Optimal patent val: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 202518026 - Original comment: **
m Update linking
 
(719 intermediate revisions by 14 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The '''optimal patent val''' for a [[regular temperament]] is the unique [[patent val]] that [[support]]s the temperament with the lowest [[error]].  
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-02-16 17:09:36 UTC</tt>.<br>
: The original revision id was <tt>202518026</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given any collection of p-limit commas, there is a finite list of p-limit [[Patent val|patent vals]] tempering out the commas. The list is not guaranteed to contain any members, but in most actual circumstances it will. If the list is not empty, then among these patent vals will be found the unique patent val which has the lowest [[Tenney-Euclidean temperament measures|TE error]]; this is the //optimal (TE) patent val// for the temperament defined by the commas. Note that other definitions of error, such as maximum p-limit error, or maximum q-limit error where q is the largest odd number less than the prime above p, lead to different results.


By tempering a JI scale using N-edo found on the list below we automatically temper it to the corresponding temperament. This can be done in [[http://www.huygens-fokker.org/scala/|Scala]] using the Quantize command: either type in "Quantize/consistent N" on the bottom, or use the pull-down menu under "Modify", check the box saying "Consistent" and type N (without a decimal point) into "Resolution".
Given any temperament, which is characterized by the [[comma]]s it [[tempering out|tempers out]], there is a finite list of [[patent val]]s that temper out all the commas of the temperament in the same [[subgroup]]. The list is not guaranteed to contain any members, but in most actual circumstances it will. If the list is not empty, then among these patent vals will be found the one which has the lowest [[TE error]]; this is the (TE) optimal patent val for the temperament. Note that other definitions of error lead to different results.
To limit the search range when finding the optimal patent val a useful observation is this: given N-edo, and an odd prime q &lt;= p, if d is the absolute value in cents of the difference between the tuning of q given by the [[POTE tuning]] and the POTE tuning rounded to the nearest N-edo value, then d &lt; 600/N, from which it follows that N &lt; 600/d. Likewise, if e is the absolute value of the error of q in the patent val tuning, then e &lt; 600/N and so N &lt; 600/e. If N-edo defines an optimal patent val, then the patent val will be identical to the val obtained by rounding the POTE tuning to the nearest N-edo value. We have two distances from the patent val, one to the POTE tuning and one to the the JI tuning, both bounded by 600/N, and so by the triangle inequality the distance from the JI tuning to the POTE tuning, which is the error of the prime q in the POTE tuning, is bounded by 1200/N. Hence, N &lt; 1200/error(q). If now we take the minimum value for 1200/error(prime) for all the odd primes up to p, we obtain an upper bound for N.


Below are tabulated some values.
On this wiki, the optimal patent val for each temperament is given as the last patent val in the [[optimal ET sequence]], or stated explicitly in case it is not a member of the sequence.  


==5-limit rank two==
== Instructions ==
27/25: [[14edo]]
By tempering a JI scale using the ''N''-edo found on the list below we automatically temper it to the corresponding temperament. This can be done in [http://www.huygens-fokker.org/scala/ Scala] using the Quantize command: either type in "Quantize/consistent N" on the bottom, or use the pull-down menu under "Modify", check the box saying "Consistent" and type N (without a decimal point) into "Resolution".
16/15: [[8edo]]
135/128: [[23edo]]
25/24: [[17edo]]
648/625: [[12edo]]
250/243: [[22edo]]
128/125: [[39edo]]
3125/3072: [[60edo]]
81/80: [[81edo]]
2048/2025: [[80edo]]
78732/78125: [[539edo]]
393216/390625: [[164edo]]
2109375/2097152: [[296edo]]
15625/15552: [[458edo]]
1600000/1594323: [[873edo]]
1224440064/1220703125: [[1496edo]]
6115295232/6103515625: [[1400edo]]
32805/32768: [[749edo]]
274877906944/274658203125: [[1559edo]]
7629394531250/7625597484987: [[3501edo]]


==7-limit rank two==
To limit the search range when finding the optimal patent val a useful observation is this: given ''N''-edo, and an odd prime ''q'' ≤ ''p'', if ''d'' is the absolute value in cents of the difference between the tuning of ''q'' given by the [[POTE tuning]] and the POTE tuning rounded to the nearest ''N''-edo value, then d &lt; 600/''N'', from which it follows that N &lt; 600/d. Likewise, if ''e'' is the absolute value of the error of ''q'' in the patent val tuning, then ''e'' &lt; 600/''N'' and so ''N'' &lt; 600/''e''. If ''N''-edo defines an optimal patent val, then the patent val will be identical to the val obtained by rounding the POTE tuning to the nearest N-edo value. We have two distances from the patent val, one to the POTE tuning and one to the the JI tuning, both bounded by 600/''N'', and so by the triangle inequality the distance from the JI tuning to the POTE tuning, which is the error of the prime ''q'' in the POTE tuning, is bounded by 1200/''N''. Hence, ''N'' &lt; 1200/error(''q''). If now we take the minimum value for 1200/error(prime) for all the odd primes up to ''p'', we obtain an upper bound for ''N''.
[[Ragismic microtemperaments|Ennealimmal]]: [[612edo]]
[[Ragismic microtemperaments|Supermajor]]: [[6214edo]]
[[Ragismic microtemperaments|Enneadecal]]: [[2185edo]]
[[Schismatic family|Sesquiquartififths]]: [[1498edo]]
[[Breedsmic temperaments|Tertiaseptal]]: [[171edo]]
[[Meantone family|Meantone]]: [[81edo]]
[[Schismatic family|Pontiac]]: [[171edo]]
[[Gamelismic clan|Miracle]]: [[72edo]]
[[Bug family|Beep]]: [[9edo]]
[[Magic family|Magic]]: [[41edo]]
[[Dicot family|Dicot]]: [[7edo]]
[[Schismatic family|Term]]: [[1722edo]]
[[Diaschismic family|Pajara]]: [[22edo]]
[[Wuerschmidt family|Hemiwuerschmidt]]: [[328edo]]
[[Meantone family|Dominant]]: [[12edo]]
[[Semicomma family|Orwell]]: [[137edo]]
[[Trienstonic clan|Father]]: [[5edo]]
[[Kleismic family|Catakleismic]]: [[197edo]]
[[Schismatic family|Garibaldi]]: [[94edo]]
[[Breedsmic temperaments|Hemififths]]: [[338edo]]
[[Diminished]]: [[12edo]]
[[Gammic family|Neptune]]: [[1778edo]]
[[Ragismic microtemperaments|Amity]]: [[350edo]]
[[Archytas clan|Mother]]: [[5edo]]
[[Augmented family|Augene]]: [[27edo]]
[[Meantone family|Sharptone]]: [[5edo]]
[[Ragismic microtemperaments|Mitonic]]: [[171edo]]
[[Starling temperaments|Sensi]]: [[46edo]]
[[Archytas clan|Blacksmith]]: [[15edo]]
[[Augmented family|August]]: [[12edo]]
[[Marvel temperaments|Negri]]: [[19edo]]
[[Meantone family|Godzilla]]: [[19edo]]
[[Starling temperaments|Myna]]: [[89edo]]
[[Kleismic family|Keemun]]: [[19edo]]
[[Ragismic microtemperaments|Parakleismic]]: [[415edo]]
[[Dicot family|Decimal]]: [[10edo]]
[[Mutt family|Mutt]]: [[171edo]]
[[Dicot family|Sharp]]: [[10edo]]
[[Starling temperaments|Valentine]]: [[185edo]]
[[Meantone family|Injera]]: [[38edo]]
[[Archytas clan|Superpyth]]: [[49edo]]
[[Tetracot family|Octacot]]: [[109edo]]
[[Breedsmic temperaments|Harry]]: [[534edo]]
[[Pythagorean family|Compton]]: [[228edo]]
[[Breedsmic temperaments|Quasiorwell]]: [[1111edo]]
[[Trienstonic clan|Octokaidecal]]: [[18edo]]
[[Hemimean clan|Misty]]: [[99edo]]
[[Gamelismic clan|Rodan]]: [[128edo]]
[[Meantone family|Mothra]]: [[31edo]]
[[Gamera]]: [[422edo]]


==7-limit rank three==
== Examples ==
1029/1000: [[55edo]]
Below are tabulated some values. In each case an identifier which uniquely identifies the temperament in question is given. In the codimension one case, where the temperament is defined by a single comma, the comma is given and used as a name. In other cases, for a temperament of rank ''n'', ''n'' independent vals are given. Normally this is by way of integers conjoined by ampersands, such as 2&10 for 7-limit pajara. This tells us we can use the 7-limit patent vals for 2 and 10 to define the temperament. In case ''n'' independent patent vals cannot be found, vals using the [[wart notation]] are given; this adjusts the nth prime mapping to its second-best value by appending the ''n''-th lower-case letter in alphabetical order. Thus, "12f" adjusts a patent val for 12 in the 13-limit or above, for instance {{val| 12 19 28 34 42 44 }}, to {{val| 12 19 28 34 42 45 }} (which is actually a better mapping, and hence more useful for this purpose.)
36/35: [[12edo]]
525/512: [[45edo]]
49/48: [[19edo]]
50/49: [[48edo]]
686/675: [[46edo]]
64/63: [[49edo]]
875/864: [[41edo]]
3125/3087: [[94edo]]
2430/2401: [[137edo]]
245/243: [[283edo]]
126/125: [[185edo]]
4000/3969: [[215edo]]
1728/1715: [[111edo]]
1029/1024: [[190edo]]
225/224: [[197edo]]
19683/19600: [[587edo]]
16875/16807: [[224edo]]
10976/10935: [[695edo]]
3136/3125: [[446edo]]
6144/6125: [[381edo]]
65625/65536: [[171edo]]
703125/702464: [[2185edo]]
420175/419904: [[4306edo]]
2401/2400: [[2749edo]]
4375/4374: [[8419edo]]
250047/250000: [[12555edo]]
78125000/78121827: [[101654edo]]


==11-limit rank two==
=== 5-limit rank two ===
[[Ragismic microtemperaments|Hemiennealimmal]]: [[1566edo]]
Comma: ET w/ optimal patent val: 1000 * badness
[[Octoid]]: [[224edo]]
[[Hemiamity]]: [[350edo]]
[[Mirkwai clan|Grendel]]: [[152edo]]
[[Gamelismic clan|Unidec]]: [[190edo]]
[[Minorsemi]]: [[231edo]]
[[Breedsmic temperaments|Harry]]: [[202edo]]
[[Marvel temperaments|Wizard]]: [[166edo]]
[[Kleismic family|Catakleismic]]: [[72edo]]
[[Wuerschmidt family|Hemiwuerschmidt]]: [[130edo]]
[[Gamelismic clan|Hemithirds]]: [[118edo]]
[[Pythagorean family|Compton]]: [[72edo]]
[[Marvel temperaments|Miracle]]: [[72edo]]
[[Marvel temperaments|Slender]]: [[125edo]]
[[Schismatic family|Garibaldi]]: [[94edo]]
[[Gamelismic clan|Rodan]]: [[87edo]]
[[Diaschismic family|Diaschismic]]: [[58edo]]
[[Starling temperaments|Myna]]: [[89edo]]
[[Starling temperaments|Valentine]]: [[77edo]]
[[Magic family|Magic]]: [[104edo]]
[[Marvel temperaments|Tritonic]]: [[31edo]]
[[Schismatic family|Schismic]]: [[41edo]]
[[Superkleismic]]: [[41edo]]
[[Semicomma family|Orwell]]: [[53edo]]
[[Meantone family|Meanpop]]: [[81edo]]
[[Meantone family|Mothra]]: [[88edo]]
[[Meantone family|Huyghens]]: [[105edo]]
[[Meantone family|Mohajira]]: [[31edo]]
[[Jubilismic clan|Doublewide]]: [[48edo]]
[[Diaschismic family|Pajara]]: [[22edo]]
[[Porcupine family|Porcupine]]: [[59edo]]


==11-limit rank three==
16/15: [[8edo|8et]] 14.884
[[Breed family|Jove]]: [[202edo]]
 
[[Gamelismic family|Portent]]: [[190edo]]
648/625: [[12edo|12et]] 47.231
[[Didymus rank three family|Euterpe]]: [[88edo]]
 
[[Didymus rank three family|Calliope]]: [[45edo]]
27/25: [[14edo|14et]] 32.801
[[Didymus rank three family|Clio]]: [[129edo]]
 
[[Breed family|Freya]]: [[1566edo]]
25/24: [[17edo|17et]] 13.028
[[Marvel family|Unimarv]]: [[166edo]]
 
[[Porwell family|Zeus]]: [[99edo]]
250/243: [[22edo|22et]] 30.778
[[Mirkwai family|Indra]]: [[703edo]]
 
[[Starling family|Thrush]]: [[89edo]]
135/128: [[23edo|23et]] 39.556
[[Marvel family|Prodigy]]: [[72edo]]
 
128/125: [[39edo|39et]] 22.315
 
3125/3072: [[60edo|60et]] 39.163
 
2048/2025: [[80edo|80et]] 19.915
 
81/80: [[81edo|81et]] 7.381
 
20000/19683: [[109edo|109et]] 48.518
 
393216/390625: [[164edo|164et]] 40.603
 
2109375/2097152: [[296edo|296et]] 40.807
 
15625/15552: [[458edo|458et]] 13.234
 
78732/78125: [[539edo|539et]] 35.220
 
32805/32768: [[749edo|749et]] 4.259
 
1600000/1594323: [[873edo|873et]] 21.960
 
6115295232/6103515625: [[1400edo|1400et]] 31.181
 
1224440064/1220703125: [[1496edo|1496et]] 43.729
 
274877906944/274658203125: [[1559edo|1559et]] 20.576
 
31381059609/31250000000: [[2760edo|2760et]] 82.423
 
7629394531250/7625597484987: [[3501edo|3501et]] 17.191
 
=== 7-limit rank two ===
Name: ET w/ optimal patent val: Val name: 1000*badness
 
[[Father family#Pater|Pater]]: [[3edo|3et]] 3&11b 53.001
 
[[Dicot family#Flat|Flat]]: [[4edo|4et]] 3&4 25.381
 
[[Trienstonic clan|Father]]: [[5edo|5et]] 3d&5 21.312
 
[[Archytas clan|Mother]]: [[5edo|5et]] 2&3 24.152
 
[[Meantone family|Sharptone]]: [[5edo|5et]] 5&7d 24.848
 
[[Father family#Baba|Baba]]: [[5edo|5et]] 1&5 44.321
 
[[Father family#Quint|Quint]]: [[5edo|5et]] 5&15cd 48.312
 
[[Bug family#Mite|Mite]]: [[5edo|5et]] 1cdd&5 54.770
 
[[Father family#Walid|Walid]]: [[6edo|6et]] 2&6 48.978
 
[[Dicot family|Dicot]]: [[7edo|7et]] 4&7 19.935
 
[[Dicot family#Jamesbond|Jamesbond]]: [[7edo|7et]] 7&14c 41.714
 
[[Septisemi temperaments#Oxygen|Oxygen]]: [[8edo|8et]] 7d&8 59.866
 
[[Bug family|Beep]]: [[9edo|9et]] 4&5 18.638
 
[[Mint temperaments#Progression|Progression]]: [[9edo|9et]] 9&17c 48.356
 
[[Augmented family#Deflated|Deflated]]: [[9edo|9et]] 3&9 59.079
 
[[Septisemi temperaments#Fluorine|Fluorine]]: [[9edo|9et]] 9&20bd 55.623
 
[[Dicot family|Sharp]]: [[10edo|10et]] 3d&7d 28.942
 
[[Dicot family|Decimal]]: [[10edo|10et]] 4&10 28.334
 
[[Septisemi temperaments#Sodium|Sodium]]: [[11edo|11et]] 4&11 55.814
 
[[Meantone family|Dominant]]: [[12edo|12et]] 5&7 20.690
 
[[Diminished family #Septimal diminished|Diminished]]: [[12edo|12et]] 4&12 22.401
 
[[Augmented family|August]]: [[12edo|12et]] 9&12 26.459
 
[[Augmented family#Hexe|Hexe]]: [[12edo|12et]] 6&12 57.730
 
[[Schismatic family#Schism|Schism]]: [[12edo|12et]] 12&29de 56.648
 
[[Mint temperaments#Ripple|Ripple]]: [[12edo|12et]] 12&23 59.735
 
[[Archytas clan|Blacksmith]]: [[15edo|15et]] 5&10 25.640
 
[[Trienstonic clan|Opossum]]: [[15edo|15et]] 7d&8d 40.650
 
[[Augmented family#Inflated|Inflated]]: [[15edo|15et]] 15&48bc 54.729
 
[[Pelogic family#Armodue|Armodue]]: [[16edo|16et]] 7&9 49.038
 
[[Dicot family#Dichotic|Dichotic]]: [[17edo|17et]] 3&7 37.565
 
[[Trienstonic clan|Octokaidecal]]: [[18edo|18et]] 10&18 36.747
 
[[Trienstonic clan|Uncle]]: [[18edo|18et]] 5&18 72.653
 
[[Marvel temperaments|Negri]]: [[19edo|19et]] 1&9 26.483
 
[[Meantone family|Godzilla]]: [[19edo|19et]] 5&19 26.747
 
[[Kleismic family|Keemun]]: [[19edo|19et]] 4&15 27.408
 
[[Trienstonic clan#Wallaby|Wallaby]]: [[19edo|19ccdd]] 2d&5c 58.468
 
[[Gamelismic clan|Gorgo]]: [[21edo|21et]] 5&16 46.385
 
[[Diaschismic family|Pajara]]: [[22edo|22et]] 2&10 20.033
 
[[Porcupine family#Hedgehog|Hedgehog]]: [[22edo|22et]] 14c&22 43.983
 
[[Jubilismic clan|Lemba]]: [[26edo|26et]] 10&16 62.208
 
[[Augmented family#Augene|Augene]]: [[27edo|27et]] 3&12 24.816
 
[[Augmented family#Niner|Niner]]: [[27edo|27et]] 9&18 67.157
 
[[Archytas clan|Beatles]]: [[27edo|27et]] 10&27 45.872
 
[[Porcupine family|Nautilus]]: [[29edo|29et]] 15&29 57.420
 
[[Meantone family|Mothra]]: [[31edo|31et]] 5&26 37.146
 
[[Meantone family|Squares]]: [[31edo|31et]] 31&45 45.993
 
[[Immunity family#Septimal immunity|Immunity]]: [[34edo|34et]] 5&29 77.631
 
[[Meantone family|Injera]]: [[38edo|38et]] 12&26 31.130
 
[[Augmented family|Triforce]]: [[39edo|39et]] 6&9 54.988
 
[[Magic family|Magic]]: [[41edo|41et]] 19&41 18.918
 
[[Gamelismic clan|Superkleismic]]: [[41edo|41et]] 15&26 47.932
 
[[Keemic temperaments#Quasitemp|Quasitemp]]: [[41edo|41et]] 4&37 60.269
 
[[Meantone family|Flattone]]: [[45edo|45et]] 7&19 38.553
 
[[Starling temperaments|Sensi]]: [[46edo|46et]] 19&27 25.622
 
[[Starling temperaments#Vines|Vines]]: [[46edo|46et]] 4&42 78.049
 
[[Jubilismic clan|Doublewide]]: [[48edo|48et]] 4&18 43.462
 
[[Archytas clan|Superpyth]]: [[49edo|49et]] 5&17 32.318
 
[[Archytas clan|Passion]]: [[49edo|49et]] 12&37 62.327
 
[[Porcupine family#Porky|Porky]]: [[51edo|51et]] 22&51 54.389
 
[[Marvel temperaments#Submajor-7-limit|Submajor]]: [[53edo|53et]] 10&33 60.533
 
[[Meantone family|Liese]]: [[55edo|55et]] 19&55 46.706
 
[[Sycamore family#Sycamore|Sycamore]]: [[56edo|56et]] 18&19 62.018
 
[[Diaschismic family|Diaschismic]]: [[58edo|58et]] 12&34 37.914
 
[[Porcupine family#Porcupine|Porcupine]]: [[59edo|59et]] 7&15 41.057
 
[[Starling temperaments#Kumonga|Kumonga]]: [[70edo|70et]] 16&27 87.500
 
[[Gamelismic clan|Miracle]]: [