Breedsmic temperaments: Difference between revisions

Xenllium (talk | contribs)
 
(67 intermediate revisions by 9 users not shown)
Line 1: Line 1:
'''Breedsmic temperaments''' are rank two temperaments tempering out the [[breedsma]], |-5 -1 -2 4> = [[2401/2400]]. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.
{{Technical data page}}
This page discusses miscellaneous [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[breedsma]], {{monzo| -5 -1 -2 4 }} = 2401/2400. This is the amount by which two [[49/40]] intervals exceed [[3/2]], and by which two [[60/49]] intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system ([[12edo]], for example) which does not possess a neutral third cannot be tempering out the breedsma.


It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.
The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that (49/40)(10/7) = 7/4 and (49/40)(10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.


Temperaments not discussed here include [[Dicot family #Decimal|decimal]], [[Archytas clan #Beatles|beatles]], [[Meantone family #Squares|squares]], [[Starling temperaments #Myna|myna]], [[Keemic temperaments #Quasitemp|quasitemp]], [[Gamelismic clan #Miracle|miracle]], [[Magic family #Quadrimage|quadrimage]], [[Ragismic microtemperaments #Ennealimmal|ennealimmal]], [[Tetracot family #Octacot|octacot]], [[Kleismic family #Quadritikleismic|quadritikleismic]], [[Schismatic family #Sesquiquartififths|sesquiquartififths]], [[Würschmidt family #Hemiwürschmidt|hemiwürschmidt]], and [[Gammic family #Neptune|neptune]].
Temperaments discussed elsewhere include:
* ''[[Decimal]]'' (+25/24, 49/48 or 50/49) → [[Dicot family #Decimal|Dicot family]]
* ''[[Beatles]]'' (+64/63 or 686/675) → [[Archytas clan #Beatles|Archytas clan]]
* [[Squares]] (+81/80) → [[Meantone family #Squares|Meantone family]]
* [[Myna]] (+126/125) → [[Starling temperaments #Myna|Starling temperaments]]
* [[Miracle]] (+225/224) → [[Gamelismic clan #Miracle|Gamelismic clan]]
* ''[[Octacot]]'' (+245/243) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Greenwood]]'' (+405/392 or 1323/1280) → [[Greenwoodmic temperaments #Greenwood|Greenwoodmic temperaments]]
* ''[[Quasitemp]]'' (+875/864) → [[Keemic temperaments #Quasitemp|Keemic temperaments]]
* ''[[Quadrasruta]]'' (+2048/2025) → [[Diaschismic family #Quadrasruta|Diaschismic family]]
* ''[[Quadrimage]]'' (+3125/3072) → [[Magic family #Quadrimage|Magic family]]
* ''[[Hemiwürschmidt]]'' (+3136/3125 or 6144/6125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]
* [[Ennealimmal]] (+4375/4374) → [[Ragismic microtemperaments #Ennealimmal|Ragismic microtemperaments]]
* ''[[Quadritikleismic]]'' (+15625/15552) → [[Kleismic family #Quadritikleismic|Kleismic family]]
* [[Harry]] (+19683/19600) → [[Gravity family #Harry|Gravity family]]
* ''[[Sesquiquartififths]]'' (+32805/32768) → [[Schismatic family #Sesquiquartififths|Schismatic family]]
* ''[[Amicable]]'' (+1600000/1594323) → [[Amity family #Amicable|Amity family]]
* ''[[Neptune]]'' (+48828125/48771072) → [[Gammic family #Neptune|Gammic family]]
* ''[[Decoid]]'' (+67108864/66976875) → [[Quintosec family #Decoid|Quintosec family]]
* ''[[Tertiseptisix]]'' (+390625000/387420489) → [[Quartonic family #Tertiseptisix|Quartonic family]]
* ''[[Eagle]]'' (+10485760000/10460353203) → [[Vulture family #Eagle|Vulture family]]


= Hemififths =
== Hemififths ==
{{main|Hemififths}}
{{Main| Hemififths }}


Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with [[99edo|99EDO]] and [[140edo|140EDO]] providing good tunings, and [[239edo|239EDO]] an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;58 temperament and has wedgie &lt;&lt;2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.
Hemififths may be described as the {{nowrap| 41 & 58 }} temperament, tempering out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator; its [[ploidacot]] is dicot. [[99edo]] and [[140edo]] provides good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}.


By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99EDO is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.
By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.


Subgroup: 2.3.5
[[Subgroup]]: 2.3.5.7


[[Comma]]: 858993459200/847288609443
[[Comma list]]: 2401/2400, 5120/5103


[[Mapping]]: [{{val| 1 1 -5 }}, {{val| 0 2 25 }}]
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }}


[[POTE generator]]: ~655360/531441 = 351.476
: mapping generators: ~2, ~49/40


{{Val list|legend=1| 41, 58, 99, 239, 338, 915b, 1253bc }}
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.0000, ~49/40 = 351.4464
: [[error map]]: {{val| 0.0000 +0.9379 -0.1531 -0.0224 }}
* [[POTE]]: ~2 = 1200.0000, ~49/40 = 351.4774
: error map: {{val| 0.0000 +0.9999 +0.6221 +0.0307 }}


[[Badness]]: 0.372848
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }}
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


== 7-limit ==
[[Algebraic generator]]: (2 + sqrt(2))/2
Subgroup: 2.3.5.7


[[Comma list]]: 2401/2400, 5120/5103
{{Optimal ET sequence|legend=1| 41, 58, 99, 239, 338 }}
 
[[Badness]] (Smith): 0.022243
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 896/891
 
Mapping: {{mapping| 1 1 -5 -1 2 | 0 2 25 13 5 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~11/9 = 351.4289
* POTE: ~2 = 1200.0000, ~11/9 = 351.5206
 
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99e }}


[[Mapping]]: [{{val| 1 1 -5 -1 }}, {{val| 0 2 25 13 }}]
Badness (Smith): 0.023498


{{Multival|legend=1| 2 25 13 35 15 -40 }}
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[POTE generator]]: ~49/40 = 351.477
Comma list: 144/143, 196/195, 243/242, 364/363


[[Minimax tuning]]:
Mapping: {{mapping| 1 1 -5 -1 2 4 | 0 2 25 13 5 -1 }}
* 7 and 9-limit minimax
: [{{monzo|1 0 0 0}}, {{monzo|7/5, 0, 2/25, 0}}, {{monzo|0 0 1 0}}, {{monzo|8/5 0 13/25 0}}]
: Eigenvalues: 2, 5


[[Algebraic generator]]: (2 + sqrt(2))/2
Optimal tunings:  
* CTE: ~2 = 1200.0000, ~11/9 = 351.4331
* POTE: ~2 = 1200.0000, ~11/9 = 351.5734


{{Val list|legend=1| 41, 58, 99, 239, 338, 1253bbc, 1591bbc }}
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99ef, 157eff }}


[[Badness]]: 0.022243
Badness (Smith): 0.019090


== 11-limit ==
=== Semihemi ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 896/891
Comma list: 2401/2400, 3388/3375, 5120/5103
 
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }}


Mapping: [{{val| 1 1 -5 -1 2 }}, {{val| 0 2 25 13 5 }}]
: mapping generators: ~99/70, ~400/231


POTE generator: ~11/9 = 351.521
Optimal tunings:
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4722
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5047


Vals: {{Val list| 17c, 41, 58, 99e }}
{{Optimal ET sequence|legend=0| 58, 140, 198 }}


Badness: 0.023498
Badness (Smith): 0.042487


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 144/143, 196/195, 243/242, 364/363
Comma list: 352/351, 676/675, 847/845, 1716/1715
 
Mapping: {{mapping| 2 0 -35 -15 -47 -37 | 0 2 25 13 34 28 }}


Mapping: [{{val| 1 1 -5 -1 2 4 }}, {{val| 0 2 25 13 5 -1 }}]
Optimal tunings:  
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4674
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5019


POTE generator: ~11/9 = 351.573
{{Optimal ET sequence|legend=0| 58, 140, 198, 536f }}


Vals: {{Val list| 17c, 41, 58, 99ef }}
Badness (Smith): 0.021188


Badness: 0.019090
=== Quadrafifths ===
This has been logged as ''semihemififths'' in Graham Breed's temperament finder, but ''quadrafifths'' arguably makes more sense because it straight-up splits the fifth in four.  


== Semihemi ==
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3388/3375, 9801/9800
Comma list: 2401/2400, 3025/3024, 5120/5103


Mapping: [{{val| 2 0 -35 -15 -47 }}, {{val| 0 2 25 13 34 }}]
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }}


POTE generator: ~49/40 = 351.505
: Mapping generators: ~2, ~243/220


Vals: {{Val list| 58, 140, 198, 734bc, 932bcd, 1130bcd }}
Optimal tunings:  
* CTE: ~2 = 1200.0000, ~243/220 = 175.7284
* POTE: ~2 = 1200.0000, ~243/220 = 175.7378


Badness: 0.042487
{{Optimal ET sequence|legend=0| 41, 157, 198, 239, 676b, 915be }}


=== 13-limit ===
Badness (Smith): 0.040170
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 352/351, 676/675, 847/845, 1716/1715
Comma list: 352/351, 847/845, 2401/2400, 3025/3024


Mapping: [{{val| 2 0 -35 -15 -47 -37 }}, {{val| 0 2 25 13 34 28 }}]
Mapping: {{mapping| 1 1 -5 -1 8 10 | 0 4 50 26 -31 -43 }}


POTE generator: ~49/40 = 351.502
Optimal tunings:
* CTE: ~2 = 1200.0000, ~72/65 = 175.7412
* POTE: ~2 = 1200.0000, ~72/65 = 175.7470


Vals: {{Val list| 58, 140, 198, 536f, 734bcf, 932bcdf }}
{{Optimal ET sequence|legend=0| 41, 157, 198, 437f, 635bcff }}


Badness: 0.021188
Badness (Smith): 0.031144


= Tertiaseptal =
== Tertiaseptal ==
{{main|Tertiaseptal}}
{{Main| Tertiaseptal }}


Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152, the rainy comma. It can be described as the 31&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 &amp; 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning, although 171edo - [[31edo]] = [[140edo]] also makes sense, and in very high limits 140edo + 171edo = [[311edo]] is especially notable. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2401/2400, 65625/65536
[[Comma list]]: 2401/2400, 65625/65536


[[Mapping]]: [{{val| 1 3 2 3 }}, {{val| 0 -22 5 -3 }}]
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }}


{{Multival|legend=1| 22 -5 3 -59 -57 21 }}
: Mapping generators: ~2, ~256/245


[[POTE generator]]: ~256/245 = 77.191
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~256/245 = 77.191


{{Val list|legend=1| 31, 109, 140, 171 }}
{{Optimal ET sequence|legend=1| 31, 109, 140, 171 }}


[[Badness]]: 0.012995
[[Badness]]: 0.012995


== 11-limit ==
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 65625/65536
Comma list: 243/242, 441/440, 65625/65536


Mapping: [{{val| 1 3 2 3 7 }}, {{val| 0 -22 5 -3 -55 }}]
Mapping: {{mapping| 1 3 2 3 7 | 0 -22 5 -3 -55 }}


POTE generator: ~256/245 = 77.227
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.227


Vals: {{Val list| 31, 109e, 140e, 171, 202 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171, 202 }}


Badness: 0.035576
Badness: 0.035576


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 441/440, 625/624, 3584/3575
Comma list: 243/242, 441/440, 625/624, 3584/3575


Mapping: [{{val| 1 3 2 3 7 1 }}, {{val| 0 -22 5 -3 -55 42 }}]
Mapping: {{mapping| 1 3 2 3 7 1 | 0 -22 5 -3 -55 42 }}


POTE generator: ~117/112 = 77.203
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.203


Vals: {{Val list| 31, 109e, 140e, 171 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171 }}


Badness: 0.036876
Badness: 0.036876


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575


Mapping: [{{val| 1 3 2 3 7 1 1 }}, {{val| 0 -22 5 -3 -55 42 48 }}]
Mapping: {{mapping| 1 3 2 3 7 1 1 | 0 -22 5 -3 -55 42 48 }}


POTE generator: ~68/65 = 77.201
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.201


Vals: {{Val list| 31, 109eg, 140e, 171 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109eg, 140e, 171 }}


Badness: 0.027398
Badness: 0.027398


== Tertia ==
=== Tertia ===
Subgroup:2.3.5.7.11
Subgroup:2.3.5.7.11


Comma list: 385/384, 1331/1323, 1375/1372
Comma list: 385/384, 1331/1323, 1375/1372


Mapping: [{{val| 1 3 2 3 5 }}, {{val| 0 -22 5 -3 -24 }}]
Mapping: {{mapping| 1 3 2 3 5 | 0 -22 5 -3 -24 }}


POTE generator: ~22/21 = 77.173
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.173


Vals: {{Val list| 31, 109, 140, 171e, 311e }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 171e, 311e }}


Badness: 0.030171
Badness: 0.030171


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 352/351, 385/384, 625/624, 1331/1323
Comma list: 352/351, 385/384, 625/624, 1331/1323


Mapping: [{{val| 1 3 2 3 5 1 }}, {{val| 0 -22 5 -3 -24 42 }}]
Mapping: {{mapping| 1 3 2 3 5 1 | 0 -22 5 -3 -24 42 }}


POTE generator: ~22/21 = 77.158
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.158


Vals: {{Val list| 31, 109, 140, 311e, 451ee }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 311e, 451ee }}


Badness: 0.028384
Badness: 0.028384


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 352/351, 385/384, 561/560, 625/624, 715/714
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714


Mapping: [{{val| 1 3 2 3 5 1 1 }}, {{val| 0 -22 5 -3 -24 42 48 }}]
Mapping: {{mapping| 1 3 2 3 5 1 1 | 0 -22 5 -3 -24 42 48 }}


POTE generator: ~22/21 = 77.162
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.162


Vals: {{Val list| 31, 109g, 140, 311e, 451ee }}
Optimal ET sequence: {{Optimal ET sequence| 31, 109g, 140, 311e, 451ee }}


Badness: 0.022416
Badness: 0.022416


== Hemitert ==
=== Tertiaseptia ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 6250/6237, 65625/65536
 
Mapping: {{mapping| 1 3 2 3 -4 | 0 -22 5 -3 116 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }}
 
Badness: 0.056926
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400
 
Mapping: {{mapping| 1 3 2 3 -4 1 | 0 -22 5 -3 116 42 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.168
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }}
 
Badness: 0.027474
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 | 0 -22 5 -3 116 42 48 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}
 
Badness: 0.018773
 
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 | 0 -22 5 -3 116 42 48 -105 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }}
 
Badness: 0.017653
 
==== 23-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 | 0 -22 5 -3 116 42 48 -105 117 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.168
 
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfgg }}
 
Badness: 0.015123
 
==== 29-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29
 
Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 | 0 -22 5 -3 116 42 48 -105 117 60 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.167
 
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfggj }}
 
Badness: 0.012181
 
==== 31-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
 
Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 | 0 -22 5 -3 116 42 48 -105 117 60 -94 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}
 
Badness: 0.012311
 
==== 37-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37
 
Comma list: 595/594, 625/624, 703/702, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.170
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}
 
Badness: 0.010949
 
==== 41-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41
 
Comma list: 595/594, 625/624, 697/696, 703/702, 714/713, 784/783, 820/819, 833/832, 875/874, 900/899, 931/930
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 0 6 | 0 -22 5 -3 116 42 48 -105 117 60 -94 81 -10 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}
 
Badness: 0.009825
 
=== Hemitert ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 65625/65536
Comma list: 2401/2400, 3025/3024, 65625/65536


Mapping: [{{val| 1 3 2 3 6 }}, {{val| 0 -44 10 -6 -79 }}]
Mapping: {{mapping| 1 3 2 3 6 | 0 -44 10 -6 -79 }}


POTE generator: ~45/44 = 38.596
: Mapping generators: ~2, ~45/44


Vals: {{Val list| 31, 280, 311, 342 }}
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.596
 
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 342 }}


Badness: 0.015633
Badness: 0.015633


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095
Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095


Mapping: [{{val| 1 3 2 3 6 1 }}, {{val| 0 -44 10 -6 -79 84 }}]
Mapping: {{mapping| 1 3 2 3 6 1 | 0 -44 10 -6 -79 84 }}


POTE generator: ~45/44 = 38.588
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.588


Vals: {{Val list| 31, 280, 311, 964f, 1275f, 1586cff }}
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 964f, 1275f, 1586cff }}


Badness: 0.033573
Badness: 0.033573


=== 17-limit ===
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095
Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095


Mapping: [{{val| 1 3 2 3 6 1 1 }}, {{val| 0 -44 10 -6 -79 84 96 }}]
Mapping: {{mapping| 1 3 2 3 6 1 1 | 0 -44 10 -6 -79 84 96 }}


POTE generator: ~45/44 = 38.589
Optimal tuning (POTE): ~2 = 1\1, ~45/44 = 38.589


Vals: {{Val list| 31, 280, 311, 653f, 964f }}
Optimal ET sequence: {{Optimal ET sequence| 31, 280, 311, 653f, 964f }}


Badness: 0.025298
Badness: 0.025298


= Harry =
=== Semitert ===
{{main|Harry}}
Subgroup: 2.3.5.7.11
{{see also|Gravity family #Harry}}


Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&amp;72 temperament, with wedgie {{multival|12 34 20 26 -2 -49}}. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.
Comma list: 2401/2400, 9801/9800, 65625/65536


Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is {{multival|12 34 20 30 ...}}.
Mapping: {{mapping| 2 6 4 6 1 | 0 -22 5 -3 46 }}


Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with {{multival|12 34 20 30 52 ...}} as the octave wedgie. [[130edo|130EDO]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
: Mapping generators: ~99/70, ~256/245


Subgroup: 2.3.5.7
Optimal tuning (POTE): ~99/70 = 1\2, ~256/245 = 77.193


[[Comma list]]: 2401/2400, 19683/19600
Optimal ET sequence: {{Optimal ET sequence| 62e, 140, 202, 342 }}


[[Mapping]]: [{{val| 2 4 7 7 }}, {{val| 0 -6 -17 -10 }}]
Badness: 0.025790


{{Multival|legend=1| 12 34 20 26 -2 -49 }}
== Quasiorwell ==
In addition to 2401/2400, quasiorwell tempers out the quasiorwellisma, 29360128/29296875 = {{monzo| 22 -1 -10 1 }}. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31 &amp; 270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)<sup>1/8</sup>, giving just 7's, or 384<sup>1/38</sup>, giving pure fifths.


[[POTE generator]]: ~21/20 = 83.156
Adding 3025/3024 extends to the 11-limit and as expected, 270 remains an excellent tuning.


{{Val list|legend=1| 14c, 58, 72, 130, 202, 534, 736b, 938b }}
[[Subgroup]]: 2.3.5.7


[[Badness]]: 0.034077
[[Comma list]]: 2401/2400, 29360128/29296875


== 11-limit ==
{{Mapping|legend=1| 1 31 0 9 | 0 -38 3 -8 }}
 
: Mapping generators: ~2, ~875/512
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1024/875 = 271.107
 
{{Optimal ET sequence|legend=1| 31, 177, 208, 239, 270, 571, 841, 1111 }}
 
[[Badness]]: 0.035832
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 243/242, 441/440, 4000/3993
Comma list: 2401/2400, 3025/3024, 5632/5625


Mapping: [{{val| 2 4 7 7 9 }}, {{val| 0 -6 -17 -10 -15 }}]
Mapping: {{mapping| 1 31 0 9 53 | 0 -38 3 -8 -64 }}


POTE generator: ~21/20 = 83.167
Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.111


Vals: {{Val list| 14c, 58, 72, 130, 202 }}
Optimal ET sequence: {{Optimal ET sequence| 31, 208, 239, 270 }}


Badness: 0.015867
Badness: 0.017540


== 13-limit ==
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 351/350, 441/440, 676/675
Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095
 
Mapping: {{mapping| 1 31 0 9 53 -59 | 0 -38 3 -8 -64 81 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~90/77 = 271.107
 
Optimal ET sequence: {{Optimal ET sequence| 31, 239, 270, 571, 841, 1111 }}
 
Badness: 0.017921
 
== Neominor ==
The generator for neominor temperament is tridecimal minor third [[13/11]], also known as ''Neo-gothic minor third''.


Mapping: [{{val| 2 4 7 7 9 11 }}, {{val| 0 -6 -17 -10 -15 -26 }}]
[[Subgroup]]: 2.3.5.7


POTE generator: ~21/20 = 83.116
[[Comma list]]: 2401/2400, 177147/175616


Vals: {{Val list| 58, 72, 130, 332f, 462ef }}
{{Mapping|legend=1| 1 3 12 8 | 0 -6 -41 -22 }}


Badness: 0.013046
: Mapping generators: ~2, ~189/160


== 17-limit ==
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~189/160 = 283.280
 
{{Optimal ET sequence|legend=1| 72, 161, 233, 305 }}
 
[[Badness]]: 0.088221
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 35937/35840
 
Mapping: {{mapping| 1 3 12 8 7 | 0 -6 -41 -22 -15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~33/28 = 283.276
 
Optimal ET sequence: {{Optimal ET sequence| 72, 161, 233, 305 }}
 
Badness: 0.027959
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 243/242, 364/363, 441/440
 
Mapping: {{mapping| 1 3 12 8 7 7 | 0 -6 -41 -22 -15 -14 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 283.294
 
Optimal ET sequence: {{Optimal ET sequence| 72, 161f, 233f }}
 
Badness: 0.026942
 
== Emmthird ==
The generator for emmthird is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 14348907/14336000
 
{{Mapping|legend=1| 1 11 42 25 | 0 -14 -59 -33 }}
 
: Mapping generators: ~2, ~2187/1372
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2744/2187 = 392.988
 
{{Optimal ET sequence|legend=1| 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d }}
 
[[Badness]]: 0.016736
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 1792000/1771561
 
Mapping: {{mapping| 1 11 42 25 27 | 0 -14 -59 -33 -35 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~1372/1089 = 392.991
 
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}
 
Badness: 0.052358
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 243/242, 364/363, 441/440, 2200/2197
 
Mapping: {{mapping| 1 11 42 25 27 38 | 0 -14 -59 -33 -35 -51 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~180/143 = 392.989
 
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}
 
Badness: 0.026974
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 243/242, 364/363, 441/440, 595/594, 2200/2197
 
Mapping: {{mapping| 1 -3 -17 -8 -8 -13 9 | 0 14 59 33 35 51 -15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~64/51 = 392.985
 
Optimal ET sequence: {{Optimal ET sequence| 58, 113, 171 }}
 
Badness: 0.023205
 
== Quinmite ==
The generator for quinmite is quasi-tempered minor third [[25/21]], flatter than 6/5 by the starling comma, [[126/125]]. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth", given by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_104268.html Yahoo! Tuning Group | ''2D temperament names, part I -- reclassified temperaments from message #101780'']</ref>.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 1959552/1953125
 
{{Mapping|legend=1| 1 27 24 20 | 0 -34 -29 -23 }}
 
: Mapping generators: ~2, ~42/25
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 302.997
 
{{Optimal ET sequence|legend=1| 99, 202, 301, 400, 701, 1101c, 1802c, 2903cc }}
 
[[Badness]]: 0.037322
 
== Unthirds ==
Despite the complexity of its mapping, unthirds is an important temperament to the structure of the [[11-limit]]; this is hinted at by unthirds' representation as the [[72edo|72]] & [[311edo|311]] temperament, the [[Temperament merging|join]] of two tuning systems well-known for their high accuracy in the 11-limit and [[41-limit]] respectively. It is generated by the interval of [[14/11]] ('''un'''decimal major '''third''', hence the name) tuned less than a cent flat, and the 23-note [[MOS]] this interval generates serves as a well temperament of, of all things, [[23edo]]. The 49-note MOS is needed to access the 3rd, 5th, 7th, and 11th harmonics, however.
 
The commas it tempers out include the [[breedsma]] (2401/2400), the [[lehmerisma]] (3025/3024), the [[pine comma]] (4000/3993), the [[unisquary comma]] (12005/11979), the [[argyria]] (41503/41472), and 42875/42768, all of which appear individually in various 11-limit systems. It is also notable that there is a [[restriction]] of the temperament to the 2.5/3.7/3.11/3 [[fractional subgroup]] that tempers out 3025/3024 and 12005/11979, which is of considerably less complexity, and which is shared with [[sqrtphi]] (whose generator is tuned flat of 72edo's).
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 68359375/68024448
 
{{Mapping|legend=1| 1 29 33 25 | 0 -42 -47 -34 }}
 
: Mapping generators: ~2, ~6125/3888
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3969/3125 = 416.717
 
{{Optimal ET sequence|legend=1| 72, 167, 239, 311, 694, 1005c }}
 
[[Badness]]: 0.075253
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 3025/3024, 4000/3993
 
Mapping: {{mapping| 1 29 33 25 25 | 0 -42 -47 -34 -33 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.718
 
Optimal ET sequence: {{Optimal ET sequence| 72, 167, 239, 311 }}
 
Badness: 0.022926
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400
 
Mapping: {{mapping| 1 29 33 25 25 99 | 0 -42 -47 -34 -33 -146 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 416.716
 
Optimal ET sequence: {{Optimal ET sequence| 72, 239f, 311, 694, 1005c }}
 
Badness: 0.020888
 
== Newt ==
Newt has a generator of a neutral third (0.2 cents flat of [[49/40]]) and tempers out the [[garischisma]]. It can be described as the 41 & 270 temperament, and extends naturally to the no-17 19-limit, a.k.a. '''neonewt'''. [[270edo]] and [[311edo]] are obvious tuning choices, but [[581edo]] and especially [[851edo]] work much better.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 33554432/33480783
 
{{Mapping|legend=1| 1 1 19 11 | 0 2 -57 -28 }}
 
: mapping generators: ~2, ~49/40
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 351.113
 
{{Optimal ET sequence|legend=1| 41, 147c, 188, 229, 270, 1121, 1391, 1661, 1931, 2201 }}
 
[[Badness]]: 0.041878
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 2401/2400, 3025/3024, 19712/19683
 
Mapping: {{mapping| 1 1 19 11 -10 | 0 2 -57 -28 46 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.115
 
Optimal ET sequence: {{Optimal ET sequence| 41, 147ce, 188, 229, 270, 581, 851, 1121, 1972 }}
 
Badness: 0.019461
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095
 
Mapping: {{mapping| 1 1 19 11 -10 -20 | 0 2 -57 -28 46 81 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117
 
Optimal ET sequence: {{Optimal ET sequence| 41, 147cef, 188f, 229, 270, 581, 851, 2283b, 3134b }}
 
Badness: 0.013830
 
=== 2.3.5.7.11.13.19 subgroup (neonewt) ===
Subgroup: 2.3.5.7.11.13.19
 
Comma list: 1216/1215, 1540/1539, 1729/1728, 2080/2079, 2401/2400
 
Mapping: {{mapping| 1 1 19 11 -10 -20 18 | 0 2 -57 -28 46 81 -47 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~49/40 = 351.117
 
Optimal ET sequence: {{Optimal ET sequence| 41, 147cefh, 188f, 229, 270, 581, 851, 3134b, 3985b, 4836bb }}
 
== Septidiasemi ==
{{Main| Septidiasemi }}
 
Aside from 2401/2400, [[septidiasemi]] tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of [[15/14]]). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 2152828125/2147483648
 
{{Mapping|legend=1| 1 25 -31 -8 | 0 -26 37 12 }}
 
: Mapping generators: ~2, ~28/15
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~15/14 = 119.297
 
{{Optimal ET sequence|legend=1| 10, 151, 161, 171, 3581bcdd, 3752bcdd, 3923bcdd, 4094bcdd, 4265bccdd, 4436bccdd, 4607bccdd }}
 
[[Badness]]: 0.044115
 
=== Sedia ===
The ''sedia'' temperament (10&amp;161) is an 11-limit extension of the septidiasemi, which tempers out 243/242 and 441/440.
 
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 939524096/935859375
 
Mapping: {{mapping| 1 25 -31 -8 62 | 0 -26 37 12 -65 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.279
 
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332 }}
 
Badness: 0.090687
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 243/242, 441/440, 2200/2197, 3584/3575
 
Mapping: {{mapping| 1 25 -31 -8 62 1 | 0 -26 37 12 -65 3 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281
 
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332, 835eeff }}
 
Badness: 0.045773
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 221/220, 243/242, 289/288, 351/350, 441/440
Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575


Mapping: [{{val| 2 4 7 7 9 11 9 }}, {{val| 0 -6 -17 -10 -15 -26 -6 }}]
Mapping: {{mapping| 1 25 -31 -8 62 1 23 | 0 -26 37 12 -65 3 -21 }}


POTE generator: ~21/20 = 83.168
Optimal tuning (POTE): ~2 = 1\1, ~15/14 = 119.281


Vals: {{Val list| 58, 72, 130, 202g }}
Optimal ET sequence: {{Optimal ET sequence| 10, 151, 161, 171, 332, 503ef, 835eeff }}


Badness: 0.012657
Badness: 0.027322


= Quasiorwell =
== Maviloid ==
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1&gt;. It has a wedgie &lt;&lt;38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.
{{See also| Ragismic microtemperaments #Parakleismic }}


Adding 3025/3024 extends to the 11-limit and gives &lt;&lt;38 -3 8 64 ...|| for the initial wedgie, and as expected, 270 remains an excellent tuning.
[[Subgroup]]: 2.3.5.7


Commas: 2401/2400, 29360128/29296875
[[Comma list]]: 2401/2400, 1224440064/1220703125


POTE generator: ~1024/875 = 271.107
{{Mapping|legend=1| 1 31 34 26 | 0 -52 -56 -41 }}


Map: [&lt;1 31 0 9|, &lt;0 -38 3 -8|]
: Mapping generators: ~2, ~1296/875


EDOs: [[31edo|31]], [[177edo|177]], [[208edo|208]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1296/875 = 678.810


Badness: 0.0358
{{Optimal ET sequence|legend=1| 76, 99, 274, 373, 472, 571, 1043, 1614 }}


==11-limit==
[[Badness]]: 0.057632
Commas: 2401/2400, 3025/3024, 5632/5625


POTE generator: ~90/77 = 271.111
== Subneutral ==
{{See also| Luna family }}


Map: [&lt;1 31 0 9 53|, &lt;0 -38 3 -8 -64|]
[[Subgroup]]: 2.3.5.7


EDOs: [[31edo|31]], [[208edo|208]], [[239edo|239]], [[270edo|270]]
[[Comma list]]: 2401/2400, 274877906944/274658203125


Badness: 0.0175
{{Mapping|legend=1| 1 19 0 6 | 0 -60 8 -11 }}


==13-limit==
: Mapping generators: ~2, ~57344/46875
Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095


POTE generator: ~90/77 = 271.107
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~57344/46875 = 348.301


Map: [&lt;1 31 0 9 53 -59|, &lt;0 -38 3 -8 -64 81|]
{{Optimal ET sequence|legend=1| 31, …, 348, 379, 410, 441, 1354, 1795, 2236 }}


EDOs: [[31edo|31]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
[[Badness]]: 0.045792


Badness: 0.0179
== Osiris ==
{{See also| Metric microtemperaments #Geb }}


=Decoid=
[[Subgroup]]: 2.3.5.7
{{see also|Qintosec family #Decoid}}


In addition to 2401/2400, decoid tempers out 67108864/66976875 to temper 15/14 into one degree of [[10edo]]. Either 8/7 or 16/15 can be used its generator. It may be described as the 130&amp;270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the [[Qintosec family|qintosec temperament]].
[[Comma list]]: 2401/2400, 31381059609/31360000000


[[Comma list]]: 2401/2400, 67108864/66976875
{{Mapping|legend=1| 1 13 33 21 | 0 -32 -86 -51 }}


[[POTE tuning|POTE generator]]: ~8/7 = 231.099
: Mapping generators: ~2, ~2800/2187


[[Map]]: [&lt;10 0 47 36|, &lt;0 2 -3 -1|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~2800/2187 = 428.066


Wedgie: &lt;&lt;20 -30 -10 -94 -72 61||
{{Optimal ET sequence|legend=1| 157, 171, 1012, 1183, 1354, 1525, 1696 }}


{{Vals|legend=1| 10, 130, 270, 2020c, 2290c, 2560c, 2830bc, 3100bcc, 3370bcc, 3640bcc }}
[[Badness]]: 0.028307


[[Badness]]: 0.033902
== Gorgik ==
[[Subgroup]]: 2.3.5.7


==11-limit==
[[Comma list]]: 2401/2400, 28672/28125
Comma list: 2401/2400, 5832/5825, 9801/9800


POTE generator: ~8/7 = 231.070
{{Mapping|legend=1| 1 5 1 3 | 0 -18 7 -1 }}


Map: [&lt;10 0 47 36 98|, &lt;0 2 -3 -1 -8|]
: Mapping generators: ~2, ~8/7


Vals: {{Vals| 10e, 130, 270, 670, 940, 1210, 2150c }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 227.512


Badness: 0.018735
{{Optimal ET sequence|legend=1| 21, 37, 58, 153bc, 211bccd, 269bccd }}


==13-limit==
[[Badness]]: 0.158384
Comma list: 676/675, 1001/1000, 1716/1715, 4225/4224


POTE generator: ~8/7 = 231.083
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]
Comma list: 176/175, 2401/2400, 2560/2541


Vals: {{Vals| 10e, 130, 270, 940, 1210f, 1480cf }}
Mapping: {{mapping| 1 5 1 3 1 | 0 -18 7 -1 13 }}


Badness: 0.013475
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.500


=Neominor=
Optimal ET sequence: {{Optimal ET sequence| 21, 37, 58, 153bce, 211bccdee, 269bccdee }}
Commas: 2401/2400, 177147/175616


POTE generator: ~189/160 = 283.280
Badness: 0.059260


Map: [&lt;1 3 12 8|, &lt;0 -6 -41 -22|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Weggie: &lt;&lt;6 41 22 51 18 -64||
Comma list: 176/175, 196/195, 364/363, 512/507


EDOs: 72, 161, 233, 305
Mapping: {{mapping| 1 5 1 3 1 2 | 0 -18 7 -1 13 9 }}


Badness: 0.0882
Optimal tuning (POTE): ~2 = 1\1, ~8/7 = 227.493


==11-limit==
Optimal ET sequence: {{Optimal ET sequence| 21, 37, 58, 153bcef, 211bccdeeff }}
Commas: 243/242, 441/440, 35937/35840


POTE: ~33/28 = 283.276
Badness: 0.032205


Map: [&lt;1 3 12 8 7|, &lt;0 -6 -41 -22 -15|]
== Fibo ==
[[Subgroup]]: 2.3.5.7


EDOs: 72, 161, 233, 305
[[Comma list]]: 2401/2400, 341796875/339738624


Badness: 0.0280
{{Mapping|legend=1| 1 19 8 10 | 0 -46 -15 -19 }}


==13-limit==
: Mapping generators: ~2, ~125/96
Commas: 169/168, 243/242, 364/363, 441/440


POTE generator: ~13/11 = 283.294
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 454.310


Map: [&lt;1 3 12 8 7 7|, &lt;0 -6 -41 -22 -15 -14|]
{{Optimal ET sequence|legend=1| 37, 66b, 103, 140, 243, 383, 1009cd, 1392ccd }}


EDOs: 72, 161f, 233f
Badness: 0.100511


Badness: 0.0269
=== 11-limit ===
Subgroup: 2.3.5.7.11


=Emmthird=
Comma list: 385/384, 1375/1372, 43923/43750
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.


Commas: 2401/2400, 14348907/14336000
Mapping: {{mapping| 1 19 8 10 8 | 0 -46 -15 -19 -12 }}


POTE generator: ~2744/2187 = 392.988
Optimal tuning (POTE): ~2 = 1\1, ~100/77 = 454.318


Map: [&lt;1 11 42 25|, &lt;0 -14 -59 -33|]
Optimal ET sequence: {{Optimal ET sequence| 37, 66b, 103, 140, 243e }}


Wedgie: &lt;&lt;14 59 33 61 13 -89||
Badness: 0.056514


EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.0167
Comma list: 385/384, 625/624, 847/845, 1375/1372


=Quinmite=
Mapping: {{mapping| 1 19 8 10 8 9 | 0 -46 -15 -19 -12 -14 }}
Commas: 2401/2400, 1959552/1953125


POTE generator: ~25/21 = 302.997
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 454.316


Map: [&lt;1 27 24 20|, &lt;0 -34 -29 -23|]
Optimal ET sequence: {{Optimal ET sequence| 37, 66b, 103, 140, 243e }}


Wedgie: &lt;&lt;34 29 23 -33 -59 -28||
Badness: 0.027429


EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c
== Mintone ==
In addition to 2401/2400, mintone tempers out 177147/175000 = {{monzo| -3 11 -5 -1 }} in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58 &amp; 103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.


Badness: 0.0373
[[Subgroup]]: 2.3.5.7


=Unthirds=
[[Comma list]]: 2401/2400, 177147/175000
Commas: 2401/2400, 68359375/68024448


POTE generator: ~3969/3125 = 416.717
{{Mapping|legend=1| 1 5 9 7 | 0 -22 -43 -27 }}


Map: [&lt;1 29 33 25|, &lt;0 -42 -47 -34|]
: Mapping generators: ~2, ~10/9


Wedgie: &lt;&lt;42 47 34 -23 -64 -53||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/9 = 186.343


EDOs: 72, 167, 239, 311, 694, 1005c
{{Optimal ET sequence|legend=1| 45, 58, 103, 161, 586b, 747bc, 908bbc }}


Badness: 0.0753
[[Badness]]: 0.125672


==11-limit==
=== 11-limit ===
Commas: 2401/2400, 3025/3024, 4000/3993
Subgroup: 2.3.5.7.11


POTE generator: ~14/11 = 416.718
Comma list: 243/242, 441/440, 43923/43750


Map: [&lt;1 29 33 25 25|, &lt;0 -42 -47 -34 -33|]
Mapping: {{mapping| 1 5 9 7 12 | 0 -22 -43 -27 -55 }}


EDOs: 72, 167, 239, 311, 1316c
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.345


Badness: 0.0229
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586b, 747bc }}


==13-limit==
Badness: 0.039962
Commas: 625/624, 1575/1573, 2080/2079, 2401/2400


POTE generator: ~14/11 = 416.716
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 29 33 25 25 99|, &lt;0 -42 -47 -34 -33 -146|]
Comma list: 243/242, 351/350, 441/440, 847/845


EDOs: 72, 311, 694, 1005c, 1699cd
Mapping: {{mapping| 1 5 9 7 12 11 | 0 -22 -43 -27 -55 -47 }}


Badness: 0.0209
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.347


=Newt=
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586bf }}
Commas: 2401/2400, 33554432/33480783


POTE generator: ~49/40 = 351.113
Badness: 0.021849


Map: [&lt;1 1 19 11|, &lt;0 2 -57 -28|]
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Wedgie: &lt;&lt;2 -57 -28 -95 -50 95||
Comma list: 243/242, 351/350, 441/440, 561/560, 847/845


EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc
Mapping: {{mapping| 1 5 9 7 12 11 3 | 0 -22 -43 -27 -55 -47 7 }}


Badness: 0.0419
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 186.348


==11-limit==
Optimal ET sequence: {{Optimal ET sequence| 58, 103, 161, 425b, 586bf }}
Commas: 2401/2400, 3025/3024, 19712/19683


POTE generator: ~49/40 = 351.115
Badness: 0.020295


Map: [&lt;1 1 19 11 -10|, &lt;0 2 -57 -28 46|]
== Catafourth ==
{{See also| Sensipent family }}


EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b
[[Subgroup]]: 2.3.5.7


Badness: 0.0195
[[Comma list]]: 2401/2400, 78732/78125


==13-limit==
{{Mapping|legend=1| 1 13 17 13 | 0 -28 -36 -25 }}
Commas: 2080/2079, 2401/2400, 3025/3024, 4096/4095


POTE genertaor: ~49/40 = 351.117
: Mapping generators: ~2, ~250/189


Map: [&lt;1 1 19 11 -10 -20|, &lt;0 2 -57 -28 46 81|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~250/189 = 489.235


EDOs: 41, 229, 270, 581, 851, 2283b, 3134b
{{Optimal ET sequence|legend=1| 27, 76, 103, 130 }}


Badness: 0.0138
Badness: 0.079579


=Amicable=
=== 11-limit ===
{{see also| Amity family }}
Subgroup: 2.3.5.7.11


Commas: 2401/2400, 1600000/1594323
Comma list: 243/242, 441/440, 78408/78125


POTE generator: ~21/20 = 84.880
Mapping: {{mapping| 1 13 17 13 32 | 0 -28 -36 -25 -70 }}


Map: [&lt;1 3 6 5|, &lt;0 -20 -52 -31|]
Optimal tuning (POTE): ~2 = 1\1, ~250/189 = 489.252


Wedgie: &lt;&lt;20 52 31 36 -7 -74||
Optimal ET sequence: {{Optimal ET sequence| 103, 130, 233, 363, 493e, 856be }}


EDOs: 99, 212, 311, 410, 1131, 1541b
Badness: 0.036785


Badness: 0.0455
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


=Septidiasemi=
Comma list: 243/242, 351/350, 441/440, 10985/10976
Commas: 2401/2400, 2152828125/2147483648


POTE generator: ~15/14 = 119.297
Mapping: {{mapping| 1 13 17 13 32 9 | 0 -28 -36 -25 -70 -13 }}


Map: [&lt;1 25 -31 -8|, &lt;0 -26 37 12|]
Optimal tuning (POTE): ~2 = 1\1, ~65/49 = 489.256


Wedgie: &lt;&lt;26 -37 -12 -119 -92 76||
Optimal ET sequence: {{Optimal ET sequence| 103, 130, 233, 363 }}


EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd
Badness: 0.021694


Badness: 0.0441
== Cotritone ==
[[Subgroup]]: 2.3.5.7


=Maviloid=
[[Comma list]]: 2401/2400, 390625/387072
{{see also| Ragismic microtemperaments #Parakleismic }}


Commas: 2401/2400, 1224440064/1220703125
{{Mapping|legend=1| 1 17 9 10 | 0 -30 -13 -14 }}


POTE generator: ~1296/875 = 678.810
: Mappping generators: ~2, ~10/7


Map: [&lt;1 31 34 26|, &lt;0 -52 -56 -41|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 583.385


Wedgie: &lt;&lt;52 56 41 -32 -81 -62||
{{Optimal ET sequence|legend=1| 35, 37, 72, 109, 181, 253 }}


EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614
[[Badness]]: 0.098322


Badness: 0.0576
=== 11-limit ===
Subgroup: 2.3.5.7.11


=Subneutral=
Comma list: 385/384, 1375/1372, 4000/3993
Commas: 2401/2400, 274877906944/274658203125


POTE generator: ~57344/46875 = 348.301
Mapping: {{mapping| 1 17 9 10 5 | 0 -30 -13 -14 -3 }}


Map: [&lt;1 19 0 6}, &lt;0 -60 8 -11|]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387


Wedgie: &lt;&lt;60 -8 11 -152 -151 48||
Optimal ET sequence: {{Optimal ET sequence| 35, 37, 72, 109, 181, 253 }}


EDOs: 31, 348, 379, 410, 441, 1354, 1795, 2236
Badness: 0.032225


Badness: 0.0458
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


=Osiris=
Comma list: 169/168, 364/363, 385/384, 625/624
Commas: 2401/2400, 31381059609/31360000000


POTE generator: ~2800/2187 = 428.066
Mapping: {{mapping| 1 17 9 10 5 15 | 0 -30 -13 -14 -3 -22 }}


Map: [&lt;1 13 33 21|, &lt;0 -32 -86 -51|]
Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 583.387


Wedgie: &lt;&lt;32 86 51 62 -9 -123||
Optimal ET sequence: {{Optimal ET sequence| 37, 72, 109, 181f }}


EDOs: 157, 171, 1012, 1183, 1354, 1525, 1696, 6955d
Badness: 0.028683


Badness: 0.0283
== Quasimoha ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Quasimoha]].''


=Gorgik=
[[Subgroup]]: 2.3.5.7
Commas: 2401/2400, 28672/28125


POTE generator: ~8/7 = 227.512
[[Comma list]]: 2401/2400, 3645/3584


Map: [&lt;1 5 1 3|, &lt;0 -18 7 -1|]
{{Mapping|legend=1| 1 1 9 6 | 0 2 -23 -11 }}


Wedgie: &lt;&lt;18 -7 1 -53 -49 22||
: Mapping generators: ~2, ~49/40


EDOs: 21, 37, 58, 153bc, 211bcd, 269bcd
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/40 = 348.603


Badness: 0.1584
{{Optimal ET sequence|legend=1| 31, 117c, 148bc, 179bc }}


==11-limit==
[[Badness]]: 0.110820
Commas: 176/175, 2401/2400, 2560/2541


POTE generator: ~8/7 = 227.500
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;1 5 1 3 1|, &lt;0 -18 7 -1 13|]
Comma list: 243/242, 441/440, 1815/1792


EDOs: 21, 37, 58, 153bce, 211bcde, 269bcde
Mapping: {{mapping| 1 1 9 6 2 | 0 2 -23 -11 5 }}


Badness: 0.059
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.639


==13-limit==
Optimal ET sequence: {{Optimal ET sequence| 31, 86ce, 117ce, 148bce }}
Commas: 176/175, 196/195, 364/363, 512/507


POTE generator: ~8/7 = 227.493
Badness: 0.046181


Map: [&lt;1 5 1 3 1 2|, &lt;0 -18 7 -1 13 9|]
== Lockerbie ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lockerbie]].''
Lockerbie can be described as the {{nowrap| 103 & 270 }} temperament. Its generator is [[120/77]] or [[77/60]]. An obvious tuning is given by 270edo, but [[373edo]] and especially [[643edo]] work as well.


EDOs: 21, 37, 58, 153bcef, 211bcdef
The temperament derives its name from the {{w|Lockerbie|Scottish town}}, where a {{w|Pan Am Flight 103|flight numbered 103}} crashed with 270 casualties, and the temperament is defined as 103 & 270, hence the name. The name is proposed by Eliora, who favours it due to simplicity, ease of pronunciation and relation to numbers 103 and 270.


Badness: 0.0322
Lockerbie also has a unique extension that adds the 41st harmonic such that the generator below 600 cents is also on the same step in 103 or 270 as [[41/32]], which means that [[616/615]] is tempered out.


=Fibo=
[[Subgroup]]: 2.3.5.7
Commas: 2401/2400, 341796875/339738624


POTE generator: ~125/96 = 454.310
[[Comma list]]: 2401/2400, {{monzo| 24 13 -18 -1 }}


Map: [&lt;1 19 8 10|, &lt;0 -46 -15 -19|]
{{Mapping|legend=1| 1 -25 -16 -13 | 0 74 51 44 }}


Wedgie: &lt;&lt;46 15 19 -83 -99 2||
: Mapping generators: ~2, ~3828125/2985984


EDOs: 37, 103, 140, 243, 383, 1009cd, 1392cd
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.0000, ~3828125/2985984 = 431.1071
: [[error map]]: {{val| 0.0000 -0.0270 +0.1502 -0.1120 }}
* [[CWE]]: ~2 = 1200.0000, ~3828125/2985984 = 431.1072
: error map: {{val| 0.0000 -0.0205 +0.1547 -0.1081 }}


Badness: 0.1005
{{Optimal ET sequence|legend=1| 103, 167, 270, 643, 913 }}


==11-limit==
[[Badness]] (Smith): 0.0597
Commas: 385/384, 1375/1372, 43923/43750


POTE generator: ~100/77 = 454.318
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;1 19 8 10 8|, &lt;0 -46 -15 -19 -12|]
Comma list: 2401/2400, 3025/3024, 766656/765625


EDOs: 37, 103, 140, 243e
Mapping: {{mapping| 1 -25 -16 -13 -26 | 0 74 51 44 82 }}


Badness: 0.0565
Optimal tunings:  
* CTE: ~2 = 1200.0000, ~77/60 = 431.1082
* CWE: ~2 = 1200.0000, ~77/60 = 431.1078


==13-limit==
{{Optimal ET sequence|legend=0| 103, 167, 270, 643, 913, 1183e }}
Commas: 385/384, 625/624, 847/845, 1375/1372


POTE generator: ~13/10 = 454.316
Badness (Smith): 0.0262


Map: [&lt;1 19 8 10 8 9|, &lt;0 -46 -15 -19 -12 -14|]
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 1001/1000, 1716/1715, 3025/3024, 4225/4224
 
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 | 0 74 51 44 82 27 }}
 
Optimal tunings:
* CTE: ~2 = 1200.0000, ~77/60 = 431.1085
* CWE: ~2 = 1200.0000, ~77/60 = 431.1069
 
{{Optimal ET sequence|legend=0| 103, 167, 270, 643, 913f }}
 
Badness (Smith): 0.0160
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 715/714, 936/935, 1001/1000, 1225/1224, 4225/4224


EDOs: 37, 103, 140, 243e
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 -11 | 0 74 51 44 82 27 42 }}


Badness: 0.0274
Optimal tunings:  
* CTE: ~2 = 1200.000, ~77/60 = 431.107
* CWE: ~2 = 1200.000, ~77/60 = 431.108


=Mintone=
{{Optimal ET sequence|legend=0| 103, 167, 270 }}
In addition to 2401/2400, mintone tempers out 177147/175000 = |-3 11 -5 -1&gt; in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58&amp;103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.


Commas: 2401/2400, 177147/175000
Badness (Smith): 0.0210


POTE generator: ~10/9 = 186.343
=== 2.3.5.7.11.13.17.41 subgroup ===
Subgroup: 2.3.5.7.11.13.17.41


Map: [&lt;1 5 9 7|, &lt;0 -22 -43 -27|]
Comma list: 616/615, 715/714, 936/935, 1001/1000, 1225/1224, 4225/4224


EDOs: 45, 58, 103, 161, 586b, 747bc, 908bc
Mapping: {{mapping| 1 -25 -16 -13 -26 -6 -11 5 | 0 74 51 44 82 27 42 1 }}


Badness: 0.12567
Optimal tunings:  
* CTE: ~2 = 1200.000, ~41/32 = 431.107
* CWE: ~2 = 1200.000, ~41/32 = 431.111


==11-limit==
{{Optimal ET sequence|legend=0| 103, 167, 270 }}
Commas: 243/242, 441/440, 43923/43750


POTE generator: ~10/9 = 186.345
== Hemigoldis ==
: ''For the 5-limit version, see [[Diaschismic–gothmic equivalence continuum #Goldis]].''


Map: [&lt;1 5 9 7 12|, &lt;0 -22 -43 -27 -55|]
Though fairly complex in the [[7-limit]], hemigoldis does a lot better in badness metrics than pure 5-limit goldis, and yet again has many possible extensions to other primes. For example, two periods minus six generators yields a "tetracot second" which can be interpreted as ~[[21/19]] to add prime 19 or perhaps more accurately ~[[31/28]] to add prime 7, or even simply as ~[[32/29]] to add prime 29, though the other two have the benefit of clearly connecting to the 7-limit representation. Note that again [[89edo]] is a possible tuning for combining it with flat nestoria and not appearing in the optimal ET sequence.


EDOs: 58, 103, 161, 425b, 586b, 747bc
[[Subgroup]]: 2.3.5.7


Badness: 0.0400
[[Comma list]]: 2401/2400, 549755813888/533935546875


==13-limit==
{{Mapping|legend=1| 1 21 -9 2 | 0 -24 14 1 }}
Commas: 243/242, 351/350, 441/440, 847/845


POTE generator: ~10/9 = 186.347
: mapping generators: ~2, ~7/4


Map: [&lt;1 5 9 7 12 11|, &lt;0 -22 -43 -27 -55 -47|]
[[Optimal tuning]] ([[CWE]]): ~2 = 1200.000, ~7/4 = 970.690


EDOs: 58, 103, 161
{{Optimal ET sequence|legend=1| 21, 47b, 68, 157, 382bccd, 529bccd }}


Badness: 0.0218
[[Badness]] (Sintel): 4.40


==17-limit==
== Surmarvelpyth ==
Commas: 243/242, 351/350, 441/440, 561/560, 847/845
''Surmarvelpyth'' is named for the generator fifth, 675/448 being 225/224 (marvel comma) sharp of 3/2. It can be described as the 311 & 431 temperament, starting with the 7-limit to the 19-limit.


POTE generator: ~10/9 = 186.348
[[Subgroup]]: 2.3.5.7


Map: [&lt;1 5 9 7 12 11 3|, &lt;0 -22 -43 -27 -55 -47 7|]
[[Comma list]]: 2401/2400, {{monzo| 93 -32 -17 -1 }}


EDOs: 58, 103, 161, 264
{{Mapping|legend=1| 1 43 -74 -25 | 0 -70 129 47 }}


=Catafourth=
: Mapping generators: ~2, ~675/448
{{see also| Sensipent family }}


Commas: 2401/2400, 78732/78125
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~675/448 = 709.9719


POTE generator: ~250/189 = 489.235
{{Optimal ET sequence|legend=1| 120, 191, 311, 742, 1053, 2848, 3901 }}


Map: [&lt;1 13 17 13|, &lt;0 -28 -36 -25|]
[[Badness]]: 0.202249


Wedgie: &lt;&lt;28 36 25 -8 -39 -43||
=== 11-limit ===
Subgroup: 2.3.5.7.11


EDOs: 27, 76, 103, 130
Comma list: 2401/2400, 820125/819896, 2097152/2096325


Badness: 0.0796
Mapping: {{mapping| 1 43 -74 -25 36 | 0 -70 129 47 -55 }}


==11-limit==
Optimal tuning (CTE): ~2 = 1\1, ~675/448 = 709.9720
Commas: 243/242, 441/440, 78408/78125


POTE generator: ~250/189 = 489.252
Optimal ET sequence: {{Optimal ET sequence| 120, 191, 311, 742, 1053, 1795 }}


Map: [&lt;1 13 17 13 32|, &lt;0 -28 -36 -25 -70|]
Badness: 0.052308


EDOs: 103, 130, 233, 363, 493e, 856be
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Badness: 0.0368
Comma list: 2401/2400, 4096/4095, 6656/6655, 24192/24167


==13-limit==
Mapping: {{mapping| 1 43 -74 -25 36 25 | 0 -70 129 47 -55 -36 }}
Commas: 243/242, 351/350, 441/440, 10985/10976


POTE generator: ~65/49 = 489.256
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9723


Map: [&lt;1 13 17 13 32 9|, &lt;0 -28 -36 -25 -70 -13|]
Optimal ET sequence: {{Optimal ET sequence| 120, 191, 311, 742, 1053, 1795f }}


EDOs: 103, 130, 233, 363
Badness: 0.032503


Badness: 0.0217
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


=Cotritone=
Comma list: 2401/2400, 2601/2600, 4096/4095, 6656/6655, 8624/8619
Commas: 2401/2400, 390625/387072


POTE generator: ~7/5 = 583.3848
Mapping: {{mapping| 1 43 -74 -25 36 25 -103 | 0 -70 129 47 -55 -36 181 }}


Map: [&lt;1 -13 -4 -4|, &lt;0 30 13 14|]
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722


EDOs: 35, 37, 72, 109, 181, 253
Optimal ET sequence: {{Optimal ET sequence| 120g, 191g, 311, 431, 742, 1795f }}


==11-limit==
Badness: 0.020995
Commas: 385/384, 1375/1372, 4000/3993


POTE generator: ~7/5 = 583.3872
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


Map: [&lt;1 -13 -4 -4 2|, &lt;0 30 13 14 3|]
Comma list: 2401/2400, 2601/2600, 2926/2925, 3136/3135, 3213/3211, 5985/5984


EDOs: 35, 37, 72, 109, 181, 253
Mapping: {{mapping| 1 43 -74 -25 36 25 -103 -49 | 0 -70 129 47 -55 -36 181 90 }}


==13-limit==
Optimal tuning (CTE): ~2 = 1\1, ~98/65 = 709.9722
Commas: 169/168, 364/363, 385/384, 625/624


POTE generator: ~7/5 = 583.3866
Optimal ET sequence: {{Optimal ET sequence| 120g, 191g, 311, 431, 742, 1795f }}


Map: [&lt;1 -13 -4 -4 2 -7|, &lt;0 30 13 14 3 22|]
Badness: 0.013771


EDOs: 37, 72, 109, 181f
== Notes ==


[[Category:Theory]]
[[Category:Temperament collections]]
[[Category:Temperament]]
[[Category:Pages with mostly numerical content]]
[[Category:Breed]]
[[Category:Breedsmic temperaments| ]] <!-- main article -->
[[Category:Breed| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]