|
|
(66 intermediate revisions by 15 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Technical data page}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | The '''dicot family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] [[25/24]], the classical chromatic semitone. |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-21 17:25:50 UTC</tt>.<br>
| |
| : The original revision id was <tt>323717220</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
| |
|
| |
|
| The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val <24 38 55| and [[31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. | | == Dicot == |
| | The head of this family, dicot, is [[generator|generated]] by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, {{nowrap|(5/4)<sup>2</sup> {{=}} (3/2)(25/24)}}. Its [[ploidacot]] is the same as its name, dicot. |
|
| |
|
| | Possible tunings for dicot are [[7edo]], [[10edo]], [[17edo]], [[24edo]] using the val {{val| 24 38 55 }} (24c), and [[31edo]] using the val {{val| 31 49 71 }} (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an [[exotemperament]]. |
|
| |
|
| ==Seven limit children==
| | [[Subgroup]]: 2.3.5 |
| The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
| |
|
| |
|
| =Dicot=
| | [[Comma list]]: 25/24 |
| Comma: 25/24 | |
|
| |
|
| POTE generator: ~5/4 = 348.594
| | {{Mapping|legend=1| 1 1 2 | 0 2 1 }} |
|
| |
|
| Map: [<1 1 2|, <0 2 1|]
| | : mapping generators: ~2, ~5/4 |
| EDOs: [[7edo|7]], [[10edo|10]], [[14edo|14c]], [[17edo|17]], [[24edo|24c]], [[31edo|31c]]
| |
| Badness: 0.0130
| |
|
| |
|
| ==7-limit== | | [[Optimal tuning]]s: |
| [[Comma]]s: 15/14, 25/24 | | * [[WE]]: ~2 = 1206.283{{c}}, ~6/5 = 350.420{{c}} |
| | : [[error map]]: {{val| +6.283 +5.167 -23.328 }} |
| | * [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 351.086{{c}} |
| | : error map: {{val| 0.000 +0.216 -35.228 }} |
|
| |
|
| [[POTE tuning|POTE generator]]: ~5/4 = 336.381 | | [[Tuning ranges]]: |
| | * [[5-odd-limit]] [[diamond monotone]]: ~5/4 = [300.000, 400.000] (1\4 to 1\3) |
| | * 5-odd-limit [[diamond tradeoff]]: ~5/4 = [315.641, 386.314] (full comma to untempered) |
|
| |
|
| Map: [<1 1 2 3|, <0 2 1 3|]
| | {{Optimal ET sequence|legend=1| 3, 4, 7, 17, 24c, 31c }} |
| Wedgie: <<2 1 3 -3 -1 4||
| |
| EDOs: 4, 7, [[11edo|11c]], [[14edo|14cd]], [[18edo|18bc]], [[25edo|25bcd]]
| |
| Badness: 0.0199
| |
|
| |
|
| ==11-limit==
| | [[Badness]] (Sintel): 0.306 |
| Commas: 15/14, 22/21, 25/24
| |
|
| |
|
| POTE generator: ~5/4 = 342.125
| | === Overview to extensions === |
| | The second comma of the [[normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot adds [[36/35]], flattie adds [[21/20]], sharpie adds [[28/27]], and dichotic adds [[64/63]], all retaining the same period and generator. |
|
| |
|
| Map: [<1 1 2 2 2|, <0 2 1 3 5|]
| | Decimal adds [[49/48]], sidi adds [[245/243]], and jamesbond adds [[16/15]]. Here decimal divides the [[period]] to a [[sqrt(2)|semi-octave]], and sidi uses 14/9 as a generator, with two of them making up the combined 5/2~12/5 neutral tenth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. |
| EDOs: 4e, 7
| |
| Badness: 0.0199
| |
|
| |
|
| ==Eudicot==
| | Temperaments discussed elsewhere are: |
| Commas: 15/14, 25/24, 33/32
| | * ''[[Geryon]]'' → [[Very low accuracy temperaments #Geryon|Very low accuracy temperaments]] |
| | * ''[[Jamesbond]]'' → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]] |
|
| |
|
| POTE generator: ~5/4 = 336.051
| | The rest are considered below. |
|
| |
|
| Map: [<1 1 2 2 4|, <0 2 1 3 -2|]
| | === 2.3.5.11 subgroup === |
| EDOs: 4, 7, 18bc, 25bcd
| | The 2.3.5.11-subgroup extension maps [[11/9]]~[[27/22]] to the neutral third. As such, it is related to most of the septimal extensions. |
|
| |
|
| =Flat=
| | Subgroup: 2.3.5.11 |
| Commas: 21/20, 25/24
| |
|
| |
|
| POTE generator: ~5/4 = 331.916
| | Comma list: 25/24, 45/44 |
|
| |
|
| Map: [<1 1 2 3|, <0 2 1 -1|]
| | Subgroup val mapping: {{mapping| 1 1 2 2 | 0 2 1 5 }} |
| Wedgie: <<2 1 -1 -3 -7 -5||
| |
| EDOs: 3, 4, 11cd
| |
| Badness: 0.0254
| |
|
| |
|
| =Sharp=
| | Gencom mapping: {{mapping| 1 1 2 0 2 | 0 2 1 0 5 }} |
| Commas: 25/24, 28/27
| |
|
| |
|
| [[POTE tuning|POTE generator]]: 357.938
| | Optimal tunings: |
| | * WE: ~2 = 1206.750{{c}}, ~6/5 = 348.684{{c}} |
| | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 348.954{{c}} |
|
| |
|
| Map: [<1 1 2 1|, <0 2 1 6|]
| | {{Optimal ET sequence|legend=0| 3e, 4e, 7, 24c, 31c }} |
| EDOs: [[10edo|10]], [[37edo|37cd]], [[57edo|57bcd]]
| |
|
| |
|
| ==11-limit==
| | Badness (Sintel): 0.370 |
| Commas: 25/24, 28/27, 35/33
| |
|
| |
|
| POTE generator: ~5/4 = 356.106
| | ==== 2.3.5.11.13 subgroup ==== |
| | Subgroup: 2.3.5.11.13 |
|
| |
|
| Map: [<1 1 2 1 2|, <0 2 1 6 5|]
| | Comma list: 25/24, 40/39, 45/44 |
| EDOs: 10, 17d, 27cde
| |
| Badness: 0.0224
| |
|
| |
|
| =Decimal=
| | Subgroup val mapping: {{mapping| 1 1 2 2 4 | 0 2 1 5 -1 }} |
| Commas: 25/24, 49/48
| |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 251.557
| | Gencom mapping: {{mapping| 1 1 2 0 2 4 | 0 2 1 0 5 -1 }} |
|
| |
|
| Map: [<2 0 3 4|, <0 2 1 1|]
| | Optimal tunings: |
| Wedgie: <<4 2 2 -6 -8 -1||
| | * WE: ~2 = 1202.433{{c}}, ~5/4 = 351.237{{c}} |
| EDOs: [[10edo|10]], [[14edo|14c]], [[24edo|24c]], [[38edo|38cd]]
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 350.978{{c}} |
| Badness: 0.0283
| |
|
| |
|
| ==11-limit== | | {{Optimal ET sequence|legend=0| 3e, 7, 17 }} |
| Commas: 25/24, 45/44, 49/48
| |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 253.493
| | Badness (Sintel): 0.536 |
|
| |
|
| Map: [<2 0 3 4 -1|, <0 2 1 1 5|]
| | == Septimal dicot == |
| EDOs: 10, 14c, 24c, 38cd
| | Septimal dicot is the extension where [[7/6]] and [[9/7]] are also conflated into 5/4~6/5. Although 5/4~6/5 covers a giant block of pitches already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy. |
| Badness: 0.0267
| |
|
| |
|
| ==Decimated==
| | [[Subgroup]]: 2.3.5.7 |
| Commas: 25/24, 33/32, 49/48
| |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 255.066 | | [[Comma list]]: 15/14, 25/24 |
|
| |
|
| Map: [<2 0 3 4 10|, <0 2 1 1 -2|]
| | {{Mapping|legend=1| 1 1 2 2 | 0 2 1 3 }} |
| EDOs: 4, 10e, 14c
| |
| Badness: 0.0315
| |
|
| |
|
| ==Decibel== | | [[Optimal tuning]]s: |
| Commas: 25/24, 35/33, 49/48
| | * [[WE]]: ~2 = 1205.532{{c}}, ~6/5 = 337.931{{c}} |
| | : [[error map]]: {{val| +5.532 -20.561 -37.319 +56.032 }} |
| | * [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 338.561{{c}} |
| | : error map: {{val| 0.000 -24.834 -47.753 +46.856 }} |
|
| |
|
| POTE generator: ~8/7 = 243.493
| | {{Optimal ET sequence|legend=1| 3d, 4, 7 }} |
|
| |
|
| Map: [<2 0 3 4 7|, <0 2 1 1 0|]
| | [[Badness]] (Sintel): 0.504 |
| EDOs: 4, 6, 10
| |
| Badness: 0.0324
| |
|
| |
|
| =Dichotic= | | === 11-limit === |
| Commas: 25/24, 64/63
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| POTE generator: ~5/4 = 356.264
| | Comma list: 15/14, 22/21, 25/24 |
|
| |
|
| Map: [<1 1 2 4|, <0 2 1 -4|]
| | Mapping: {{mapping| 1 1 2 2 2 | 0 2 1 3 5 }} |
| Wedgie: <<2 1 -4 -3 -12 -12||
| |
| EDOs: 7, 10, 17, 27c, 37c
| |
| Badness: 0.0376
| |
|
| |
|
| ==11-limit== | | Optimal tunings: |
| Commas: 25/24, 45/44, 64/63
| | * WE: ~2 = 1203.346{{c}}, ~6/5 = 343.078{{c}} |
| | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 343.260{{c}} |
|
| |
|
| POTE generator: ~5/4 = 354.262
| | {{Optimal ET sequence|legend=0| 3de, 4e, 7 }} |
|
| |
|
| Map: [<1 1 2 4 2|, <0 2 1 -4 5|]
| | Badness (Sintel): 0.656 |
| EDOs: 7, 10, 17, 27ce, 44ce
| |
| Badness: 0.0307 | |
|
| |
|
| =Jamesbond= | | === Eudicot === |
| Commas: 25/24, 81/80
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~8/7 = 258.139
| | Comma list: 15/14, 25/24, 33/32 |
|
| |
|
| Map: [<7 11 16 0|, <0 0 0 1|]
| | Mapping: {{mapping| 1 1 2 2 4 | 0 2 1 3 -2 }} |
| EDOs: 7, [[14edo|14c]]
| |
|
| |
|
| ==11-limit== | | Optimal tunings: |
| 11-limit jamesbond is called "septimal" on the Regular Temperament Finder.
| | * WE: ~2 = 1205.828{{c}}, ~6/5 = 337.683{{c}} |
| | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 336.909{{c}} |
|
| |
|
| Commas: 25/24, 33/32, 45/44
| | {{Optimal ET sequence|legend=0| 3d, 4, 7, 18bc, 25bccd }} |
|
| |
|
| POTE generator: ~8/7 = 258.910
| | Badness (Sintel): 0.896 |
|
| |
|
| Map: [<7 11 16 0 24|, <0 0 0 1 0|]
| | ==== 13-limit ==== |
| EDOs: 7, 14c
| | Subgroup: 2.3.5.7.11.13 |
| Badness: 0.0235
| |
|
| |
|
| ==13-limit==
| | Comma list: 15/14, 25/24, 33/32, 40/39 |
| Commas: 25/24 27/26 33/32 45/44
| |
|
| |
|
| POTE generator: ~8/7 = 250.764
| | Mapping: {{mapping| 1 1 2 2 4 4 | 0 2 1 3 -2 -1 }} |
|
| |
|
| Map: [<7 11 16 0 24 26|, <0 0 0 1 0 0|]
| | Optimal tunings: |
| EDOs: 7, 14c
| | * WE: ~2 = 1202.660{{c}}, ~6/5 = 339.597{{c}} |
| Badness: 0.0230
| | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 339.104{{c}} |
|
| |
|
| =Sidi= | | {{Optimal ET sequence|legend=0| 3d, 4, 7 }} |
| Commas: 25/24, 245/243
| |
|
| |
|
| [[POTE tuning|POTE generator]]: ~9/7 = 427.208
| | Badness (Sintel): 0.985 |
|
| |
|
| Map: [<1 3 3 6|, <0 -4 -2 -9|]
| | == Flattie == |
| EDOs: [[14edo|14c]], [[45edo|45c]], <59 93 135 165|
| | This temperament used to be known as ''flat''. Unlike septimal dicot where 7/6 is added to the neutral third, here [[8/7]] is added instead. |
| Badness: 0.0566
| |
|
| |
|
| ==11-limit==
| | [[Subgroup]]: 2.3.5.7 |
| Commas: 25/24, 45/44, 99/98
| |
|
| |
|
| POTE generator: ~9/7 = 427.273
| | [[Comma list]]: 21/20, 25/24 |
|
| |
|
| Map: [<1 3 3 6 7|, <0 -4 -2 -9 -10|]
| | {{Mapping|legend=1| 1 1 2 3 | 0 2 1 -1 }} |
| EDOs: 14c, 17, 45ce, 59bccde
| |
| Badness: 0.0330
| |
|
| |
|
| =Quad= | | [[Optimal tuning]]s: |
| Commas: 9/8, 25/24
| | * [[WE]]: ~2 = 1220.466{{c}}, ~6/5 = 337.577{{c}} |
| | : [[error map]]: {{val| +20.466 -6.335 -7.804 -45.004 }} |
| | * [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 335.391{{c}} |
| | : error map: {{val| 0.000 -31.173 -50.922 -104.217 }} |
|
| |
|
| POTE generator: ~5/4 = 324.482
| | {{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }} |
|
| |
|
| Map: [<4 6 9 0|, <0 0 0 1|]
| | [[Badness]] (Sintel): 0.642 |
| Wedgie: <<0 0 4 0 6 9||
| | |
| EDOs: 4, 12bcd
| | === 11-limit === |
| Badness: 0.0460</pre></div>
| | Subgroup: 2.3.5.7.11 |
| <h4>Original HTML content:</h4>
| | |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Dicot family</title></head><body><!-- ws:start:WikiTextTocRule:40:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:40 --><!-- ws:start:WikiTextTocRule:41: --><!-- ws:end:WikiTextTocRule:41 --><!-- ws:start:WikiTextTocRule:42: --> | <a href="#Dicot">Dicot</a><!-- ws:end:WikiTextTocRule:42 --><!-- ws:start:WikiTextTocRule:43: --><!-- ws:end:WikiTextTocRule:43 --><!-- ws:start:WikiTextTocRule:44: --><!-- ws:end:WikiTextTocRule:44 --><!-- ws:start:WikiTextTocRule:45: --><!-- ws:end:WikiTextTocRule:45 --><!-- ws:start:WikiTextTocRule:46: --> | <a href="#Flat">Flat</a><!-- ws:end:WikiTextTocRule:46 --><!-- ws:start:WikiTextTocRule:47: --> | <a href="#Sharp">Sharp</a><!-- ws:end:WikiTextTocRule:47 --><!-- ws:start:WikiTextTocRule:48: --><!-- ws:end:WikiTextTocRule:48 --><!-- ws:start:WikiTextTocRule:49: --> | <a href="#Decimal">Decimal</a><!-- ws:end:WikiTextTocRule:49 --><!-- ws:start:WikiTextTocRule:50: --><!-- ws:end:WikiTextTocRule:50 --><!-- ws:start:WikiTextTocRule:51: --><!-- ws:end:WikiTextTocRule:51 --><!-- ws:start:WikiTextTocRule:52: --><!-- ws:end:WikiTextTocRule:52 --><!-- ws:start:WikiTextTocRule:53: --> | <a href="#Dichotic">Dichotic</a><!-- ws:end:WikiTextTocRule:53 --><!-- ws:start:WikiTextTocRule:54: --><!-- ws:end:WikiTextTocRule:54 --><!-- ws:start:WikiTextTocRule:55: --> | <a href="#Jamesbond">Jamesbond</a><!-- ws:end:WikiTextTocRule:55 --><!-- ws:start:WikiTextTocRule:56: --><!-- ws:end:WikiTextTocRule:56 --><!-- ws:start:WikiTextTocRule:57: --><!-- ws:end:WikiTextTocRule:57 --><!-- ws:start:WikiTextTocRule:58: --> | <a href="#Sidi">Sidi</a><!-- ws:end:WikiTextTocRule:58 --><!-- ws:start:WikiTextTocRule:59: --><!-- ws:end:WikiTextTocRule:59 --><!-- ws:start:WikiTextTocRule:60: --> | <a href="#Quad">Quad</a><!-- ws:end:WikiTextTocRule:60 --><!-- ws:start:WikiTextTocRule:61: -->
| | Comma list: 21/20, 25/24, 33/32 |
| <!-- ws:end:WikiTextTocRule:61 --><br />
| | |
| The <a class="wiki_link" href="/5-limit">5-limit</a> parent <a class="wiki_link" href="/comma">comma</a> for the dicot family is 25/24, the <a class="wiki_link" href="/chromatic%20semitone">chromatic semitone</a>. Its <a class="wiki_link" href="/monzo">monzo</a> is |-3 -1 2&gt;, and flipping that yields &lt;&lt;2 1 -3|| for the <a class="wiki_link" href="/wedgie">wedgie</a>. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/24edo">24edo</a> using the val &lt;24 38 55| and <a class="wiki_link" href="/31edo">31edo</a> using the val &lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all.<br />
| | Mapping: {{mapping| 1 1 2 3 4 | 0 2 1 -1 -2 }} |
| <br />
| | |
| <br />
| | Optimal tunings: |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2>
| | * WE: ~2 = 1216.069{{c}}, ~6/5 = 342.052{{c}} |
| The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which <a class="wiki_link" href="/7-limit">7-limit</a> family member we are looking at. Septimal dicot, with wedgie &lt;&lt;2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie &lt;&lt;2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie &lt;&lt;2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie &lt;&lt;4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie &lt;&lt;4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie &lt;&lt;0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.<br />
| | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 338.467{{c}} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Dicot"></a><!-- ws:end:WikiTextHeadingRule:2 -->Dicot</h1>
| | {{Optimal ET sequence|legend=0| 3, 4, 7d }} |
| Comma: 25/24<br />
| | |
| <br />
| | Badness (Sintel): 0.826 |
| POTE generator: ~5/4 = 348.594<br />
| | |
| <br />
| | === 13-limit === |
| Map: [&lt;1 1 2|, &lt;0 2 1|]<br />
| | Subgroup: 2.3.5.7.11.13 |
| EDOs: <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/17edo">17</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/31edo">31c</a><br />
| | |
| Badness: 0.0130<br />
| | Comma list: 14/13, 21/20, 25/24, 33/32 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Dicot-7-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->7-limit</h2>
| | Mapping: {{mapping| 1 1 2 3 4 4 | 0 2 1 -1 -2 -1 }} |
| <a class="wiki_link" href="/Comma">Comma</a>s: 15/14, 25/24<br />
| | |
| <br />
| | Optimal tunings: |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 336.381<br />
| | * WE: ~2 = 1211.546{{c}}, ~6/5 = 344.304{{c}} |
| <br />
| | * CWE: ~2 = 1200.000{{c}}, ~6/5 = 341.373{{c}} |
| Map: [&lt;1 1 2 3|, &lt;0 2 1 3|]<br />
| | |
| Wedgie: &lt;&lt;2 1 3 -3 -1 4||<br />
| | {{Optimal ET sequence|legend=0| 3, 4, 7d }} |
| EDOs: 4, 7, <a class="wiki_link" href="/11edo">11c</a>, <a class="wiki_link" href="/14edo">14cd</a>, <a class="wiki_link" href="/18edo">18bc</a>, <a class="wiki_link" href="/25edo">25bcd</a><br />
| | |
| Badness: 0.0199<br /> | | Badness (Sintel): 0.968 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Dicot-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2>
| | == Sharpie == |
| Commas: 15/14, 22/21, 25/24<br />
| | This temperament used to be known as ''sharp''. This is where you find 7/6 at the major second and [[7/4]] at the major sixth. |
| <br />
| | |
| POTE generator: ~5/4 = 342.125<br />
| | [[Subgroup]]: 2.3.5.7 |
| <br />
| | |
| Map: [&lt;1 1 2 2 2|, &lt;0 2 1 3 5|]<br />
| | [[Comma list]]: 25/24, 28/27 |
| EDOs: 4e, 7<br />
| | |
| Badness: 0.0199<br />
| | {{Mapping|legend=1| 1 1 2 1 | 0 2 1 6 }} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Dicot-Eudicot"></a><!-- ws:end:WikiTextHeadingRule:8 -->Eudicot</h2>
| | [[Optimal tuning]]s: |
| Commas: 15/14, 25/24, 33/32<br />
| | * [[WE]]: ~2 = 1202.488{{c}}, ~5/4 = 358.680{{c}} |
| <br />
| | : [[error map]]: {{val| +2.488 +17.893 -22.658 -14.258 }} |
| POTE generator: ~5/4 = 336.051<br />
| | * [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 358.495{{c}} |
| <br />
| | : error map: {{val| 0.000 +15.035 -27.818 -17.854 }} |
| Map: [&lt;1 1 2 2 4|, &lt;0 2 1 3 -2|]<br />
| | |
| EDOs: 4, 7, 18bc, 25bcd<br />
| | {{Optimal ET sequence|legend=1| 3d, 7d, 10 }} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Flat"></a><!-- ws:end:WikiTextHeadingRule:10 -->Flat</h1>
| | [[Badness]] (Sintel): 0.732 |
| Commas: 21/20, 25/24<br />
| | |
| <br />
| | === 11-limit === |
| POTE generator: ~5/4 = 331.916<br />
| | Subgroup: 2.3.5.7.11 |
| <br />
| | |
| Map: [&lt;1 1 2 3|, &lt;0 2 1 -1|]<br />
| | Comma list: 25/24, 28/27, 35/33 |
| Wedgie: &lt;&lt;2 1 -1 -3 -7 -5||<br />
| | |
| EDOs: 3, 4, 11cd<br />
| | Mapping: {{mapping| 1 1 2 1 2 | 0 2 1 6 5 }} |
| Badness: 0.0254<br />
| | |
| <br />
| | Optimal tunings: |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Sharp"></a><!-- ws:end:WikiTextHeadingRule:12 -->Sharp</h1>
| | * WE: ~2 = 1201.518{{c}}, ~5/4 = 356.557{{c}} |
| Commas: 25/24, 28/27<br />
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 356.457{{c}} |
| <br />
| | |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 357.938<br />
| | {{Optimal ET sequence|legend=0| 3de, 7d, 10, 17d }} |
| <br />
| | |
| Map: [&lt;1 1 2 1|, &lt;0 2 1 6|]<br />
| | Badness (Sintel): 0.739 |
| EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/37edo">37cd</a>, <a class="wiki_link" href="/57edo">57bcd</a><br />
| | |
| <br />
| | == Dichotic == |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Sharp-11-limit"></a><!-- ws:end:WikiTextHeadingRule:14 -->11-limit</h2>
| | In dichotic, 7/4 is found at a stack of two perfect fourths. |
| Commas: 25/24, 28/27, 35/33<br />
| | |
| <br />
| | [[Subgroup]]: 2.3.5.7 |
| POTE generator: ~5/4 = 356.106<br />
| | |
| <br />
| | [[Comma list]]: 25/24, 64/63 |
| Map: [&lt;1 1 2 1 2|, &lt;0 2 1 6 5|]<br />
| | |
| EDOs: 10, 17d, 27cde<br />
| | {{Mapping|legend=1| 1 1 2 4 | 0 2 1 -4 }} |
| Badness: 0.0224<br />
| | |
| <br />
| | [[Optimal tuning]]s: |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Decimal"></a><!-- ws:end:WikiTextHeadingRule:16 -->Decimal</h1>
| | * [[WE]]: ~2 = 1200.802{{c}}, ~5/4 = 356.502{{c}} |
| Commas: 25/24, 49/48<br />
| | : [[error map]]: {{val| +0.802 +11.851 -28.208 +8.374 }} |
| <br />
| | * [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 356.275{{c}} |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 251.557<br />
| | : error map: {{val| 0.000 +10.595 -30.039 +6.074 }} |
| <br />
| | |
| Map: [&lt;2 0 3 4|, &lt;0 2 1 1|]<br />
| | {{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c }} |
| Wedgie: &lt;&lt;4 2 2 -6 -8 -1||<br />
| | |
| EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/38edo">38cd</a><br />
| | [[Badness]] (Sintel): 0.951 |
| Badness: 0.0283<br />
| | |
| <br />
| | === 11-limit === |
| <!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="Decimal-11-limit"></a><!-- ws:end:WikiTextHeadingRule:18 -->11-limit</h2>
| | Subgroup: 2.3.5.7.11 |
| Commas: 25/24, 45/44, 49/48<br />
| | |
| <br />
| | Comma list: 25/24, 45/44, 64/63 |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 253.493<br />
| | |
| <br />
| | Mapping: {{mapping| 1 1 2 4 2 | 0 2 1 -4 5 }} |
| Map: [&lt;2 0 3 4 -1|, &lt;0 2 1 1 5|]<br />
| | |
| EDOs: 10, 14c, 24c, 38cd<br />
| | Optimal tunings: |
| Badness: 0.0267<br />
| | * WE: ~2 = 1199.504{{c}}, ~5/4 = 354.115{{c}} |
| <br />
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.236{{c}} |
| <!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Decimal-Decimated"></a><!-- ws:end:WikiTextHeadingRule:20 -->Decimated</h2>
| | |
| Commas: 25/24, 33/32, 49/48<br />
| | {{Optimal ET sequence|legend=0| 7, 10, 17 }} |
| <br />
| | |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 255.066<br />
| | Badness (Sintel): 1.01 |
| <br />
| | |
| Map: [&lt;2 0 3 4 10|, &lt;0 2 1 1 -2|]<br />
| | ==== 13-limit ==== |
| EDOs: 4, 10e, 14c<br />
| | Subgroup: 2.3.5.7.11.13 |
| Badness: 0.0315<br />
| | |
| <br />
| | Comma list: 25/24, 40/39, 45/44, 64/63 |
| <!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Decimal-Decibel"></a><!-- ws:end:WikiTextHeadingRule:22 -->Decibel</h2>
| | |
| Commas: 25/24, 35/33, 49/48<br />
| | Mapping: {{mapping| 1 1 2 4 2 4 | 0 2 1 -4 5 -1 }} |
| <br />
| | |
| POTE generator: ~8/7 = 243.493<br />
| | Optimal tunings: |
| <br />
| | * WE: ~2 = 1199.289{{c}}, ~5/4 = 354.156{{c}} |
| Map: [&lt;2 0 3 4 7|, &lt;0 2 1 1 0|]<br />
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.340{{c}} |
| EDOs: 4, 6, 10<br />
| | |
| Badness: 0.0324<br />
| | {{Optimal ET sequence|legend=0| 7, 10, 17, 27ce, 44cce }} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:24:&lt;h1&gt; --><h1 id="toc12"><a name="Dichotic"></a><!-- ws:end:WikiTextHeadingRule:24 -->Dichotic</h1>
| | Badness (Sintel): 0.896 |
| Commas: 25/24, 64/63<br />
| | |
| <br />
| | === Dichotomic === |
| POTE generator: ~5/4 = 356.264<br />
| | Subgroup: 2.3.5.7.11 |
| <br />
| | |
| Map: [&lt;1 1 2 4|, &lt;0 2 1 -4|]<br />
| | Comma list: 22/21, 25/24, 33/32 |
| Wedgie: &lt;&lt;2 1 -4 -3 -12 -12||<br />
| | |
| EDOs: 7, 10, 17, 27c, 37c<br />
| | Mapping: {{mapping| 1 1 2 4 4 | 0 2 1 -4 -2 }} |
| Badness: 0.0376<br />
| | |
| <br />
| | Optimal tunings: |
| <!-- ws:start:WikiTextHeadingRule:26:&lt;h2&gt; --><h2 id="toc13"><a name="Dichotic-11-limit"></a><!-- ws:end:WikiTextHeadingRule:26 -->11-limit</h2>
| | * WE: ~2 = 1203.949{{c}}, ~5/4 = 355.239{{c}} |
| Commas: 25/24, 45/44, 64/63<br />
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.024{{c}} |
| <br />
| | |
| POTE generator: ~5/4 = 354.262<br />
| | {{Optimal ET sequence|legend=0| 3, 7, 10e }} |
| <br />
| | |
| Map: [&lt;1 1 2 4 2|, &lt;0 2 1 -4 5|]<br />
| | Badness (Sintel): 1.05 |
| EDOs: 7, 10, 17, 27ce, 44ce<br />
| | |
| Badness: 0.0307<br />
| | ==== 13-limit ==== |
| <br />
| | Subgroup: 2.3.5.7.11.13 |
| <!-- ws:start:WikiTextHeadingRule:28:&lt;h1&gt; --><h1 id="toc14"><a name="Jamesbond"></a><!-- ws:end:WikiTextHeadingRule:28 -->Jamesbond</h1>
| | |
| Commas: 25/24, 81/80<br />
| | Comma list: 22/21, 25/24, 33/32, 40/39 |
| <br />
| | |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~8/7 = 258.139<br />
| | Mapping: {{mapping| 1 1 2 4 4 4 | 0 2 1 -4 -2 -1 }} |
| <br />
| | |
| Map: [&lt;7 11 16 0|, &lt;0 0 0 1|]<br />
| | Optimal tunings: |
| EDOs: 7, <a class="wiki_link" href="/14edo">14c</a><br />
| | * WE: ~2 = 1202.979{{c}}, ~5/4 = 355.193{{c}} |
| <br />
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.254{{c}} |
| <!-- ws:start:WikiTextHeadingRule:30:&lt;h2&gt; --><h2 id="toc15"><a name="Jamesbond-11-limit"></a><!-- ws:end:WikiTextHeadingRule:30 -->11-limit</h2>
| | |
| 11-limit jamesbond is called &quot;septimal&quot; on the Regular Temperament Finder.<br />
| | {{Optimal ET sequence|legend=0| 3, 7, 10e }} |
| <br />
| | |
| Commas: 25/24, 33/32, 45/44<br />
| | Badness (Sintel): 0.940 |
| <br />
| | |
| POTE generator: ~8/7 = 258.910<br />
| | === Dichosis === |
| <br />
| | Subgroup: 2.3.5.7.11 |
| Map: [&lt;7 11 16 0 24|, &lt;0 0 0 1 0|]<br />
| | |
| EDOs: 7, 14c<br />
| | Comma list: 25/24, 35/33, 64/63 |
| Badness: 0.0235<br />
| | |
| <br />
| | Mapping: {{mapping| 1 1 2 4 5 | 0 2 1 -4 -5 }} |
| <!-- ws:start:WikiTextHeadingRule:32:&lt;h2&gt; --><h2 id="toc16"><a name="Jamesbond-13-limit"></a><!-- ws:end:WikiTextHeadingRule:32 -->13-limit</h2>
| | |
| Commas: 25/24 27/26 33/32 45/44<br />
| | Optimal tunings: |
| <br />
| | * WE: ~2 = 1197.526{{c}}, ~5/4 = 359.915{{c}} |
| POTE generator: ~8/7 = 250.764<br />
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.745{{c}} |
| <br />
| | |
| Map: [&lt;7 11 16 0 24 26|, &lt;0 0 0 1 0 0|]<br />
| | {{Optimal ET sequence|legend=0| 3, 7e, 10 }} |
| EDOs: 7, 14c<br />
| | |
| Badness: 0.0230<br />
| | Badness (Sintel): 1.37 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:34:&lt;h1&gt; --><h1 id="toc17"><a name="Sidi"></a><!-- ws:end:WikiTextHeadingRule:34 -->Sidi</h1>
| | ==== 13-limit ==== |
| Commas: 25/24, 245/243<br />
| | Subgroup: 2.3.5.7.11.13 |
| <br />
| | |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~9/7 = 427.208<br />
| | Comma list: 25/24, 35/33, 40/39, 64/63 |
| <br />
| | |
| Map: [&lt;1 3 3 6|, &lt;0 -4 -2 -9|]<br />
| | Mapping: {{mapping| 1 1 2 4 5 4 | 0 2 1 -4 -5 -1 }} |
| EDOs: <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/45edo">45c</a>, &lt;59 93 135 165|<br />
| | |
| Badness: 0.0566<br />
| | Optimal tunings: |
| <br />
| | * WE: ~2 = 1197.922{{c}}, ~5/4 = 360.021{{c}} |
| <!-- ws:start:WikiTextHeadingRule:36:&lt;h2&gt; --><h2 id="toc18"><a name="Sidi-11-limit"></a><!-- ws:end:WikiTextHeadingRule:36 -->11-limit</h2>
| | * CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.722{{c}} |
| Commas: 25/24, 45/44, 99/98<br />
| | |
| <br />
| | {{Optimal ET sequence|legend=0| 3, 7e, 10 }} |
| POTE generator: ~9/7 = 427.273<br />
| | |
| <br />
| | Badness (Sintel): 1.15 |
| Map: [&lt;1 3 3 6 7|, &lt;0 -4 -2 -9 -10|]<br />
| | |
| EDOs: 14c, 17, 45ce, 59bccde<br />
| | == Decimal == |
| Badness: 0.0330<br />
| | {{Main| Decimal }} |
| <br />
| | {{See also| Jubilismic clan }} |
| <!-- ws:start:WikiTextHeadingRule:38:&lt;h1&gt; --><h1 id="toc19"><a name="Quad"></a><!-- ws:end:WikiTextHeadingRule:38 -->Quad</h1>
| | |
| Commas: 9/8, 25/24<br />
| | Decimal tempers out 49/48 and [[50/49]], and has a semi-octave period for 7/5~10/7 and a hemitwelfth generator for 7/4~12/7. Its ploidacot is diploid dicot. [[10edo]] makes for a good tuning, from which it derives its name. [[14edo]] in the 14c val and [[24edo]] in the 24c val are also among the possibilities. |
| <br />
| | |
| POTE generator: ~5/4 = 324.482<br />
| | [[Subgroup]]: 2.3.5.7 |
| <br />
| | |
| Map: [&lt;4 6 9 0|, &lt;0 0 0 1|]<br />
| | [[Comma list]]: 25/24, 49/48 |
| Wedgie: &lt;&lt;0 0 4 0 6 9||<br />
| | |
| EDOs: 4, 12bcd<br />
| | {{Mapping|legend=1| 2 0 3 4 | 0 2 1 1 }} |
| Badness: 0.0460</body></html></pre></div>
| | |
| | : mapping generators: ~7/5, ~7/4 |
| | |
| | [[Optimal tuning]]s: |
| | * [[WE]]: ~7/5 = 603.286{{c}}, ~7/4 = 953.637{{c}} (~7/6 = 252.935{{c}}) |
| | : [[error map]]: {{val| +6.571 +5.318 -22.821 -2.047 }} |
| | * [[CWE]]: ~7/5 = 600.000{{c}}, ~7/4 = 950.957{{c}} (~7/6 = 249.043{{c}}) |
| | : error map: {{val| 0.000 -0.041 -35.357 -17.869 }} |
| | |
| | {{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd }} |
| | |
| | [[Badness]] (Sintel): 0.717 |
| | |
| | === 11-limit === |
| | Subgroup: 2.3.5.7.11 |
| | |
| | Comma list: 25/24, 45/44, 49/48 |
| | |
| | Mapping: {{mapping| 2 0 3 4 -1 | 0 2 1 1 5 }} |
| | |
| | Optimal tunings: |
| | * WE: ~7/5 = 603.558{{c}}, ~7/4 = 952.121{{c}} (~7/6 = 254.996{{c}}) |
| | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 948.610{{c}} (~7/6 = 251.390{{c}}) |
| | |
| | {{Optimal ET sequence|legend=0| 4e, 10, 14c, 24c }} |
| | |
| | Badness (Sintel): 0.883 |
| | |
| | ==== 13-limit ==== |
| | Subgroup: 2.3.5.7.11.13 |
| | |
| | Comma list: 25/24, 45/44, 49/48, 91/90 |
| | |
| | Mapping: {{mapping| 2 0 3 4 -1 1| 0 2 1 1 5 4}} |
| | |
| | Optimal tunings: |
| | * WE: ~7/5 = 603.612{{c}}, ~7/4 = 953.663{{c}} (~7/6 = 253.562{{c}}) |
| | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 950.116{{c}} (~7/6 = 249.884{{c}}) |
| | |
| | {{Optimal ET sequence|legend=0| 4ef, 10, 14cf, 24cf }} |
| | |
| | Badness (Sintel): 0.881 |
| | |
| | === Decimated === |
| | Subgroup: 2.3.5.7.11 |
| | |
| | Comma list: 25/24, 33/32, 49/48 |
| | |
| | Mapping: {{mapping| 2 0 3 4 10 | 0 2 1 1 -2 }} |
| | |
| | Optimal tunings: |
| | * WE: ~7/5 = 604.535{{c}}, ~7/4 = 952.076{{c}} (~7/6 = 256.994{{c}}) |
| | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 946.108{{c}} (~7/6 = 253.892{{c}}) |
| | |
| | {{Optimal ET sequence|legend=0| 4, 10e, 14c }} |
| | |
| | Badness (Sintel): 1.04 |
| | |
| | === Decibel === |
| | Subgroup: 2.3.5.7.11 |
| | |
| | Comma list: 25/24, 35/33, 49/48 |
| | |
| | Mapping: {{mapping| 2 0 3 4 7 | 0 2 1 1 0 }} |
| | |
| | Optimal tunings: |
| | * WE: ~7/5 = 599.404{{c}}, ~7/4 = 955.557{{c}} (~8/7 = 243.251{{c}}) |
| | * CWE: ~7/5 = 600.000{{c}}, ~7/4 = 956.169{{c}} (~8/7 = 243.831{{c}}) |
| | |
| | {{Optimal ET sequence|legend=0| 4, 6, 10 }} |
| | |
| | Badness (Sintel): 1.07 |
| | |
| | == Sidi == |
| | Sidi tempers out 245/243, and splits 5/2~12/5 in two. Its ploidacot is beta-tetracot. This relates it to [[squares]], to which it can be used as a simpler alternative. 14edo in the 14c val can be used as a tuning, in which case it is identical to squares, however. |
| | |
| | [[Subgroup]]: 2.3.5.7 |
| | |
| | [[Comma list]]: 25/24, 245/243 |
| | |
| | {{Mapping|legend=1| 1 -1 1 -3 | 0 4 2 9 }} |
| | |
| | : mapping generators: ~2, ~14/9 |
| | |
| | [[Optimal tuning]]s: |
| | * [[WE]]: ~2 = 1207.178{{c}}, ~14/9 = 777.414{{c}} |
| | : [[error map]]: {{val| +7.178 +0.523 -24.308 +6.367 }} |
| | * [[CWE]]: ~2 = 1200.000{{c}}, ~14/9 = 773.872{{c}} |
| | : error map: {{val| 0.000 -6.464 -38.569 -3.973 }} |
| | |
| | {{Optimal ET sequence|legend=1| 3d, …, 11cd, 14c }} |
| | |
| | [[Badness]] (Sintel): 1.43 |
| | |
| | === 11-limit === |
| | Subgroup: 2.3.5.7.11 |
| | |
| | Comma list: 25/24, 45/44, 99/98 |
| | |
| | Mapping: {{mapping| 1 -1 1 -3 -3 | 0 4 2 9 10 }} |
| | |
| | Optimal tunings: |
| | * WE: ~2 = 1207.200{{c}}, ~11/7 = 777.363{{c}} |
| | * CWE: ~2 = 1200.000{{c}}, ~11/7 = 773.777{{c}} |
| | |
| | {{Optimal ET sequence|legend=0| 3de, …, 11cdee, 14c }} |
| | |
| | Badness (Sintel): 1.09 |
| | |
| | [[Category:Temperament families]] |
| | [[Category:Pages with mostly numerical content]] |
| | [[Category:Dicot family| ]] <!-- main article --> |
| | [[Category:Dicot| ]] <!-- key article --> |
| | [[Category:Rank 2]] |