37edo: Difference between revisions

Wikispaces>Chartrekhan
**Imported revision 578143477 - Original comment: **
Fredg999 (talk | contribs)
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation"
 
(133 intermediate revisions by 36 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{interwiki
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| de = 37-EDO
: This revision was by author [[User:Chartrekhan|Chartrekhan]] and made on <tt>2016-03-23 01:50:11 UTC</tt>.<br>
| en = 37edo
: The original revision id was <tt>578143477</tt>.<br>
| es =
: The revision comment was: <tt></tt><br>
| ja =
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
}}
<h4>Original Wikitext content:</h4>
{{Infobox ET}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]].
{{ED intro}}


Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. (It is the optimal patent val for [[Porcupine family#Porcupinefish|porcupinefish]], which is about as accurate as "13-limit porcupine" will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]).
== Theory ==
37edo has very accurate approximations of harmonics [[5/1|5]], [[7/1|7]], [[11/1|11]] and [[13/1|13]], making it a good choice for a [[no-threes subgroup temperaments|no-threes]] approach. Harmonic 11 is particularly accurate, being only 0.03 cents sharp.


37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[porcupine]] temperament. It is the [[optimal patent val]] for [[Porcupine family #Porcupinefish|porcupinefish]], which is about as accurate as 13-limit porcupine extensions will be. Using its alternative flat fifth, it tempers out [[16875/16384]], making it a [[negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[gorgo]]/[[laconic]]).


37edo is also a very accurate equal tuning for [[undecimation]] temperament, which has a [[generator]] of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a [[7L 2s]] enneatonic [[mos]], which in 37edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16-note mos.


[[toc|flat]]
In the no-3 [[13-odd-limit]], 37edo maintains the smallest relative error of any edo until [[851edo]], and the smallest absolute error until [[103edo]]{{clarify}}. <!-- what is the metric being used? -->
----


=Subgroups=  
=== Odd harmonics ===
37edo offers close approximations to [[xenharmonic/OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].
{{Harmonics in equal|37}}


12\37 = 389.2 cents
=== Subsets and supersets ===
30\37 = 973.0 cents
37edo is the 12th [[prime edo]], following [[31edo]] and coming before [[41edo]].  
17\37 = 551.4 cents
26\37 = 843.2 cents
[6\37edo = 194.6 cents]


This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[xenharmonic/k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.
[[74edo]], which doubles it, provides an alternative approximation to harmonic 3 that supports [[meantone]]. [[111edo]], which triples it, gives a very accurate approximation of harmonic 3, and manifests itself as a great higher-limit system. [[296edo]], which slices its step in eight, is a good 13-limit system.


=The Two Fifths=  
=== Subgroups ===
The just [[xenharmonic/perfect fifth|perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
37edo offers close approximations to [[Harmonic series|harmonics]] 5, 7, 11, and 13, and a usable approximation of 9 as well.
* 12\37 = 389.2 cents
* 30\37 = 973.0 cents
* 17\37 = 551.4 cents
* 26\37 = 843.2 cents
* [6\37 = 194.6 cents]
 
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as [[111edo]]. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111edo, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as [[74edo]].
 
=== Dual fifths ===
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
 
The flat fifth is 21\37 = 681.1 cents (37b val)


The flat fifth is 21\37 = 681.1 cents
The sharp fifth is 22\37 = 713.5 cents
The sharp fifth is 22\37 = 713.5 cents


21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
"minor third" = 10\37 = 324.3 cents
"minor third" = 10\37 = 324.3 cents
"major third" = 11\37 = 356.8 cents
"major third" = 11\37 = 356.8 cents


22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
"minor third" = 8\37 = 259.5 cents
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents
"major third" = 14\37 = 454.1 cents


If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[xenharmonic/The Biosphere|Biome]] temperament.
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Oceanfront]] temperament.
 
37edo can only barely be considered as "dual-fifth", because the sharp fifth is 12 cents sharp of 3/2, has a regular diatonic scale, and can be interpreted as somewhat accurate regular temperaments like [[archy]] and the aforementioned oceanfront. In contrast, the flat fifth is 21 cents flat and the only low-limit interpretation is as the very inaccurate [[mavila]].


Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.
Since both fifths do not support [[meantone]], the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.


37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).


=Intervals=  
=== No-3 approach ===
||~ Degrees of 37edo ||~ Cents Value ||~ Approximate Ratios
If prime 3 is ignored, 37edo represents the no-3 23-odd-limit consistently, and is distinctly consistent within the no-3 16-integer-limit.
of 2.5.7.11.13.27 subgroup ||~ Ratios of 3 with
 
a sharp 3/2 ||~ Ratios of 3 with
== Intervals ==
a flat 3/2 ||~ Ratios of 9 with
{| class="wikitable center-1 right-2"
194.59¢ 9/8 ||~ Ratios of 9 with
|-
227.03¢ 9/8
! Degrees
(two sharp
! Cents
3/2's) ||
! Approximate Ratios<br>of 2.5.7.11.13.27 subgroup
|| 0 || 0.00 || 1/1 ||   ||   ||  ||  ||
! Additional Ratios of 3<br>with a sharp 3/2
|| 1 || 32.43 ||   ||   ||   ||   ||   ||
! Additional Ratios of 3<br>with a flat 3/2
|| 2 || 64.86 || 28/27, 27/26 ||   ||   ||   ||   ||
! Additional Ratios of 9<br>with 194.59¢ 9/8
|| 3 || 97.30 ||   ||   ||   ||   ||   ||
|-
|| 4 || 129.73 || 14/13 || 13/12 || 12/11 ||   ||   ||
| 0
|| 5 || 162.16 || 11/10 || 12/11 || 13/12 ||   || 10/9 ||
| 0.00
|| 6 || 194.59 ||   ||   ||  || 9/8, 10/9 ||   ||
| 1/1
|| 7 || 227.03 || 8/7 ||   ||   ||   || 9/8 ||
|
|| 8 || 259.46 ||   || 7/6 ||   ||   ||  ||
|
|| 9 || 291.89 || 13/11, 32/27 ||  || 6/5, 7/6 ||   ||   ||
|
|| 10 || 324.32 ||  || 6/5 ||   ||   || 11/9 ||
|-
|| 11 || 356.76 || 16/13, 27/22 ||   ||   || 11/9 ||   ||
| 1
|| 12 || 389.19 || 5/4 ||   ||   ||  ||  ||
| 32.43
|| 13 || 421.62 || 14/11 ||   ||   || 9/7 ||   ||
| [[55/54]], [[56/55]]
|| 14 || 454.05 || 13/10 ||   ||   ||   || 9/7 ||
|
|| 15 || 486.49 ||   || 4/3 ||   ||   ||   ||
|
|| 16 || 518.92 || 27/20 ||   || 4/3 ||   ||   ||
|
|| 17 || 551.35 || 11/8 ||   ||   || 18/13 ||   ||
|-
|| 18 || 583.78 || 7/5 ||   ||   ||   || 18/13 ||
| 2
|| 19 || 616.22 || 10/7 ||   ||   ||   || 13/9 ||
| 64.86
|| 20 || 648.65 || 16/11 ||   ||   || 13/9 ||   ||
| [[27/26]], [[28/27]]
|| 21 || 681.08 || 40/27 ||   || 3/2 ||   ||   ||
|
|| 22 || 713.51 ||   || 3/2 ||   ||   ||   ||
|
|| 23 || 745.95 || 20/13 ||   ||   ||   || 14/9 ||
|
|| 24 || 778.38 || 11/7 ||   ||   || 14/9 ||   ||
|-
|| 25 || 810.81 || 8/5 ||   ||   ||   ||   ||
| 3
|| 26 || 843.24 || 13/8, 44/27 ||   ||   || 18/11 ||   ||
| 97.30
|| 27 || 875.68 ||   || 5/3 ||   ||   || 18/11 ||
| [[128/121]], [[55/52]]
|| 28 || 908.11 || 22/13, 27/16 ||  || 5/3, 12/7 ||   ||   ||
| [[16/15]]
|| 29 || 940.54 ||   || 12/7 ||   ||   ||   ||
|
|| 30 || 972.97 || 7/4 ||   ||   ||   || 16/9 ||
|
|| 31 || 1005.41 ||   ||   ||   || 16/9, 9/5 ||   ||
|-
|| 32 || 1037.84 || 20/11 || 11/6 || 24/13 ||   || 9/5 ||
| 4
|| 33 || 1070.27 || 13/7 || 24/13 || 11/6 ||   ||   ||
| 129.73
|| 34 || 1102.70 ||   ||   ||   ||   ||   ||
| [[14/13]]
|| 35 || 1135.14 || 27/14, 52/27 ||   ||  ||  ||  ||
| [[13/12]], [[15/14]]
|| 36 || 1167.57 ||   ||  ||   ||   ||  ||
| [[12/11]]
|
|-
| 5
| 162.16
| [[11/10]]
| [[10/9]], [[12/11]]
| [[13/12]]
|
|-
| 6
| 194.59
| [[28/25]]
|
|
| [[9/8]], [[10/9]]
|-
| 7
| 227.03
| [[8/7]]
| [[9/8]]
|
|
|-
| 8
| 259.46
|
| [[7/6]], [[15/13]]
|
|
|-
| 9
| 291.89
| [[13/11]], [[32/27]]
|
| [[6/5]], [[7/6]]
|
|-
| 10
| 324.32
|
| [[6/5]], [[11/9]]
|
|
|-
| 11
| 356.76
| [[16/13]], [[27/22]]
|
|
| [[11/9]]
|-
| 12
| 389.19
| [[5/4]]
|
|
|
|-
| 13
| 421.62
| [[14/11]], [[32/25]]
|
|
| [[9/7]]
|-
| 14
| 454.05
| [[13/10]]
| [[9/7]]
|
|
|-
| 15
| 486.49
|
| [[4/3]]
|
|
|-
| 16
| 518.92
| [[27/20]]
|
| [[4/3]]
|
|-
| 17
| 551.35
| [[11/8]]
| [[15/11]]
|
| [[18/13]]
|-
| 18
| 583.78
| [[7/5]]
| [[18/13]]
|
|
|-
| 19
| 616.22
| [[10/7]]
| [[13/9]]
|
|
|-
| 20
| 648.65
| [[16/11]]
| [[22/15]]
|
| [[13/9]]
|-
| 21
| 681.08
| [[40/27]]
|
| [[3/2]]
|
|-
| 22
| 713.51
|
| [[3/2]]
|
|
|-
| 23
| 745.95
| [[20/13]]
| [[14/9]]
|
|
|-
| 24
| 778.38
| [[11/7]], [[25/16]]
|
|
| [[14/9]]
|-
| 25
| 810.81
| [[8/5]]
|
|
|
|-
| 26
| 843.24
| [[13/8]], [[44/27]]
|
|
| [[18/11]]
|-
| 27
| 875.68
|
| [[5/3]], [[18/11]]
|
|
|-
| 28
| 908.11
| [[22/13]], [[27/16]]
|
| [[5/3]], [[12/7]]
|
|-
| 29
| 940.54
|
| [[12/7]], [[26/15]]
|
|
|-
| 30
| 972.97
| [[7/4]]
| [[16/9]]
|
|
|-
| 31
| 1005.41
| [[25/14]]
|
|
| [[16/9]], [[9/5]]
|-
| 32
| 1037.84
| [[20/11]]
| [[9/5]], [[11/6]]
|
|
|-
| 33
| 1070.27
| [[13/7]]
| [[24/13]], [[28/15]]
| [[11/6]]
|
|-
| 34
| 1102.70
| [[121/64]], [[104/55]]
| [[15/8]]
|
|
|-
| 35
| 1135.14
| [[27/14]], [[52/27]]
|
|
|
|-
| 36
| 1167.57
|
|
|
|
|-
| 37
| 1200.00
| [[2/1]]
|
|
|
|}
 
== Notation ==
=== Ups and downs notation ===
37edo can be notated using [[ups and downs notation]]:
 
{| class="wikitable center-all right-2 left-3"
|-
! Degrees
! Cents
! colspan="3" | [[Ups and downs notation]]
|-
| 0
| 0.00
| Perfect 1sn
| P1
| D
|-
| 1
| 32.43
| Minor 2nd
| m2
| Eb
|-
| 2
| 64.86
| Upminor 2nd
| ^m2
| ^Eb
|-
| 3
| 97.30
| Downmid 2nd
| v~2
| ^^Eb
|-
| 4
| 129.73
| Mid 2nd
| ~2
| Ed
|-
| 5
| 162.16
| Upmid 2nd
| ^~2
| vvE
|-
| 6
| 194.59
| Downmajor 2nd
| vM2
| vE
|-
| 7
| 227.03
| Major 2nd
| M2
| E
|-
| 8
| 259.46
| Minor 3rd
| m3
| F
|-
| 9
| 291.89
| Upminor 3rd
| ^m3
| ^F
|-
| 10
| 324.32
| Downmid 3rd
| v~3
| ^^F
|-
| 11
| 356.76
| Mid 3rd
| ~3
| Ft
|-
| 12
| 389.19
| Upmid 3rd
| ^~3
| vvF#
|-
| 13
| 421.62
| Downmajor 3rd
| vM3
| vF#
|-
| 14
| 454.05
| Major 3rd
| M3
| F#
|-
| 15
| 486.49
| Perfect 4th
| P4
| G
|-
| 16
| 518.92
| Up 4th, Dim 5th
| ^4, d5
| ^G, Ab
|-
| 17
| 551.35
| Downmid 4th, Updim 5th
| v~4, ^d5
| ^^G, ^Ab
|-
| 18
| 583.78
| Mid 4th, Downmid 5th
| ~4, v~5
| Gt, ^^Ab
|-
| 19
| 616.22
| Mid 5th, Upmid 4th
| ~5, ^~4
| Ad, vvG#
|-
| 20
| 648.65
| Upmid 5th, Downaug 5th
| ^~5, vA4
| vvA, vG#
|-
| 21
| 681.08
| Down 5th, Aug 4th
| v5, A4
| vA, G#
|-
| 22
| 713.51
| Perfect 5th
| P5
| A
|-
| 23
| 745.95
| Minor 6th
| m6
| Bb
|-
| 24
| 778.38
| Upminor 6th
| ^m6
| ^Bb
|-
| 25
| 810.81
| Downmid 6th
| v~6
| ^^Bb
|-
| 26
| 843.24
| Mid 6th
| ~6
| Bd
|-
| 27
| 875.68
| Upmid 6th
| ^~6
| vvB
|-
| 28
| 908.11
| Downmajor 6th
| vM6
| vB
|-
| 29
| 940.54
| Major 6th
| M6
| B
|-
| 30
| 972.97
| Minor 7th
| m7
| C
|-
| 31
| 1005.41
| Upminor 7th
| ^m7
| ^C
|-
| 32
| 1037.84
| Downmid 7th
| v~7
| ^^C
|-
| 33
| 1070.27
| Mid 7th
| ~7
| Ct
|-
| 34
| 1102.70
| Upmid 7th
| ^~7
| vvC#
|-
| 35
| 1135.14
| Downmajor 7th
| vM7
| vC#
|-
| 36
| 1167.57
| Major 7th
| M7
| C#
|-
| 37
| 1200.00
| Perfect 8ve
| P8
| D
|}
 
37edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.  
{{Sharpness-sharp6a}}
 
Half-sharps and half-flats can be used to avoid triple arrows:
{{Sharpness-sharp6b}}
 
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]:
{{Sharpness-sharp6}}
 
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals:
{{Sharpness-sharp6-qt}}
 
=== Ivan Wyschnegradsky's notation ===
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used:
 
{{Sharpness-sharp6-iw}}
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as EDOs [[23edo#Second-best fifth notation|23b]], [[30edo#Sagittal notation|30]], and [[44edo#Sagittal notation|44]].
 
==== Evo and Revo flavors ====
<imagemap>
File:37-EDO_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 599 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]]
default [[File:37-EDO_Sagittal.svg]]
</imagemap>
 
==== Alternative Evo flavor ====
<imagemap>
File:37-EDO_Alternative_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 639 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]]
default [[File:37-EDO_Alternative_Evo_Sagittal.svg]]
</imagemap>
 
==== Evo-SZ flavor ====
<imagemap>
File:37-EDO_Evo-SZ_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 623 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]]
default [[File:37-EDO_Evo-SZ_Sagittal.svg]]
</imagemap>
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.5
| {{monzo| 86 -37 }}
| {{mapping| 37 86 }}
| −0.619
| 0.619
| 1.91
|-
| 2.5.7
| 3136/3125, 4194304/4117715
| {{mapping| 37 86 104 }}
| −0.905
| 0.647
| 2.00
|-
| 2.5.7.11
| 176/175, 1375/1372, 65536/65219
| {{mapping| 37 86 104 128 }}
| −0.681
| 0.681
| 2.10
|-
| 2.5.7.11.13
| 176/175, 640/637, 847/845, 1375/1372
| {{mapping| 37 86 104 128 137 }}
| −0.692
| 0.610
| 1.88
|}
* 37et is most prominent in the no-3 11-, 13-, 17-, 19- and 23-limit subgroups. The next equal temperaments doing better in these subgroups are 109, 581, 103, 124 and 93, respectively.
 
=== Rank-2 temperaments ===
* [[List of 37et rank two temperaments by badness]]
 
{| class="wikitable center-1"
|-
! Generator
! In patent val
! In 37b val
|-
| 1\37
|
|
|-
| 2\37
| [[Sycamore]]
|
|-
| 3\37
| [[Passion]]
|
|-
| 4\37
| [[Twothirdtonic]]
| [[Negri]]
|-
| 5\37
| [[Porcupine]] / [[porcupinefish]]
|
|-
| 6\37
| colspan="2" | [[Didacus]] / [[roulette]]
|-
| 7\37
| [[Shoe]] / [[semaja]]
| [[Shoe]] / [[laconic]] / [[gorgo]]
|-
| 8\37
|
| [[Semaphore]] (37bd)
|-
| 9\37
|
| [[Gariberttet]]
|-
| 10\37
|
| [[Orgone]]
|-
| 11\37
| [[Beatles]]
|
|-
| 12\37
| [[Würschmidt]] (out-of-tune)
|
|-
| 13\37
| [[Skwares]] (37dd)
|
|-
| 14\37
| [[Ammonite]]
|
|-
| 15\37
| [[Ultrapyth]], [[oceanfront]]
|
|-
| 16\37
| [[Undecimation]]
|
|-
| 17\37
| [[Freivald]], [[emka]], [[onzonic]]
|
|-
| 18\37
|
|
|}
 
== Scales ==
* [[MOS Scales of 37edo]]
* [[Chromatic pairs#Roulette|Roulette scales]]
* [[37ED4]]
* [[Square root of 13 over 10]]
 
=== Every 8 steps of 37edo ===
{| class="wikitable center-1 right-2"
|+
!Degrees
!Cents
!Approximate Ratios<br>of 6.7.11.20.27 subgroup
!Additional Ratios
|-
|0
|0.000
|[[1/1]]
|
|-
|1
|259.46
|[[7/6]]
|
|-
|2
|518.92
|[[27/20]]
|
|-
|3
|778.38
|[[11/7]]
|
|-
|4
|1037.84
|[[20/11]], [[11/6]]
|
|-
|5
|1297.30
|
|[[19/9]]
|-
|6
|1556.76
|[[27/11]]
|
|-
|7
|1816.22
|[[20/7]]
|
|-
|8
|2075.68
|[[10/3]]
|
|-
|9
|2335.14
|[[27/7]]
|
|-
|10
|2594.59
|[[9/2]]
|
|-
|11
|2854.05
|
|[[26/5]]
|-
|12
|3113.51
|[[6/1]]
|
|-
|13
|3372.97
|[[7/1]]
|
|-
|14
|3632.43
|
|
|-
|15
|3891.89
|
|[[19/2]]
|-
|16
|4151.35
|[[11/1]]
|
|-
|17
|4410.81
|
|
|-
|18
|4670.27
|
|
|-
|19
|4929.73
|
|
|-
|20
|5189.19
|[[20/1]]
|
|-
|21
|5448.65
|
|
|-
|22
|5708.11
|[[27/1]]
|
|}
 
== Instruments ==
 
; Lumatone
* [[Lumatone mapping for 37edo]]
 
; Fretted instruments
* [[Skip fretting system 37 2 7]]
 
== Music ==
; [[Beheld]]
* [https://www.youtube.com/watch?v=IULi2zSdatA ''Mindless vibe''] (2023)
 
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/e7dLJTsS3PQ ''37edo''] (2025)
* [https://www.youtube.com/shorts/m9hmiH8zong ''37edo jam''] (2025)
 
; [[Francium]]
* [https://www.youtube.com/watch?v=jpPjVouoq3E ''5 days in''] (2023)
* [https://www.youtube.com/watch?v=ngxSiuVadls ''A Dark Era Arises''] (2023) – in Porcupine[15], 37edo tuning
* [https://www.youtube.com/watch?v=U93XFJJ1aXw ''Two Faced People''] (2025) – in Twothirdtonic[10], 37edo tuning
 
; [[Andrew Heathwaite]]
* [https://andrewheathwaite.bandcamp.com/track/shorn-brown "Shorn Brown"] from ''Newbeams'' (2012)
* [https://andrewheathwaite.bandcamp.com/track/jellybear "Jellybear"] from ''Newbeams'' (2012)
 
; [[Aaron Krister Johnson]]
* [http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3 ''Toccata Bianca 37EDO'']{{dead link}}
 
; [[JUMBLE]]
* [https://www.youtube.com/watch?v=taT1DClJ2KM ''Tyrian and Gold''] (2024)


=Scales=
; [[User:Fitzgerald Lee|Fitzgerald Lee]]
* [https://www.youtube.com/watch?v=Nr0cUJcL4SU ''Bittersweet End''] (2025)


[[xenharmonic/MOS Scales of 37edo|MOS Scales of 37edo]]
; [[Mandrake]]
* [https://www.youtube.com/watch?v=iL_4nRZBJDc ''What if?''] (2023)


[[xenharmonic/roulette6|roulette6]]
; [[Claudi Meneghin]]
[[xenharmonic/roulette7|roulette7]]
* [https://www.youtube.com/watch?v=7dU8eyGbt9I ''Deck The Halls''] (2022)
[[xenharmonic/roulette13|roulette13]]
* [https://www.youtube.com/watch?v=HTAobydvC20 Marcello - Bach: Adagio from BWV 974, arranged for Oboe & Organ, tuned into 37edo] (2022)
[[xenharmonic/roulette19|roulette19]]
* [https://www.youtube.com/watch?v=hpjZZXFM_Fk ''Little Fugue on Happy Birthday''] (2022) – in Passion, 37edo tuning
* [https://www.youtube.com/watch?v=SgHY3snZ5bs ''Fugue on an Original Theme''] (2022)
* [https://www.youtube.com/watch?v=AJ2sa-fRqbE Paradies, Toccata, Arranged for Organ and Tuned into 37edo] (2023)


[[xenharmonic/Chromatic pairs#Shoe|Shoe]]
; [[Micronaive]]
* [https://youtu.be/TMVRYLvg_cA No.27.50] (2022)


[[xenharmonic/37ED4|37ED4]]
; [[Herman Miller]]
* ''[https://soundcloud.com/morphosyntax-1/luck-of-the-draw Luck of the Draw]'' (2023)


[[xenharmonic/square root of 13 over 10|The Square Root of 13/10]]
; [[Joseph Monzo]]
* [https://youtube.com/watch?v=QERRKsbbWUQ ''The Kog Sisters''] (2014)
* [https://www.youtube.com/watch?v=BfP8Ig94kE0 ''Afrikan Song''] (2016)


=Linear temperaments=
; [[Mundoworld]]
[[List of 37et rank two temperaments by badness]]
* ''Reckless Discredit'' (2021) [https://www.youtube.com/watch?v=ovgsjSoHOkg YouTube] · [https://mundoworld.bandcamp.com/track/reckless-discredit Bandcamp]


||~ Generator ||~ "Sharp 3/2" temperaments ||~ "Flat 3/2" temperaments (37b val) ||
; [[Ray Perlner]]
|| 1\37 ||  ||  ||
* [https://www.youtube.com/watch?v=8reCr2nDGbw ''Porcupine Lullaby''] (2020) – in Porcupine, 37edo tuning
|| 2\37 || [[xenharmonic/Sycamore family|Sycamore]] ||  ||
* [https://www.youtube.com/watch?v=j8C9ECvfyQM ''Fugue for Brass in 37EDO sssLsss "Dingoian"''] (2022) – in Porcupine[7], 37edo tuning
|| 3\37 || [[xenharmonic/Passion|Passion]] ||  ||
* [https://www.youtube.com/watch?v=_xfvNKUu8gY ''Fugue for Klezmer Band in 37EDO Porcupine<nowiki>[</nowiki>7<nowiki>]</nowiki> sssssLs "Lemurian"''] (2023) – in Porcupine[7], 37edo tuning
|| 4\37 || [[xenharmonic/Twothirdtonic|Twothirdtonic]] || [[xenharmonic/Negri|Negri]] ||
|| 5\37 || [[xenharmonic/Porcupine|Porcupine]]/[[xenharmonic/The Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish|porcupinefish]] ||  ||
|| 6\37 |||| [[xenharmonic/Chromatic pairs#Roulette|Roulette]] ||
|| 7\37 || [[xenharmonic/Semaja|Semaja]] || [[xenharmonic/Gorgo|Gorgo]]/[[xenharmonic/Laconic|Laconic]] ||
|| 8\37 ||  || [[semiphore|Semiphore]] ||
|| 9\37 ||  ||  ||
|| 10\37 ||  ||  ||
|| 11\37 || [[xenharmonic/Beatles|Beatles]] ||  ||
|| 12\37 || [[xenharmonic/Würschmidt|Würschmidt]] (out-of-tune) ||  ||
|| 13\37 ||  ||  ||
|| 14\37 || [[xenharmonic/Ammonite|Ammonite]] ||  ||
|| 15\37 || [[The Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth|Ultrapyth]], **not** [[xenharmonic/superpyth|superpyth]] ||  ||
|| 16\37 ||  || **Not** [[xenharmonic/mavila|mavila]] (this is "undecimation") ||
|| 17\37 || [[xenharmonic/Emka|Emka]] ||  ||
|| 18\37 ||  ||  ||


; [[Phanomium]]
* [https://www.youtube.com/watch?v=2otxZqUrvHc ''Elevated Floors''] (2025)
* [https://www.youtube.com/watch?v=BbexOU-9700 ''cat jam 37''] (2025)


==Music in 37edo==
; [[Togenom]]
[[http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3|Toccata Bianca 37edo]] by [[http://www.akjmusic.com/|Aaron Krister Johnson]]
* "Canals of Mars" from ''Xenharmonics, Vol. 5'' (2024) – [https://open.spotify.com/track/7v2dpCjiRKUfVVBZw8aWSf Spotify] |[https://togenom.bandcamp.com/track/canals-of-mars Bandcamp] | [https://www.youtube.com/watch?v=qPcEl_bifC0 YouTube]
[[@http://andrewheathwaite.bandcamp.com/track/shorn-brown|Shorn Brown]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/jellybear|Jellybear]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3|play]] by [[xenharmonic/Andrew Heathwaite|Andrew Heathwaite]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Monzo/monzo_kog-sisters_2014-0405.mp3|The Kog Sisters]] by [[Joe Monzo]]
==Links==
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo"&gt;31edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo"&gt;41edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine"&gt;porcupine&lt;/a&gt; temperament. (It is the optimal patent val for &lt;a class="wiki_link" href="/Porcupine%20family#Porcupinefish"&gt;porcupinefish&lt;/a&gt;, which is about as accurate as &amp;quot;13-limit porcupine&amp;quot; will be.) Using its alternative flat fifth, it tempers out 16875/16384, making it a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri"&gt;negri&lt;/a&gt; tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo"&gt;gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic"&gt;laconic&lt;/a&gt;).&lt;br /&gt;
&lt;br /&gt;
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:14:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt;&lt;a href="#Subgroups"&gt;Subgroups&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#The Two Fifths"&gt;The Two Fifths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;
&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
37edo offers close approximations to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13 [and a usable approximation of 9 as well].&lt;br /&gt;
&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
30\37 = 973.0 cents&lt;br /&gt;
17\37 = 551.4 cents&lt;br /&gt;
26\37 = 843.2 cents&lt;br /&gt;
[6\37edo = 194.6 cents]&lt;br /&gt;
&lt;br /&gt;
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups"&gt;3*37 subgroup&lt;/a&gt; 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="The Two Fifths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The Two Fifths&lt;/h1&gt;
The just &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
&lt;br /&gt;
The flat fifth is 21\37 = 681.1 cents&lt;br /&gt;
The sharp fifth is 22\37 = 713.5 cents&lt;br /&gt;
&lt;br /&gt;
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6&lt;br /&gt;
&amp;quot;minor third&amp;quot; = 10\37 = 324.3 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 11\37 = 356.8 cents&lt;br /&gt;
&lt;br /&gt;
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1&lt;br /&gt;
&amp;quot;minor third&amp;quot; = 8\37 = 259.5 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
&lt;br /&gt;
Interestingly, the &amp;quot;major thirds&amp;quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.&lt;br /&gt;
&lt;br /&gt;
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Intervals&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
; [[Uncreative Name]]
    &lt;tr&gt;
* [https://www.youtube.com/watch?v=rE9L56yZ1Kw ''Winter''] (2025)
        &lt;th&gt;Degrees of 37edo&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Cents Value&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Approximate Ratios&lt;br /&gt;
of 2.5.7.11.13.27 subgroup&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 3 with&lt;br /&gt;
a sharp 3/2&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 3 with&lt;br /&gt;
a flat 3/2&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 9 with&lt;br /&gt;
194.59¢ 9/8&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Ratios of 9 with&lt;br /&gt;
227.03¢ 9/8&lt;br /&gt;
(two sharp&lt;br /&gt;
3/2's)&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0.00&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;64.86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/27, 27/26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;97.30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;129.73&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;162.16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;194.59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8, 10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;227.03&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;259.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;291.89&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11, 32/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5, 7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;324.32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.76&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/13, 27/22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;389.19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;421.62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;454.05&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;486.49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;518.92&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;583.78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;616.22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;648.65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;681.08&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;713.51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;745.95&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;778.38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;810.81&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;843.24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/8, 44/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;875.68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;908.11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/13, 27/16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3, 12/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;940.54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;972.97&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1005.41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9, 9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1037.84&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1070.27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1102.70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1135.14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/14, 52/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1167.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
; <nowiki>XENO*n*</nowiki>
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Scales&lt;/h1&gt;
* ''[https://www.youtube.com/watch?v=_m5u4VviMXw Galantean Drift]'' (2025)
&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20Scales%20of%2037edo"&gt;MOS Scales of 37edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette6"&gt;roulette6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette7"&gt;roulette7&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette13"&gt;roulette13&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette19"&gt;roulette19&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Shoe"&gt;Shoe&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/37ED4"&gt;37ED4&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/square%20root%20of%2013%20over%2010"&gt;The Square Root of 13/10&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Linear temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Linear temperaments&lt;/h1&gt;
&lt;a class="wiki_link" href="/List%20of%2037et%20rank%20two%20temperaments%20by%20badness"&gt;List of 37et rank two temperaments by badness&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;


== See also ==
* [[User:Unque/37edo Composition Theory|Unque's approach]]


&lt;table class="wiki_table"&gt;
== External links ==
    &lt;tr&gt;
* [http://tonalsoft.com/enc/number/37-edo/37edo.aspx 37-edo / 37-et / 37-tone equal-temperament] on [[Tonalsoft Encyclopedia]]
        &lt;th&gt;Generator&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&amp;quot;Sharp 3/2&amp;quot; temperaments&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&amp;quot;Flat 3/2&amp;quot; temperaments (37b val)&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sycamore%20family"&gt;Sycamore&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Passion"&gt;Passion&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Twothirdtonic"&gt;Twothirdtonic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri"&gt;Negri&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Porcupine"&gt;Porcupine&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish"&gt;porcupinefish&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td colspan="2"&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Roulette"&gt;Roulette&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semaja"&gt;Semaja&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gorgo"&gt;Gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Laconic"&gt;Laconic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/semiphore"&gt;Semiphore&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Beatles"&gt;Beatles&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt"&gt;Würschmidt&lt;/a&gt; (out-of-tune)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ammonite"&gt;Ammonite&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/The%20Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth"&gt;Ultrapyth&lt;/a&gt;, &lt;strong&gt;not&lt;/strong&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/superpyth"&gt;superpyth&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Not&lt;/strong&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/mavila"&gt;mavila&lt;/a&gt; (this is &amp;quot;undecimation&amp;quot;)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Emka"&gt;Emka&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
[[Category:Listen]]
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Linear temperaments-Music in 37edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Music in 37edo&lt;/h2&gt;
&lt;a class="wiki_link_ext" href="http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3" rel="nofollow"&gt;Toccata Bianca 37edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.akjmusic.com/" rel="nofollow"&gt;Aaron Krister Johnson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/shorn-brown" rel="nofollow" target="_blank"&gt;Shorn Brown&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3" rel="nofollow"&gt;play&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/jellybear" rel="nofollow" target="_blank"&gt;Jellybear&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Monzo/monzo_kog-sisters_2014-0405.mp3" rel="nofollow"&gt;The Kog Sisters&lt;/a&gt; by &lt;a class="wiki_link" href="/Joe%20Monzo"&gt;Joe Monzo&lt;/a&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Linear temperaments-Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Links&lt;/h2&gt;
&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/number/37-edo/37edo.aspx" rel="nofollow"&gt;37edo at Tonalsoft&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>