzo| -10 1 0 3 }} (1029/1024). Three ~8/7 generators equals a fifth. 7/4 is equated to an octave minus a generator. Five generators is slightly flat of 2/1, making this a [[cluster temperament]]. Its color name is Latrizoti. See also Sawati and Lasepzoti. | : This clan tempers out the [[gamelisma]], {{monzo| -10 1 0 3 }} (1029/1024). Three ~8/7 generators equals a fifth. 7/4 is equated to an octave minus a generator. Five generators is slightly flat of 2/1, making this a [[cluster temperament]]. Its color name is Latrizoti. See also Sawati and Lasepzoti. | ||
: A particularly noteworthy member of the gamelismic clan is miracle, but other members include valentine, unidec, mothra, rodan, and hemithirds. Miracle divides the fifth into 6 equal steps, thus it is a weak extension. Its 21-note scale called Blackjack and 31-note scale called Canasta have some useful properties. It is the most efficient 11-limit temperament for many purposes, with a tuning close to 72edo. | : A particularly noteworthy member of the gamelismic clan is miracle, but other members include valentine, unidec, mothra, rodan, and hemithirds. Miracle divides the fifth into 6 equal steps, thus it is a weak extension. Its 21-note scale called Blackjack and 31-note scale called Canasta have some useful properties. It is the most efficient 11-limit temperament for many purposes, with a tuning close to 72edo. | ||
Line 213: | Line 213: | ||
; Latriru clan (P8, P11/3) | ; Latriru clan (P8, P11/3) | ||
: This clan tempers out the lee comma, {{monzo| -9 11 0 -3 }} (177147/175616). The generator is {{nowrap| ~112/81 {{=}} ~566{{c}} }}, and three such generators equals ~8/3. 7/4 is equated to 11 generators minus 5 octaves. Its color name is Latriruti. An obvious full 7-limit interpretation of the generator is 7/5, leading to the [[liese]] temperament, which is a weak extension of meantone. | : This clan tempers out the [[lee comma]], {{monzo| -9 11 0 -3 }} (177147/175616). The generator is {{nowrap| ~112/81 {{=}} ~566{{c}} }}, and three such generators equals ~8/3. 7/4 is equated to 11 generators minus 5 octaves. Its color name is Latriruti. An obvious full 7-limit interpretation of the generator is 7/5, leading to the [[liese]] temperament, which is a weak extension of meantone. | ||
; [[Stearnsmic clan]] (P8/2, P4/3) | ; [[Stearnsmic clan]] (P8/2, P4/3) | ||
: This clan temper out the stearnsma, {{monzo| 1 10 0 -6 }} (118098/117649). The period is {{nowrap| ~486/343 {{=}} ~600{{c}} }}. The generator is {{nowrap| ~9/7 {{=}} ~434{{c}} }}, or alternatively one period minus ~9/7, which equals {{nowrap| ~54/49 {{=}} ~166{{c}} }}. Three of these alternate generators equal ~4/3. 7/4 is equated to five ~9/7 generators minus an octave. Its color name is Latribiruti. Equating the ~54/49 generator to ~10/9 creates a weak extension of the [[porcupine]] temperament, as does equating the period to ~7/5. | : This clan temper out the [[stearnsma]], {{monzo| 1 10 0 -6 }} (118098/117649). The period is {{nowrap| ~486/343 {{=}} ~600{{c}} }}. The generator is {{nowrap| ~9/7 {{=}} ~434{{c}} }}, or alternatively one period minus ~9/7, which equals {{nowrap| ~54/49 {{=}} ~166{{c}} }}. Three of these alternate generators equal ~4/3. 7/4 is equated to five ~9/7 generators minus an octave. Its color name is Latribiruti. Equating the ~54/49 generator to ~10/9 creates a weak extension of the [[porcupine]] temperament, as does equating the period to ~7/5. | ||
; Skwaresmic clan (P8, P11/4) | ; Skwaresmic clan (P8, P11/4) | ||
Line 228: | Line 228: | ||
; Quinruti clan (P8, P5/5) | ; Quinruti clan (P8, P5/5) | ||
: This clan tempers out the bleu comma, {{monzo| 3 7 0 -5 }} (17496/16807). The ~54/49 generator is about 139{{c}}. Two of them equal ~7/6, three equal ~9/7, five equal ~3/2, and seven equal ~7/4. | : This clan tempers out the [[bleu comma]], {{monzo| 3 7 0 -5 }} (17496/16807). The ~54/49 generator is about 139{{c}}. Two of them equal ~7/6, three equal ~9/7, five equal ~3/2, and seven equal ~7/4. | ||
; Saquinzoti clan (P8, P12/5) | ; Saquinzoti clan (P8, P12/5) | ||
Line 237: | Line 237: | ||
; Septiness clan (P8, P11/7) | ; Septiness clan (P8, P11/7) | ||
: This clan tempers out the septiness comma {{monzo| 26 -4 0 -7 }} (67108864/66706983). Its generator is ~147/128, four of them gives ~7/4, and seven of them gives ~8/3. Five generators is ~12.5¢ sharp of 2/1, making this a [[cluster temperament]]. Its color name is Sasasepruti. | : This clan tempers out the [[septiness comma]] {{monzo| 26 -4 0 -7 }} (67108864/66706983). Its generator is ~147/128, four of them gives ~7/4, and seven of them gives ~8/3. Five generators is ~12.5¢ sharp of 2/1, making this a [[cluster temperament]]. Its color name is Sasasepruti. | ||
; Sepruti clan (P8, P12/7) | ; Sepruti clan (P8, P12/7) | ||
: This clan tempers out the | : This clan tempers out the Sepru comma, {{monzo| 7 8 0 -7 }} (839808/823543). Its generator is ~7/6. Seven generators equals ~3/1. 7/4 is equated to 8 generators minus 1 octave. This clan includes as a strong extension the [[orwell]] temperament, which is in the semicomma family. | ||
; [[Septiennealimmal clan]] (P8/9, P5) | ; [[Septiennealimmal clan]] (P8/9, P5) | ||
: This clan tempers out the [[ | : This clan tempers out the [[septimal ennealimma|septiennealimma]], {{monzo| -11 -9 0 9 }} (40353607/40310784). It has a period of 1/9 octave, which represents ~7/6. The generator is ~3/2. This clan includes a number of regular temperaments including [[enneaportent]], [[ennealimmal]], and [[novemkleismic]]. Its color name is Tritrizoti. | ||
=== Clans defined by a 2.3.11 comma === | === Clans defined by a 2.3.11 comma === | ||
Line 471: | Line 471: | ||
; [[Landscape microtemperaments]] | ; [[Landscape microtemperaments]] | ||
: Landscape rank-2 temperaments temper out the [[landscape comma]], {{monzo| -4 6 -6 3 }} (250047/250000). These have a period of 1/3 octave, but ~5/4 is not equated with a period, resulting in small intervals. Its color name is Trizoguguti. | : Landscape rank-2 temperaments temper out the [[landscape comma]], {{monzo| -4 6 -6 3 }} (250047/250000). These have a period of 1/3 octave, but ~5/4 is not equated with a period, resulting in small intervals. Its color name is Trizoguguti. | ||
== Rank-3 temperaments == | == Rank-3 temperaments == | ||
Line 489: | Line 489: | ||
; [[Kleismic rank three family|Kleismic rank-3 family]] (P8, P12/6, /1) | ; [[Kleismic rank three family|Kleismic rank-3 family]] (P8, P12/6, /1) | ||
: These are the rank-3 temperaments tempering out the kleisma, {{monzo| -6 -5 6 }} (15625/15552 | : These are the rank-3 temperaments tempering out the kleisma, {{monzo| -6 -5 6 }} (15625/15552). In the pergen, P12/6 is ~6/5. Its color name is Tribiyoti. | ||
=== Families defined by a 2.3.7 comma === | === Families defined by a 2.3.7 comma === | ||
Line 504: | Line 504: | ||
; [[Semaphoresmic family]] (P8, P4/2, ^1) | ; [[Semaphoresmic family]] (P8, P4/2, ^1) | ||
: Semaphoresmic temperament tempers out 49/48 and thereby identifies the septimal minor third 7/6 with the septimal whole tone 8/7. It also splits the fourth into two of these intervals; hence the name, which sounds like | : Semaphoresmic temperament tempers out 49/48 and thereby identifies the septimal minor third 7/6 with the septimal whole tone 8/7. It also splits the fourth into two of these intervals; hence the name, which sounds like ''semi-fourth''. See also [[semaphore]]. Its color name is Zozoti. | ||
; [[Gamelismic family]] (P8, P5/3, ^1) | ; [[Gamelismic family]] (P8, P5/3, ^1) | ||
Line 562: | Line 562: | ||
; [[Cataharry family]] (P8, P4/2, ^1) | ; [[Cataharry family]] (P8, P4/2, ^1) | ||
: Cataharry temperaments temper out the cataharry comma, {{monzo| -4 9 -2 -2 }} (19683/19600). In the pergen, half a | : Cataharry temperaments temper out the cataharry comma, {{monzo| -4 9 -2 -2 }} (19683/19600). In the pergen, half a fourth is ~81/70, and {{nowrap| ^1 {{=}} ~81/80 }}. Its color name is Labiruguti. | ||
; [[Breed family]] (P8, P5/2, ^1) | ; [[Breed family]] (P8, P5/2, ^1) | ||
Line 599: | Line 599: | ||
=== Temperaments defined by an 11-limit comma === | === Temperaments defined by an 11-limit comma === | ||
; [[Ptolemismic clan]] (P8, P5, ^1) | ; [[Ptolemismic clan]] (P8, P5, ^1) | ||
: These temper out the ptolemisma, {{monzo| 2 -2 2 0 -1 }} (100/99). 11/8 is equated to 25/18, which is an octave minus two 6/5's. Since 25/18 is a 5-limit interval, every 2.3.5.11 interval is equated to a 5-limit interval, and both the pergen and the lattice are identical to that of 5-limit JI. In the pergen, {{nowrap| ^1 {{=}} ~81/80 }}. Its color name is Luyoyoti. | : These temper out the [[ptolemisma]], {{monzo| 2 -2 2 0 -1 }} (100/99). 11/8 is equated to 25/18, which is an octave minus two 6/5's. Since 25/18 is a 5-limit interval, every 2.3.5.11 interval is equated to a 5-limit interval, and both the pergen and the lattice are identical to that of 5-limit JI. In the pergen, {{nowrap| ^1 {{=}} ~81/80 }}. Its color name is Luyoyoti. | ||
; [[Biyatismic clan]] (P8, P5, ^1) | ; [[Biyatismic clan]] (P8, P5, ^1) | ||
: These temper out the biyatisma, {{monzo| -3 -1 -1 0 2 }} (121/120). 5/4 is equated to 121/96, which is two 11/8's minus a 3/2 fifth. Since 121/96 is an ila (11-limit no-fives no-sevens) interval, every 2.3.5.11 interval is equated to an ila interval, and both the pergen and the lattice are identical to that of ila JI. In the pergen, ^1 is either ~33/32 or ~729/704. Its color name is Lologuti. | : These temper out the [[biyatisma]], {{monzo| -3 -1 -1 0 2 }} (121/120). 5/4 is equated to 121/96, which is two 11/8's minus a 3/2 fifth. Since 121/96 is an ila (11-limit no-fives no-sevens) interval, every 2.3.5.11 interval is equated to an ila interval, and both the pergen and the lattice are identical to that of ila JI. In the pergen, ^1 is either ~33/32 or ~729/704. Its color name is Lologuti. | ||
; [[Valinorsmic clan]] | ; [[Valinorsmic clan]] | ||
: These temper out the valinorsma, {{monzo| 4 0 -2 -1 1 }} (176/175). To be a rank-3 temperament, either an additional comma must vanish or the prime subgroup must omit prime 3. Thus no assumptions can be made about the pergen. Its color name is Loruguguti. | : These temper out the [[valinorsma]], {{monzo| 4 0 -2 -1 1 }} (176/175). To be a rank-3 temperament, either an additional comma must vanish or the prime subgroup must omit prime 3. Thus no assumptions can be made about the pergen. Its color name is Loruguguti. | ||
; [[Rastmic rank three clan|Rastmic rank-3 clan]] | ; [[Rastmic rank three clan|Rastmic rank-3 clan]] | ||
: These temper out the rastma, | : These temper out the [[rastma]], {{monzo| 1 5 0 0 -2 }} (243/242). In the corresponding [[#Clans defined by a 2.3.11 comma|2.3.11 rank-2 temperament]], the pergen is (P8, P5/2). Its color name is Luluti. | ||
; [[Pentacircle clan]] (P8, P5, ^1) | ; [[Pentacircle clan]] (P8, P5, ^1) | ||
: These temper out the pentacircle comma, {{monzo| 7 -4 0 1 -1 }} (896/891). The interval between 11/8 and 7/4 is equated to 81/64. Since that is a 3-limit interval, every 2.3.11 interval is equated to a 2.3.7 interval and vice versa, and both the pergen and the lattice are identical to that of either 2.3.7 JI or 2.3.11 JI. In the pergen, ^1 is either ~64/63 or ~33/32 or ~729/704. Its color name is Saluzoti. | : These temper out the [[pentacircle comma]], {{monzo| 7 -4 0 1 -1 }} (896/891). The interval between 11/8 and 7/4 is equated to 81/64. Since that is a 3-limit interval, every 2.3.11 interval is equated to a 2.3.7 interval and vice versa, and both the pergen and the lattice are identical to that of either 2.3.7 JI or 2.3.11 JI. In the pergen, ^1 is either ~64/63 or ~33/32 or ~729/704. Its color name is Saluzoti. | ||
; [[Semicanousmic clan]] (P8, P5, ^1) | ; [[Semicanousmic clan]] (P8, P5, ^1) | ||
: These temper out the semicanousma, {{monzo| -2 -6 -1 0 4 }} (14641/14580). 5/4 is equated to a 2.3.11 (color name: ila) interval, thus every 2.3.5.11 interval is equated to a 2.3.11 interval, and both the pergen and the lattice are identical to that of 2.3.11-subgroup JI. In the pergen, ^1 is either ~33/32 or ~729/704. Its color name is Quadlo-aguti. | : These temper out the [[semicanousma]], {{monzo| -2 -6 -1 0 4 }} (14641/14580). 5/4 is equated to a 2.3.11 (color name: ila) interval, thus every 2.3.5.11 interval is equated to a 2.3.11 interval, and both the pergen and the lattice are identical to that of 2.3.11-subgroup JI. In the pergen, ^1 is either ~33/32 or ~729/704. Its color name is Quadlo-aguti. | ||
; [[Semiporwellismic clan]] (P8, P5, ^1) | ; [[Semiporwellismic clan]] (P8, P5, ^1) | ||
: These temper out the semiporwellisma, {{monzo| 14 -3 -1 0 -2 }} (16384/16335). 5/4 is equated to an 2.3.11 (color name: ila) interval, thus every 2.3.5.11 interval is equated to a 2.3.11 interval, and both the pergen and the lattice are identical to that of 2.3.11-subgroup JI. In the pergen, ^1 is either ~33/32 or ~729/704. Its color name is Saluluguti. | : These temper out the [[semiporwellisma]], {{monzo| 14 -3 -1 0 -2 }} (16384/16335). 5/4 is equated to an 2.3.11 (color name: ila) interval, thus every 2.3.5.11 interval is equated to a 2.3.11 interval, and both the pergen and the lattice are identical to that of 2.3.11-subgroup JI. In the pergen, ^1 is either ~33/32 or ~729/704. Its color name is Saluluguti. | ||
; [[Olympic clan]] (P8, P5, ^1) | ; [[Olympic clan]] (P8, P5, ^1) | ||
: These temper out the olympia, {{monzo| 17 -5 0 -2 -1 }} (131072/130977). 11/8 is equated with a 2.3.7 interval, and thus every 2.3.7.11 interval is equated with a 2.3.7 interval. In the pergen, {{nowrap| ^1 {{=}} ~64/63 }}. Its color name is Salururuti. | : These temper out the [[olympia]], {{monzo| 17 -5 0 -2 -1 }} (131072/130977). 11/8 is equated with a 2.3.7 interval, and thus every 2.3.7.11 interval is equated with a 2.3.7 interval. In the pergen, {{nowrap| ^1 {{=}} ~64/63 }}. Its color name is Salururuti. | ||
; [[Alphaxenic rank three clan|Alphaxenic rank-3 clan]] | ; [[Alphaxenic rank three clan|Alphaxenic rank-3 clan]] | ||
: These temper out the Alpharabian comma, | : These temper out the [[Alpharabian comma]], {{monzo| -17 2 0 0 4 }} (131769/131072). In the corresponding [[#Clans defined by a 2.3.11 comma|2.3.11 rank-2 temperament]], the pergen is (P8/2, M2/4). Its color name is Laquadloti. | ||
; [[Keenanismic temperaments]] | |||
: These temper out the [[keenanisma]], {{monzo| -7 -1 1 1 1 }} (385/384). Its color name is Lozoyoti. | |||
; [[Werckismic temperaments]] | |||
: These temper out the [[werckisma]], {{monzo| -3 2 -1 2 -1 }} (441/440). Its color name is Luzozoguti. | |||
; [[Swetismic temperaments]] | |||
: These temper out the [[swetisma]], {{monzo| 2 3 1 -2 -1 }} (540/539). Its color name is Lururuyoti. | |||
; [[Lehmerismic temperaments]] | |||
: These temper out the [[lehmerisma]], {{monzo| -4 -3 2 -1 2 }} (3025/3024). Its color name is Loloruyoyoti. | |||
; [[Kalismic temperaments]] | |||
: These temper out the [[kalisma]], {{monzo| -3 4 -2 -2 2 }} (9801/9800). Its color name is Biloruguti. | |||
== Rank-4 temperaments == | == Rank-4 temperaments == | ||
{{Main| | {{Main| Catalog of rank-4 temperaments }} | ||
Even less explored than rank-3 temperaments are rank-4 temperaments. In fact, unless one counts 7-limit JI they do not seem to have been explored at all. However, they could be used; for example [[hobbit]] scales can be constructed for them. | Even less explored than rank-3 temperaments are rank-4 temperaments. In fact, unless one counts 7-limit JI they do not seem to have been explored at all. However, they could be used; for example [[hobbit]] scales can be constructed for them. | ||
; [[Keenanismic | ; [[Keenanismic family]] (P8, P5, ^1, /1) | ||
: These temper out the keenanisma, {{monzo| -7 -1 1 1 1 }} (385/384). In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Lozoyoti. | : These temper out the keenanisma, {{monzo| -7 -1 1 1 1 }} (385/384). In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Lozoyoti. | ||
; | ; Werckismic family (P8, P5, ^1, /1) | ||
: These temper out the werckisma, {{monzo| -3 2 -1 2 -1 }} (441/440). 11/8 is equated to {{monzo| -6 2 -1 2 }} and 5/4 is equated to {{monzo| -5 2 0 2 -1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 is either ~81/80, ~33/32 or ~729/704. Its color name is Luzozoguti. | : These temper out the werckisma, {{monzo| -3 2 -1 2 -1 }} (441/440). 11/8 is equated to {{monzo| -6 2 -1 2 }} and 5/4 is equated to {{monzo| -5 2 0 2 -1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 is either ~81/80, ~33/32 or ~729/704. Its color name is Luzozoguti. | ||
; | ; Swetismic family (P8, P5, ^1, /1) | ||
: These temper out the swetisma, {{monzo| 2 3 1 -2 -1 }} (540/539). 11/8 is equated to {{monzo| -1 3 1 -2 }} (135/98) and 5/4 is equated to {{monzo| -4 -3 0 2 1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 can be either ~81/80, ~33/32 or ~729/704. Its color name is Lururuyoti. | : These temper out the swetisma, {{monzo| 2 3 1 -2 -1 }} (540/539). 11/8 is equated to {{monzo| -1 3 1 -2 }} (135/98) and 5/4 is equated to {{monzo| -4 -3 0 2 1 }}, thus the lattice can be thought of as either 7-limit JI or no-5's 11-limit JI. In the pergen, ^1 is ~64/63, and /1 can be either ~81/80, ~33/32 or ~729/704. Its color name is Lururuyoti. | ||
; | ; Lehmerismic family (P8, P5, ^1, /1) | ||
: These temper out the lehmerisma, {{monzo| -4 -3 2 -1 2 }} (3025/3024). Since 7/4 is equated to a no-7's 11-limit (color name: yala) interval, both the pergen and the lattice are identical to that of no-7's 11-limit JI. In the pergen, {{nowrap| ^1 {{=}} ~81/80 }} and /1 is either ~33/32 or ~729/704. Its color name is Loloruyoyoti. | : These temper out the lehmerisma, {{monzo| -4 -3 2 -1 2 }} (3025/3024). Since 7/4 is equated to a no-7's 11-limit (color name: yala) interval, both the pergen and the lattice are identical to that of no-7's 11-limit JI. In the pergen, {{nowrap| ^1 {{=}} ~81/80 }} and /1 is either ~33/32 or ~729/704. Its color name is Loloruyoyoti. | ||
; | ; Kalismic family (P8/2, P5, ^1, /1) | ||
: These temper out the kalisma, {{monzo| -3 4 -2 -2 2 }} (9801/9800). The octave is split into two ~99/70 periods. In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Biloruguti. | : These temper out the kalisma, {{monzo| -3 4 -2 -2 2 }} (9801/9800). The octave is split into two ~99/70 periods. In the pergen, ^1 could be either ~81/80 or ~64/63, and /1 could be either ~64/63 (if ^1 is not), ~33/32 or ~729/704. Its color name is Biloruguti. | ||
Line 658: | Line 673: | ||
; [[Marveltwin]] | ; [[Marveltwin]] | ||
: This is the commatic realm of the 13-limit comma 325/324, the [[marveltwin comma]]. Its color name is Thoyoyoti. | : This is the commatic realm of the 13-limit comma 325/324, the [[marveltwin comma]]. Its color name is Thoyoyoti. | ||
; [[The Archipelago]] | ; [[The Archipelago]] | ||
: The Archipelago is a name which has been given to the commatic realm of the 13-limit comma | : The Archipelago is a name which has been given to the commatic realm of the 13-limit comma 676/675 ({{monzo| 2 -3 -2 0 0 2 }}), the [[island comma]]. Its color name is Bithoguti. | ||
; [[The Jacobins]] | ; [[The Jacobins]] | ||
: This is the commatic realm of the 13-limit comma 6656/6655, the [[jacobin comma]]. Its color name is Thotrilu-aguti. | : This is the commatic realm of the 13-limit comma 6656/6655, the [[jacobin comma]]. Its color name is Thotrilu-aguti. | ||
; [[Orgonia]] | ; [[Orgonia]] |