37edo: Difference between revisions
→Intervals: Removed 7mus column |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(122 intermediate revisions by 31 users not shown) | |||
Line 1: | Line 1: | ||
{{interwiki | |||
| de = 37-EDO | |||
| en = 37edo | |||
| es = | |||
| ja = | |||
}} | |||
{{Infobox ET}} | |||
{{ED intro}} | |||
37edo | == Theory == | ||
37edo has very accurate approximations of harmonics [[5/1|5]], [[7/1|7]], [[11/1|11]] and [[13/1|13]], making it a good choice for a [[no-threes subgroup temperaments|no-threes]] approach. Harmonic 11 is particularly accurate, being only 0.03 cents sharp. | |||
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[ | Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[porcupine]] temperament. It is the [[optimal patent val]] for [[Porcupine family #Porcupinefish|porcupinefish]], which is about as accurate as 13-limit porcupine extensions will be. Using its alternative flat fifth, it tempers out [[16875/16384]], making it a [[negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[gorgo]]/[[laconic]]). | ||
37edo is also a very accurate equal tuning for [[undecimation]] temperament, which has a [[generator]] of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a [[7L 2s]] enneatonic [[mos]], which in 37edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16-note mos. | |||
In the no-3 [[13-odd-limit]], 37edo maintains the smallest relative error of any edo until [[851edo]], and the smallest absolute error until [[103edo]]{{clarify}}. <!-- what is the metric being used? --> | |||
----- | |||
= | === Odd harmonics === | ||
{{Harmonics in equal|37}} | |||
=== Subsets and supersets === | |||
37edo is the 12th [[prime edo]], following [[31edo]] and coming before [[41edo]]. | |||
[[74edo]], which doubles it, provides an alternative approximation to harmonic 3 that supports [[meantone]]. [[111edo]], which triples it, gives a very accurate approximation of harmonic 3, and manifests itself as a great higher-limit system. [[296edo]], which slices its step in eight, is a good 13-limit system. | |||
17\37 = 551.4 cents | === Subgroups === | ||
37edo offers close approximations to [[Harmonic series|harmonics]] 5, 7, 11, and 13, and a usable approximation of 9 as well. | |||
* 12\37 = 389.2 cents | |||
* 30\37 = 973.0 cents | |||
* 17\37 = 551.4 cents | |||
* 26\37 = 843.2 cents | |||
* [6\37 = 194.6 cents] | |||
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as [[111edo]]. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111edo, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as [[74edo]]. | |||
=== Dual fifths === | |||
= | |||
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: | The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo: | ||
Line 44: | Line 54: | ||
"major third" = 14\37 = 454.1 cents | "major third" = 14\37 = 454.1 cents | ||
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[ | If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Oceanfront]] temperament. | ||
37edo can only barely be considered as "dual-fifth", because the sharp fifth is 12 cents sharp of 3/2, has a regular diatonic scale, and can be interpreted as somewhat accurate regular temperaments like [[archy]] and the aforementioned oceanfront. In contrast, the flat fifth is 21 cents flat and the only low-limit interpretation is as the very inaccurate [[mavila]]. | |||
Since both fifths do not support [[meantone]], the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo. | |||
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below). | 37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below). | ||
= | === No-3 approach === | ||
If prime 3 is ignored, 37edo represents the no-3 23-odd-limit consistently, and is distinctly consistent within the no-3 16-integer-limit. | |||
{| class="wikitable" | == Intervals == | ||
{| class="wikitable center-1 right-2" | |||
|- | |- | ||
! | ! Degrees | ||
! | ! Cents | ||
! | ! Approximate Ratios<br>of 2.5.7.11.13.27 subgroup | ||
! Additional Ratios of 3<br>with a sharp 3/2 | |||
of 2.5.7.11.13.27 subgroup | ! Additional Ratios of 3<br>with a flat 3/2 | ||
! | ! Additional Ratios of 9<br>with 194.59¢ 9/8 | ||
a sharp 3/2 | |||
! | |||
a flat 3/2 | |||
! | |||
194.59¢ 9/8 | |||
|- | |- | ||
| 0 | | 0 | ||
|0.00 | | 0.00 | ||
| 1/1 | |||
| | |||
| | |||
| | |||
|- | |- | ||
| 1 | |||
| 32.43 | |||
| | | [[55/54]], [[56/55]] | ||
| | |||
| | |||
| | |||
|- | |- | ||
| 2 | |||
| 64.86 | |||
| | | [[27/26]], [[28/27]] | ||
| | |||
| | |||
| | |||
|- | |- | ||
| 3 | |||
| 97.30 | |||
| [[128/121]], [[55/52]] | |||
| | | [[16/15]] | ||
| | | | ||
| | |||
|- | |- | ||
| 4 | |||
| 129.73 | |||
| | | [[14/13]] | ||
| | | [[13/12]], [[15/14]] | ||
| | | [[12/11]] | ||
| | |||
|- | |- | ||
| 5 | |||
| 162.16 | |||
| | | [[11/10]] | ||
| | | [[10/9]], [[12/11]] | ||
| | | [[13/12]] | ||
| | | | ||
|- | |- | ||
| 6 | |||
| 194.59 | |||
| | | [[28/25]] | ||
| | |||
| | |||
| | | [[9/8]], [[10/9]] | ||
|- | |- | ||
| 7 | |||
| 227.03 | |||
| | | [[8/7]] | ||
| | | [[9/8]] | ||
| | |||
| | | | ||
|- | |- | ||
| 8 | |||
| 259.46 | |||
| | |||
| | | [[7/6]], [[15/13]] | ||
| | |||
| | |||
|- | |- | ||
| 9 | |||
| 291.89 | |||
| | | [[13/11]], [[32/27]] | ||
| | |||
| | | [[6/5]], [[7/6]] | ||
| | |||
|- | |- | ||
| 10 | |||
| 324.32 | |||
| | |||
| | | [[6/5]], [[11/9]] | ||
| | |||
| | | | ||
|- | |- | ||
| 11 | |||
| 356.76 | |||
| | | [[16/13]], [[27/22]] | ||
| | |||
| | |||
| | | [[11/9]] | ||
|- | |- | ||
| 12 | |||
| 389.19 | |||
| | | [[5/4]] | ||
| | |||
| | |||
| | |||
|- | |- | ||
| 13 | |||
| 421.62 | |||
| | | [[14/11]], [[32/25]] | ||
| | |||
| | |||
| | | [[9/7]] | ||
|- | |- | ||
| 14 | |||
| 454.05 | |||
| | | [[13/10]] | ||
| | | [[9/7]] | ||
| | |||
| | | | ||
|- | |- | ||
| 15 | |||
| 486.49 | |||
| | |||
| | | [[4/3]] | ||
| | |||
| | |||
|- | |- | ||
| 16 | |||
| 518.92 | |||
| | | [[27/20]] | ||
| | |||
| | | [[4/3]] | ||
| | |||
|- | |- | ||
| 17 | |||
| 551.35 | |||
| | | [[11/8]] | ||
| | | [[15/11]] | ||
| | |||
| | | [[18/13]] | ||
|- | |- | ||
| 18 | |||
| 583.78 | |||
| | | [[7/5]] | ||
| | | [[18/13]] | ||
| | |||
| | | | ||
|- | |- | ||
| 19 | |||
| 616.22 | |||
| | | [[10/7]] | ||
| | | [[13/9]] | ||
| | |||
| | | | ||
|- | |- | ||
| 20 | |||
| 648.65 | |||
| | | [[16/11]] | ||
| | | [[22/15]] | ||
| | |||
| | | [[13/9]] | ||
|- | |- | ||
| 21 | |||
| 681.08 | |||
| | | [[40/27]] | ||
| | |||
| | | [[3/2]] | ||
| | |||
|- | |- | ||
| 22 | |||
| 713.51 | |||
| | |||
| | | [[3/2]] | ||
| | |||
| | |||
|- | |- | ||
| 23 | |||
| 745.95 | |||
| | | [[20/13]] | ||
| | | [[14/9]] | ||
| | |||
| | | | ||
|- | |- | ||
| 24 | |||
| 778.38 | |||
| | | [[11/7]], [[25/16]] | ||
| | |||
| | |||
| | | [[14/9]] | ||
|- | |- | ||
| 25 | |||
| 810.81 | |||
| | | [[8/5]] | ||
| | |||
| | |||
| | |||
|- | |- | ||
| 26 | |||
| 843.24 | |||
| | | [[13/8]], [[44/27]] | ||
| | |||
| | |||
| | | [[18/11]] | ||
|- | |- | ||
| 27 | |||
| 875.68 | |||
| | |||
| | | [[5/3]], [[18/11]] | ||
| | |||
| | | | ||
|- | |- | ||
| 28 | |||
| 908.11 | |||
| | | [[22/13]], [[27/16]] | ||
| | |||
| | | [[5/3]], [[12/7]] | ||
| | |||
|- | |- | ||
| 29 | |||
| 940.54 | |||
| | |||
| | | [[12/7]], [[26/15]] | ||
| | |||
| | |||
|- | |- | ||
| 30 | |||
| 972.97 | |||
| | | [[7/4]] | ||
| | | [[16/9]] | ||
| | |||
| | | | ||
|- | |- | ||
| 31 | |||
| 1005.41 | |||
| | | [[25/14]] | ||
| | |||
| | |||
| | | [[16/9]], [[9/5]] | ||
|- | |- | ||
| 32 | |||
| 1037.84 | |||
| | 11/6 | | [[20/11]] | ||
| | | [[9/5]], [[11/6]] | ||
| | |||
| | | | ||
|- | |- | ||
| 33 | |||
| 1070.27 | |||
| | | [[13/7]] | ||
| | | [[24/13]], [[28/15]] | ||
| | | [[11/6]] | ||
| | |||
|- | |- | ||
| 34 | |||
| 1102.70 | |||
| | | [[121/64]], [[104/55]] | ||
| | | [[15/8]] | ||
| | |||
| | |||
|- | |- | ||
| 35 | |||
| 1135.14 | |||
| | | [[27/14]], [[52/27]] | ||
| | |||
| | |||
| | |||
|- | |- | ||
| 36 | |||
| 1167.57 | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | 37 | ||
|1200 | | 1200.00 | ||
|2/ | | [[2/1]] | ||
| | | | ||
| | | | ||
Line 381: | Line 342: | ||
|} | |} | ||
= | == Notation == | ||
=== Ups and downs notation === | |||
37edo can be notated using [[ups and downs notation]]: | |||
{| class="wikitable center-all right-2 left-3" | |||
|- | |||
! Degrees | |||
! Cents | |||
! colspan="3" | [[Ups and downs notation]] | |||
|- | |||
| 0 | |||
| 0.00 | |||
| Perfect 1sn | |||
| P1 | |||
| D | |||
|- | |||
| 1 | |||
| 32.43 | |||
| Minor 2nd | |||
| m2 | |||
| Eb | |||
|- | |||
| 2 | |||
| 64.86 | |||
| Upminor 2nd | |||
| ^m2 | |||
| ^Eb | |||
|- | |||
| 3 | |||
| 97.30 | |||
| Downmid 2nd | |||
| v~2 | |||
| ^^Eb | |||
|- | |||
| 4 | |||
| 129.73 | |||
| Mid 2nd | |||
| ~2 | |||
| Ed | |||
|- | |||
| 5 | |||
| 162.16 | |||
| Upmid 2nd | |||
| ^~2 | |||
| vvE | |||
|- | |||
| 6 | |||
| 194.59 | |||
| Downmajor 2nd | |||
| vM2 | |||
| vE | |||
|- | |||
| 7 | |||
| 227.03 | |||
| Major 2nd | |||
| M2 | |||
| E | |||
|- | |||
| 8 | |||
| 259.46 | |||
| Minor 3rd | |||
| m3 | |||
| F | |||
|- | |||
| 9 | |||
| 291.89 | |||
| Upminor 3rd | |||
| ^m3 | |||
| ^F | |||
|- | |||
| 10 | |||
| 324.32 | |||
| Downmid 3rd | |||
| v~3 | |||
| ^^F | |||
|- | |||
| 11 | |||
| 356.76 | |||
| Mid 3rd | |||
| ~3 | |||
| Ft | |||
|- | |||
| 12 | |||
| 389.19 | |||
| Upmid 3rd | |||
| ^~3 | |||
| vvF# | |||
|- | |||
| 13 | |||
| 421.62 | |||
| Downmajor 3rd | |||
| vM3 | |||
| vF# | |||
|- | |||
| 14 | |||
| 454.05 | |||
| Major 3rd | |||
| M3 | |||
| F# | |||
|- | |||
| 15 | |||
| 486.49 | |||
| Perfect 4th | |||
| P4 | |||
| G | |||
|- | |||
| 16 | |||
| 518.92 | |||
| Up 4th, Dim 5th | |||
| ^4, d5 | |||
| ^G, Ab | |||
|- | |||
| 17 | |||
| 551.35 | |||
| Downmid 4th, Updim 5th | |||
| v~4, ^d5 | |||
| ^^G, ^Ab | |||
|- | |||
| 18 | |||
| 583.78 | |||
| Mid 4th, Downmid 5th | |||
| ~4, v~5 | |||
| Gt, ^^Ab | |||
|- | |||
| 19 | |||
| 616.22 | |||
| Mid 5th, Upmid 4th | |||
| ~5, ^~4 | |||
| Ad, vvG# | |||
|- | |||
| 20 | |||
| 648.65 | |||
| Upmid 5th, Downaug 5th | |||
| ^~5, vA4 | |||
| vvA, vG# | |||
|- | |||
| 21 | |||
| 681.08 | |||
| Down 5th, Aug 4th | |||
| v5, A4 | |||
| vA, G# | |||
|- | |||
| 22 | |||
| 713.51 | |||
| Perfect 5th | |||
| P5 | |||
| A | |||
|- | |||
| 23 | |||
| 745.95 | |||
| Minor 6th | |||
| m6 | |||
| Bb | |||
|- | |||
| 24 | |||
| 778.38 | |||
| Upminor 6th | |||
| ^m6 | |||
| ^Bb | |||
|- | |||
| 25 | |||
| 810.81 | |||
| Downmid 6th | |||
| v~6 | |||
| ^^Bb | |||
|- | |||
| 26 | |||
| 843.24 | |||
| Mid 6th | |||
| ~6 | |||
| Bd | |||
|- | |||
| 27 | |||
| 875.68 | |||
| Upmid 6th | |||
| ^~6 | |||
| vvB | |||
|- | |||
| 28 | |||
| 908.11 | |||
| Downmajor 6th | |||
| vM6 | |||
| vB | |||
|- | |||
| 29 | |||
| 940.54 | |||
| Major 6th | |||
| M6 | |||
| B | |||
|- | |||
| 30 | |||
| 972.97 | |||
| Minor 7th | |||
| m7 | |||
| C | |||
|- | |||
| 31 | |||
| 1005.41 | |||
| Upminor 7th | |||
| ^m7 | |||
| ^C | |||
|- | |||
| 32 | |||
| 1037.84 | |||
| Downmid 7th | |||
| v~7 | |||
| ^^C | |||
|- | |||
| 33 | |||
| 1070.27 | |||
| Mid 7th | |||
| ~7 | |||
| Ct | |||
|- | |||
| 34 | |||
| 1102.70 | |||
| Upmid 7th | |||
| ^~7 | |||
| vvC# | |||
|- | |||
| 35 | |||
| 1135.14 | |||
| Downmajor 7th | |||
| vM7 | |||
| vC# | |||
|- | |||
| 36 | |||
| 1167.57 | |||
| Major 7th | |||
| M7 | |||
| C# | |||
|- | |||
| 37 | |||
| 1200.00 | |||
| Perfect 8ve | |||
| P8 | |||
| D | |||
|} | |||
37edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
[[ | [[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]: | ||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
[[ | === Ivan Wyschnegradsky's notation === | ||
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used: | |||
{{Sharpness-sharp6-iw}} | |||
[[ | === Sagittal notation === | ||
This notation uses the same sagittal sequence as EDOs [[23edo#Second-best fifth notation|23b]], [[30edo#Sagittal notation|30]], and [[44edo#Sagittal notation|44]]. | |||
[[ | ==== Evo and Revo flavors ==== | ||
<imagemap> | |||
File:37-EDO_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 599 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] | |||
default [[File:37-EDO_Sagittal.svg]] | |||
</imagemap> | |||
[[ | ==== Alternative Evo flavor ==== | ||
<imagemap> | |||
File:37-EDO_Alternative_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 639 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] | |||
default [[File:37-EDO_Alternative_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:37-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 623 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 300 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] | |||
default [[File:37-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.5 | |||
| {{monzo| 86 -37 }} | |||
| {{mapping| 37 86 }} | |||
| −0.619 | |||
| 0.619 | |||
| 1.91 | |||
|- | |||
| 2.5.7 | |||
| 3136/3125, 4194304/4117715 | |||
| {{mapping| 37 86 104 }} | |||
| −0.905 | |||
| 0.647 | |||
| 2.00 | |||
|- | |||
| 2.5.7.11 | |||
| 176/175, 1375/1372, 65536/65219 | |||
| {{mapping| 37 86 104 128 }} | |||
| −0.681 | |||
| 0.681 | |||
| 2.10 | |||
|- | |||
| 2.5.7.11.13 | |||
| 176/175, 640/637, 847/845, 1375/1372 | |||
| {{mapping| 37 86 104 128 137 }} | |||
| −0.692 | |||
| 0.610 | |||
| 1.88 | |||
|} | |||
* 37et is most prominent in the no-3 11-, 13-, 17-, 19- and 23-limit subgroups. The next equal temperaments doing better in these subgroups are 109, 581, 103, 124 and 93, respectively. | |||
=== Rank-2 temperaments === | |||
* [[List of 37et rank two temperaments by badness]] | |||
{| class="wikitable center-1" | |||
|- | |||
! Generator | |||
! In patent val | |||
! In 37b val | |||
|- | |||
| 1\37 | |||
| | |||
| | |||
|- | |||
| 2\37 | |||
| [[Sycamore]] | |||
| | |||
|- | |||
| 3\37 | |||
| [[Passion]] | |||
| | |||
|- | |||
| 4\37 | |||
| [[Twothirdtonic]] | |||
| [[Negri]] | |||
|- | |||
| 5\37 | |||
| [[Porcupine]] / [[porcupinefish]] | |||
| | |||
|- | |||
| 6\37 | |||
| colspan="2" | [[Didacus]] / [[roulette]] | |||
|- | |||
| 7\37 | |||
| [[Shoe]] / [[semaja]] | |||
| [[Shoe]] / [[laconic]] / [[gorgo]] | |||
|- | |||
| 8\37 | |||
| | |||
| [[Semaphore]] (37bd) | |||
|- | |||
| 9\37 | |||
| | |||
| [[Gariberttet]] | |||
|- | |||
| 10\37 | |||
| | |||
| [[Orgone]] | |||
|- | |||
| 11\37 | |||
| [[Beatles]] | |||
| | |||
|- | |||
| 12\37 | |||
| [[Würschmidt]] (out-of-tune) | |||
| | |||
|- | |||
| 13\37 | |||
| [[Skwares]] (37dd) | |||
| | |||
|- | |||
| 14\37 | |||
| [[Ammonite]] | |||
| | |||
|- | |||
| 15\37 | |||
| [[Ultrapyth]], [[oceanfront]] | |||
| | |||
|- | |||
| 16\37 | |||
| [[Undecimation]] | |||
| | |||
|- | |||
| 17\37 | |||
| [[Freivald]], [[emka]], [[onzonic]] | |||
| | |||
|- | |||
| 18\37 | |||
| | |||
| | |||
|} | |||
= | == Scales == | ||
[[ | * [[MOS Scales of 37edo]] | ||
* [[Chromatic pairs#Roulette|Roulette scales]] | |||
* [[37ED4]] | |||
* [[Square root of 13 over 10]] | |||
{| class="wikitable" | === Every 8 steps of 37edo === | ||
{| class="wikitable center-1 right-2" | |||
|+ | |||
!Degrees | |||
!Cents | |||
!Approximate Ratios<br>of 6.7.11.20.27 subgroup | |||
!Additional Ratios | |||
|- | |- | ||
|0 | |||
|0.000 | |||
|[[1/1]] | |||
| | |||
|- | |- | ||
| | | |1 | ||
| | | |259.46 | ||
| | | |[[7/6]] | ||
| | |||
|- | |||
|2 | |||
|518.92 | |||
|[[27/20]] | |||
| | |||
|- | |- | ||
| | | |3 | ||
|778.38 | |||
|[[11/7]] | |||
| | |||
|- | |- | ||
| | | |4 | ||
| | |1037.84 | ||
|[[20/11]], [[11/6]] | |||
| | |||
|- | |- | ||
| | | |5 | ||
| | |1297.30 | ||
| | |||
|[[19/9]] | |||
|- | |- | ||
| | | |6 | ||
|1556.76 | |||
|[[27/11]] | |||
| | |||
|- | |- | ||
| | | |7 | ||
|1816.22 | |||
|[[20/7]] | |||
| | |||
|- | |- | ||
| | | |8 | ||
|2075.68 | |||
| | |[[10/3]] | ||
| | |||
|- | |- | ||
| | |9 | ||
| | |2335.14 | ||
|[[27/7]] | |||
| | |||
|- | |- | ||
| | | |10 | ||
| | |2594.59 | ||
|[[9/2]] | |||
| | |||
|- | |- | ||
| | | |11 | ||
|2854.05 | |||
| | | | ||
|[[26/5]] | |||
|- | |- | ||
| | | |12 | ||
|3113.51 | |||
|[[6/1]] | |||
| | |||
|- | |- | ||
| | | |13 | ||
|3372.97 | |||
|[[7/1]] | |||
| | |||
|- | |- | ||
| | | |14 | ||
|3632.43 | |||
| | |||
| | |||
|- | |- | ||
| | | |15 | ||
| | [[ | |3891.89 | ||
| | |||
|[[19/2]] | |||
|- | |- | ||
| | | |16 | ||
|4151.35 | |||
|[[11/1]] | |||
| | |||
|- | |- | ||
| | | |17 | ||
|4410.81 | |||
| | | | ||
| | |||
|- | |- | ||
| | | |18 | ||
| | |4670.27 | ||
| | |||
| | |||
|- | |- | ||
| | | |19 | ||
| | | |4929.73 | ||
| | | | | ||
| | |||
|- | |||
|20 | |||
|5189.19 | |||
|[[20/1]] | |||
| | |||
|- | |||
|21 | |||
|5448.65 | |||
| | |||
| | |||
|- | |||
|22 | |||
|5708.11 | |||
|[[27/1]] | |||
| | |||
|} | |} | ||
=Music in 37edo= | == Instruments == | ||
[http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3 Toccata Bianca 37edo] | |||
; Lumatone | |||
* [[Lumatone mapping for 37edo]] | |||
; Fretted instruments | |||
* [[Skip fretting system 37 2 7]] | |||
== Music == | |||
; [[Beheld]] | |||
* [https://www.youtube.com/watch?v=IULi2zSdatA ''Mindless vibe''] (2023) | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/e7dLJTsS3PQ ''37edo''] (2025) | |||
* [https://www.youtube.com/shorts/m9hmiH8zong ''37edo jam''] (2025) | |||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=jpPjVouoq3E ''5 days in''] (2023) | |||
* [https://www.youtube.com/watch?v=ngxSiuVadls ''A Dark Era Arises''] (2023) – in Porcupine[15], 37edo tuning | |||
* [https://www.youtube.com/watch?v=U93XFJJ1aXw ''Two Faced People''] (2025) – in Twothirdtonic[10], 37edo tuning | |||
; [[Andrew Heathwaite]] | |||
* [https://andrewheathwaite.bandcamp.com/track/shorn-brown "Shorn Brown"] from ''Newbeams'' (2012) | |||
* [https://andrewheathwaite.bandcamp.com/track/jellybear "Jellybear"] from ''Newbeams'' (2012) | |||
; [[Aaron Krister Johnson]] | |||
* [http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3 ''Toccata Bianca 37EDO'']{{dead link}} | |||
; [[JUMBLE]] | |||
* [https://www.youtube.com/watch?v=taT1DClJ2KM ''Tyrian and Gold''] (2024) | |||
; [[User:Fitzgerald Lee|Fitzgerald Lee]] | |||
* [https://www.youtube.com/watch?v=Nr0cUJcL4SU ''Bittersweet End''] (2025) | |||
; [[Mandrake]] | |||
* [https://www.youtube.com/watch?v=iL_4nRZBJDc ''What if?''] (2023) | |||
; [[Claudi Meneghin]] | |||
* [https://www.youtube.com/watch?v=7dU8eyGbt9I ''Deck The Halls''] (2022) | |||
* [https://www.youtube.com/watch?v=HTAobydvC20 Marcello - Bach: Adagio from BWV 974, arranged for Oboe & Organ, tuned into 37edo] (2022) | |||
* [https://www.youtube.com/watch?v=hpjZZXFM_Fk ''Little Fugue on Happy Birthday''] (2022) – in Passion, 37edo tuning | |||
* [https://www.youtube.com/watch?v=SgHY3snZ5bs ''Fugue on an Original Theme''] (2022) | |||
* [https://www.youtube.com/watch?v=AJ2sa-fRqbE Paradies, Toccata, Arranged for Organ and Tuned into 37edo] (2023) | |||
; [[Micronaive]] | |||
* [https://youtu.be/TMVRYLvg_cA No.27.50] (2022) | |||
; [[Herman Miller]] | |||
* ''[https://soundcloud.com/morphosyntax-1/luck-of-the-draw Luck of the Draw]'' (2023) | |||
; [[Joseph Monzo]] | |||
* [https://youtube.com/watch?v=QERRKsbbWUQ ''The Kog Sisters''] (2014) | |||
* [https://www.youtube.com/watch?v=BfP8Ig94kE0 ''Afrikan Song''] (2016) | |||
; [[Mundoworld]] | |||
* ''Reckless Discredit'' (2021) [https://www.youtube.com/watch?v=ovgsjSoHOkg YouTube] · [https://mundoworld.bandcamp.com/track/reckless-discredit Bandcamp] | |||
; [[Ray Perlner]] | |||
* [https://www.youtube.com/watch?v=8reCr2nDGbw ''Porcupine Lullaby''] (2020) – in Porcupine, 37edo tuning | |||
* [https://www.youtube.com/watch?v=j8C9ECvfyQM ''Fugue for Brass in 37EDO sssLsss "Dingoian"''] (2022) – in Porcupine[7], 37edo tuning | |||
* [https://www.youtube.com/watch?v=_xfvNKUu8gY ''Fugue for Klezmer Band in 37EDO Porcupine<nowiki>[</nowiki>7<nowiki>]</nowiki> sssssLs "Lemurian"''] (2023) – in Porcupine[7], 37edo tuning | |||
; [[Phanomium]] | |||
* [https://www.youtube.com/watch?v=2otxZqUrvHc ''Elevated Floors''] (2025) | |||
* [https://www.youtube.com/watch?v=BbexOU-9700 ''cat jam 37''] (2025) | |||
; [[Togenom]] | |||
* "Canals of Mars" from ''Xenharmonics, Vol. 5'' (2024) – [https://open.spotify.com/track/7v2dpCjiRKUfVVBZw8aWSf Spotify] |[https://togenom.bandcamp.com/track/canals-of-mars Bandcamp] | [https://www.youtube.com/watch?v=qPcEl_bifC0 YouTube] | |||
; [[Uncreative Name]] | |||
* [https://www.youtube.com/watch?v=rE9L56yZ1Kw ''Winter''] (2025) | |||
; <nowiki>XENO*n*</nowiki> | |||
* ''[https://www.youtube.com/watch?v=_m5u4VviMXw Galantean Drift]'' (2025) | |||
[ | == See also == | ||
* [[User:Unque/37edo Composition Theory|Unque's approach]] | |||
= | == External links == | ||
[http://tonalsoft.com/enc/number/37-edo/37edo.aspx | * [http://tonalsoft.com/enc/number/37-edo/37edo.aspx 37-edo / 37-et / 37-tone equal-temperament] on [[Tonalsoft Encyclopedia]] | ||
[[Category: | [[Category:Listen]] | ||