33edo: Difference between revisions

Inthar (talk | contribs)
No edit summary
21st century: Add Bryan Deister's ''33edo riff'' (2025)
 
(113 intermediate revisions by 14 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 3 x 11
{{ED intro}}
| Step size = 36.364¢
| Fifth = 19\33 = 690.909
| Major 2nd = 5\33 = 181.818¢
| Minor 2nd = 4\33 = 145.455¢
| Augmented 1sn = 1\33 = 36.364¢
}}


The ''33 equal division'' divides the [[octave]] into 33 equal parts of 36.3636 [[cent]]s each. It is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N_subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[Chromatic_pairs#Terrain|terrain]] subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[Mint_temperaments#Slurpee|slurpee temperament]] in the 5, 7, 11 and 13 limits.
== Theory ==
=== Structural properties ===
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c ({{val| 33 52 76 93 }}) and 33cd ({{val| 33 52 76 92 }}) mappings temper out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is [[10/9]] in size. Indeed, the perfect fifth is tuned about 11{{c}} flat, and two stacked fifths fall only 0.6{{c}} flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality.


While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s|3L 7s]] with L=4 s=3. It tunes the perfect fifth about 11 cents flat, leading to a near perfect 10/9. The <33 52 76| or 33c val tempers out 81/80 and so leads to a very flat meantone tuning where the major tone is approximately 10/9 in size. Leaving the scale be would result in a "flattone" [[5L 2s]] with L=5, s=4.
Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327{{c}} minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.


Instead of the flat 19\33 fifth you may use the sharp fifth of 20\33, over 25 cents sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a 6\33 = 2\11 [[11edo]] interval of 218 cents. Now 6\33 + 5\33 = 11\33 = 1\3 of an octave, or 400 cents, the same major third as 12edo. Also, we have both a 327 minor third from 9\33 = 3\11, the same as the [[22edo]] minor third, and a flatter 8\33 third of 291 cents, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7 cents (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9 and 13, gives plenty of scope for these, as well as the 11, 13 and 19 harmonics (taking the generator as a 19/16) which are relatively well in tune.
33edo contains an accurate approximation of the [[Bohlen–Pierce]] scale with 4\33 near [[13edt|1\13edt]].


So while it might not be the most harmonically accurate temperament, it's structurally quite interesting, and it approximates the full 19-limit consort in it's way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th.
Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72.7{{c}}.
 
=== Odd harmonics ===
{{Harmonics in equal|33}}
 
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[terrain]] 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[slurpee]] temperament in the 5-, 7-, 11-, and 13-limits.
 
While it might not be the most harmonically accurate temperament, it is structurally quite interesting, and it approximates the full 19-limit consort in its own way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th.
 
=== Miscellany ===
33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the [[1L 7s]] with the step ratio of 5:4.


Other notable 33edo scales are [[diasem]] with L:m:s = 5:3:1 and [[5L 4s]] with L:s = 5:2.
== Intervals ==
== Intervals ==
{{Odd harmonics in edo|edo=33}}
{| class="wikitable center-all"
{| class="wikitable center-all"
|-
|-
Line 24: Line 28:
! ET
! ET
! colspan="2" | Just
! colspan="2" | Just
! rowspan="2" | Difference <br> (ET minus Just)
! rowspan="2" | Difference<br>(ET minus Just)
! rowspan="2" colspan="3" |Extended Pythagorean Notation
! rowspan="2" colspan="3" | Extended Pythagorean notation
|-
|-
! Cents
! Cents
Line 32: Line 36:
|-
|-
| 0
| 0
|
| 0
| [[1/1]]
| [[1/1]]
| 0
| 0
Line 44: Line 48:
| [[48/47]]
| [[48/47]]
| 36.448
| 36.448
| -0.084742
| −0.085
| Augmented Unison
| Augmented Unison
| A1
| A1
Line 52: Line 56:
| 72.727
| 72.727
| [[24/23]]
| [[24/23]]
| 73.6806
| 73.681
| 0.95338
| −0.953
| Double-aug 1sn
| Double-aug 1sn
| AA1
| AA1
Line 61: Line 65:
| 109.091
| 109.091
| [[16/15]]
| [[16/15]]
| 111.7312
| 111.731
| <nowiki>-2.64037</nowiki>
| −2.640
| Diminished 2nd
| Diminished 2nd
| d2
| d2
Line 70: Line 74:
| 145.455
| 145.455
| [[12/11]]
| [[12/11]]
| 150.6371
| 150.637
| -5.182513
| −5.183
| Minor 2nd
| Minor 2nd
| m2
| m2
Line 79: Line 83:
| 181.818
| 181.818
| [[10/9]]
| [[10/9]]
| 182.4037
| 182.404
| -0.58553
| −0.586
| Major 2nd
| Major 2nd
| M2
| M2
Line 88: Line 92:
| 218.182
| 218.182
| [[17/15]]
| [[17/15]]
| 216.6866
| 216.687
| 1.49521
| +1.495
| Augmented 2nd
| Augmented 2nd
| A2
| A2
Line 97: Line 101:
| 254.545
| 254.545
| [[15/13]]
| [[15/13]]
| 247.7410
| 247.741
| 6.804401
| +6.804
| Double-aug 2nd/Double-dim 3rd
| Double-aug 2nd/Double-dim 3rd
| AA2/dd3
| AA2/dd3
Line 106: Line 110:
| 290.909
| 290.909
| [[13/11]]
| [[13/11]]
| 289.2097
| 289.210
| 1.699371
| +1.699
| Diminished 3rd
| Diminished 3rd
| d3
| d3
Line 115: Line 119:
| 327.273
| 327.273
| [[6/5]]
| [[6/5]]
| 315.6412
| 315.641
| 11.63144
| +11.631
| Minor 3rd
| Minor 3rd
| m3
| m3
Line 124: Line 128:
| 363.636
| 363.636
| [[16/13]]
| [[16/13]]
| 359.4723
| 359.472
| 4.164025
| +4.164
| Major 3rd
| Major 3rd
| M3
| M3
Line 133: Line 137:
| 400.000
| 400.000
| [[5/4]]
| [[5/4]]
| 386.3137
| 386.314
| 13.686286
| +13.686
| Augmented 3rd
| Augmented 3rd
| A3
| A3
Line 142: Line 146:
| 436.364
| 436.364
| [[9/7]]
| [[9/7]]
| 435.0841
| 435.084
| 1.2795411
| +1.280
| Double-dim 4th
| Double-dim 4th
| dd4
| dd4
Line 151: Line 155:
| 472.727
| 472.727
| [[21/16]]
| [[21/16]]
| 470.7809
| 470.781
| 1.9463653
| +1.946
| Diminished 4th
| Diminished 4th
| d4
| d4
Line 160: Line 164:
| 509.091
| 509.091
| [[4/3]]
| [[4/3]]
| 498.0449
| 498.045
| 11.0459099
| +11.046
| Perfect 4th
| Perfect 4th
| P4
| P4
Line 169: Line 173:
| 545.455
| 545.455
| [[11/8]]
| [[11/8]]
| 551.3179
| 551.318
| -5.863396
| −5.863
| Augmented 4th
| Augmented 4th
| A4
| A4
Line 178: Line 182:
| 581.818
| 581.818
| [[7/5]]
| [[7/5]]
| 582.5129
| 582.513
| -0.694010
| −0.694
| Double-aug 4th
| Double-aug 4th
| AA4
| AA4
Line 187: Line 191:
| 618.182
| 618.182
| [[10/7]]
| [[10/7]]
| 617.4878
| 617.488
| 0.694010
| +0.694
| Double-dim 5th
| Double-dim 5th
| dd5
| dd5
Line 196: Line 200:
| 654.545
| 654.545
| [[16/11]]
| [[16/11]]
| 648.6821
| 648.682
| 5.863396
| +5.863
| Diminished 5th
| Diminished 5th
| d5
| d5
Line 205: Line 209:
| 690.909
| 690.909
| [[3/2]]
| [[3/2]]
| 701.9550
| 701.955
| -11.0459099
| −11.046
| Perfect 5th
| Perfect 5th
| P5
| P5
Line 214: Line 218:
| 727.273
| 727.273
| [[32/21]]
| [[32/21]]
| 729.2191
| 729.219
| -1.9463653
| -1.946
| Augmented 5th
| Augmented 5th
| A5
| A5
Line 223: Line 227:
| 763.636
| 763.636
| [[14/9]]
| [[14/9]]
| 764.9159
| 764.916
| <nowiki>-1.2795411</nowiki>
| −1.280
| Double-aug 5th
| Double-aug 5th
| AA5
| AA5
Line 232: Line 236:
| 800.000
| 800.000
| [[8/5]]
| [[8/5]]
| 813.6862
| 813.686
| -13.686286
| −13.686
| Double-dim 6th
| Double-dim 6th
| d6
| d6
Line 241: Line 245:
| 836.364
| 836.364
| [[13/8]]
| [[13/8]]
| 840.5276
| 840.528
| <nowiki>-4.164025</nowiki>
| −4.164
| Minor 6th
| Minor 6th
| m6
| m6
Line 250: Line 254:
| 872.727
| 872.727
| [[5/3]]
| [[5/3]]
| 884.3587
| 884.359
| <nowiki>-11.63144</nowiki>
| −11.631
| Major 6th
| Major 6th
| M6
| M6
Line 259: Line 263:
| 909.091
| 909.091
| [[22/13]]
| [[22/13]]
| 910.7903
| 910.790
| <nowiki>-1.699371</nowiki>
| −1.699
| Augmented 6th
| Augmented 6th
| A6
| A6
Line 268: Line 272:
| 945.455
| 945.455
| [[12/7]]
| [[12/7]]
| 933.1291
| 933.129
| 12.325451
| +12.325
| Double-aug 6th/Double-dim 7th
| Double-aug 6th/Double-dim 7th
| AA6/dd7
| AA6/dd7
Line 276: Line 280:
| 27
| 27
| 981.818
| 981.818
| [[7/4]]
| [[30/17]]
| 968.8259
| 983.313
| 12.9922753
| −1.495
| Diminished 7th
| Diminished 7th
| d7
| d7
Line 287: Line 291:
| [[9/5]]
| [[9/5]]
| 1017.596
| 1017.596
| 0.58553
| +0.586
| Minor 7th
| Minor 7th
| m7
| m7
Line 296: Line 300:
| [[11/6]]
| [[11/6]]
| 1049.363
| 1049.363
| 5.182513
| +5.183
| Major 7th
| Major 7th
| M7
| M7
Line 305: Line 309:
| [[15/8]]
| [[15/8]]
| 1088.268
| 1088.268
| 2.64037
| +2.640
| Augmented 7th
| Augmented 7th
| A7
| A7
Line 314: Line 318:
| [[23/12]]
| [[23/12]]
| 1126.319
| 1126.319
| <nowiki>-0.95338</nowiki>
| −0.953
| Double-dim 8ve
| Double-dim 8ve
| dd8
| dd8
Line 323: Line 327:
| [[47/24]]
| [[47/24]]
| 1163.551
| 1163.551
| 0.084742
| +0.085
| Diminished 8ve
| Diminished 8ve
| d8
| d8
Line 338: Line 342:
|}
|}


Nearby Equal Temperaments:
== Notation ==
=== Standard notation ===
Because the [[chromatic semitone]] in 33edo is 1 step, 33edo can be notated using only naturals, sharps, and flats. However, many key signatures will require double- and triple-sharps and flats, which means that notation in distant keys can be very unwieldy.
 
{{sharpness-sharp1}}
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as EDOs [[23edo#Sagittal notation|23]] and [[28edo#Sagittal notation|28]].
 
<imagemap>
File:33-EDO_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 399 0 559 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 399 106 [[Fractional_3-limit_notation#Bad-fifths_limma-fraction_notation | limma-fraction notation]]
default [[File:33-EDO_Sagittal.svg]]
</imagemap>
 
== Approximation to JI ==
{{Q-odd-limit intervals}}
{{Q-odd-limit intervals|32.87|apx=val|header=none|tag=none|title=15-odd-limit intervals by 33cd val mapping}}


== Nearby equal temperaments ==
[[File:33edo.png|alt=33edo.png|966x199px|33edo.png]]
[[File:33edo.png|alt=33edo.png|966x199px|33edo.png]]
== Notable scales ==
 
* [[ultrasoft]] [[5L 2s]] (L/s = 5/4)
== Regular temperament properties ==
* [[semihard]] [[5L 4s]]
{| class="wikitable center-4 center-5 center-6"
* 5:3:1 [[diasem]]
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -52 33 }}
| {{mapping| 33 52 }}
| +3.48
| 3.49
| 9.59
|-
| 2.3.5
| 81/80, 1171875/1048576
| {{mapping| 33 52 76 }} (33c)
| +5.59
| 4.13
| 11.29
|-
| 2.3.5.7
| 49/48, 81/80, 1875/1792
| {{mapping| 33 52 76 92 }} (33cd)
| +6.29
| 3.77
| 10.31
|-
| 2.3.5.7.11
| 45/44, 49/48, 81/80, 1375/1344
| {{mapping| 33 52 76 92 114 }} (33cd)
| +5.36
| 3.84
| 10.50
|-
| 2.3.5.7.11.13
| 45/44, 49/48, 65/64, 81/80, 275/273
| {{mapping| 33 52 76 92 114 122 }} (33cd)
| +4.65
| 3.84
| 10.52
|}
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperaments
|-
| 1
| 2\33
| 72.73
| 21/20
| [[Slurpee]] (33)
|-
| 1
| 4\33
| 145.45
| 12/11
| [[Bohpier]] (33cd)
|-
| 1
| 7\33
| 254.55
| 8/7
| [[Godzilla]] (33cd)
|-
| 1
| 8\33
| 290.91
| 25/21
| [[Quasitemp]] (33b)
|-
| 1
| 10\33
| 363.64
| 49/40
| [[Submajor]] (33ee) / [[interpental]] (33e)
|-
| 1
| 14\33
| 509.09
| 4/3
| [[Flattertone]] (33cd)<br>[[Deeptone]] a.k.a. tragicomical (33)
|-
| 1
| 16\33
| 581.82
| 7/5
| [[Tritonic]] (33)
|-
| 3
| 7\33<br>(4\33)
| 254.55<br>(145.45)
| 8/7<br>(12/11)
| [[Triforce]] (33d)
|-
| 3
| 13\33<br>(2\33)
| 472.73<br>(72.73)
| 4/3<br>(25/24)
| [[Inflated]] (33bcddd)
|-
| 3
| 14\33<br>(3\33)
| 509.09<br>(98.09)
| 4/3<br>(16/15)
| [[August]] (33cd)
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
== Scales ==
* {{main|List of MOS scales in {{ROOTPAGENAME}}}}
Brightest mode is listed except where noted.
* Deeptone[7], 5 5 5 4 5 5 4 (diatonic)
** Fun 5-tone subset of Deeptone[7] 9 5 5 4 10
* Deeptone[12], 4 4 1 4 1 4 4 1 4 1 4 1 (chromatic)
* Deeptone[19], 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 (enharmonic)
* Semiquartal, 5 5 2 5 2 5 2 5 2
* Semiquartal[14], 3 2 3 2 2 3 2 2 3 2 2
* Iranian Calendar, 5 4 4 4 4 4 4 4
* [[Diasem]], 5 3 5 1 5 3 5 1 5 (*right-handed)
* Diasem, 5 1 5 3 5 1 5 3 5 (*left-handed)
* [[Diaslen]] (4sR), 1 5 1 5 2 5 1 5 1 5 2
* Diaslen (4sL), 2 5 1 5 1 5 2 5 1 5 1
* Diaslen (4sC), 1 5 2 5 1 5 1 5 2 5 1
 
== Delta-rational harmony ==
The tables below show chords that approximate 3-integer-limit [[delta-rational]] chords with least-squares error less than 0.001.
 
=== Fully delta-rational triads ===
{| class="mw-collapsible mw-collapsed class="wikitable sortable"
|-
! Steps
! Delta signature
! Least-squares error
|-
| 0,1,2
| +1+1
| 0.00021
|-
| 0,1,3
| +1+2
| 0.00048
|-
| 0,1,4
| +1+3
| 0.00078
|-
| 0,2,3
| +2+1
| 0.00039
|-
| 0,2,4
| +1+1
| 0.00087
|-
| 0,3,4
| +3+1
| 0.00056
|-
| 0,3,11
| +1+3
| 0.00007
|-
| 0,5,8
| +3+2
| 0.00084
|-
| 0,8,18
| +2+3
| 0.00082
|-
| 0,9,20
| +2+3
| 0.00076
|-
| 0,12,17
| +2+1
| 0.00048
|-
| 0,13,20
| +3+2
| 0.00063
|-
| 0,15,21
| +2+1
| 0.00063
|-
| 0,16,28
| +1+1
| 0.00082
|-
| 0,18,25
| +2+1
| 0.00081
|-
| 0,18,31
| +1+1
| 0.00058
|-
| 0,19,24
| +3+1
| 0.00095
|}
 
=== Partially delta-rational tetrads ===
{| class="mw-collapsible mw-collapsed class="wikitable sortable"
|-
! Steps
! Delta signature
! Least-squares error
|-
| 0,1,2,3
| +1+?+1
| 0.00053
|-
| 0,1,2,4
| +1+?+2
| 0.00094
|-
| 0,1,3,4
| +1+?+1
| 0.00080
|-
| 0,1,17,18
| +2+?+3
| 0.00073
|-
| 0,1,17,19
| +1+?+3
| 0.00071
|-
| 0,1,18,19
| +2+?+3
| 0.00042
|-
| 0,1,18,20
| +1+?+3
| 0.00032
|-
| 0,1,19,20
| +2+?+3
| 0.00010
|-
| 0,1,19,21
| +1+?+3
| 0.00008
|-
| 0,1,20,21
| +2+?+3
| 0.00023
|-
| 0,1,20,22
| +1+?+3
| 0.00049
|-
| 0,1,21,22
| +2+?+3
| 0.00056
|-
| 0,1,21,23
| +1+?+3
| 0.00091
|-
| 0,1,22,23
| +2+?+3
| 0.00090
|-
| 0,1,31,32
| +1+?+2
| 0.00071
|-
| 0,2,3,4
| +2+?+1
| 0.00077
|-
| 0,2,6,11
| +1+?+3
| 0.00094
|-
| 0,2,7,12
| +1+?+3
| 0.00013
|-
| 0,2,8,13
| +1+?+3
| 0.00069
|-
| 0,2,12,13
| +3+?+2
| 0.00083
|-
| 0,2,12,15
| +1+?+2
| 0.00087
|-
| 0,2,13,14
| +3+?+2
| 0.00045
|-
| 0,2,13,16
| +1+?+2
| 0.00014
|-
| 0,2,14,15
| +3+?+2
| 0.00008
|-
| 0,2,14,17
| +1+?+2
| 0.00060
|-
| 0,2,15,16
| +3+?+2
| 0.00031
|-
| 0,2,16,17
| +3+?+2
| 0.00071
|-
| 0,2,18,20
| +2+?+3
| 0.00084
|-
| 0,2,18,22
| +1+?+3
| 0.00024
|-
| 0,2,19,21
| +2+?+3
| 0.00020
|-
| 0,2,19,23
| +1+?+3
| 0.00058
|-
| 0,2,20,22
| +2+?+3
| 0.00046
|-
| 0,3,4,5
| +3+?+1
| 0.00097
|-
| 0,3,5,9
| +2+?+3
| 0.00010
|-
| 0,3,6,10
| +2+?+3
| 0.00090
|-
| 0,3,7,12
| +1+?+2
| 0.00074
|-
| 0,3,8,13
| +1+?+2
| 0.00037
|-
| 0,3,10,17
| +1+?+3
| 0.00009
|-
| 0,3,17,23
| +1+?+3
| 0.00096
|-
| 0,3,18,22
| +1+?+2
| 0.00088
|-
| 0,3,18,24
| +1+?+3
| 0.00027
|-
| 0,3,19,20
| +2+?+1
| 0.00059
|-
| 0,3,19,21
| +1+?+1
| 0.00063
|-
| 0,3,19,22
| +2+?+3
| 0.00030
|-
| 0,3,19,23
| +1+?+2
| 0.00023
|-
| 0,3,20,21
| +2+?+1
| 0.00014
|-
| 0,3,20,22
| +1+?+1
| 0.00015
|-
| 0,3,20,23
| +2+?+3
| 0.00070
|-
| 0,3,21,22
| +2+?+1
| 0.00032
|-
| 0,3,21,23
| +1+?+1
| 0.00095
|-
| 0,3,22,23
| +2+?+1
| 0.00078
|-
| 0,3,27,32
| +1+?+3
| 0.00004
|-
| 0,4,5,12
| +1+?+2
| 0.00026
|-
| 0,4,6,16
| +1+?+3
| 0.00066
|-
| 0,4,8,13
| +2+?+3
| 0.00023
|-
| 0,4,11,20
| +1+?+3
| 0.00023
|-
| 0,4,13,14
| +3+?+1
| 0.00091
|-
| 0,4,13,19
| +1+?+2
| 0.00048
|-
| 0,4,14,15
| +3+?+1
| 0.00050
|-
| 0,4,14,16
| +3+?+2
| 0.00055
|-
| 0,4,14,17
| +1+?+1
| 0.00021
|-
| 0,4,15,16
| +3+?+1
| 0.00009
|-
| 0,4,15,17
| +3+?+2
| 0.00023
|-
| 0,4,15,18
| +1+?+1
| 0.00085
|-
| 0,4,16,17
| +3+?+1
| 0.00034
|-
| 0,4,17,18
| +3+?+1
| 0.00077
|-
| 0,4,17,25
| +1+?+3
| 0.00043
|-
| 0,4,19,23
| +2+?+3
| 0.00041
|-
| 0,4,20,24
| +2+?+3
| 0.00094
|-
| 0,4,22,27
| +1+?+2
| 0.00020
|-
| 0,4,24,31
| +1+?+3
| 0.00022
|-
| 0,5,6,9
| +3+?+2
| 0.00003
|-
| 0,5,7,10
| +3+?+2
| 0.00097
|-
| 0,5,7,19
| +1+?+3
| 0.00004
|-
| 0,5,9,17
| +1+?+2
| 0.00017
|-
| 0,5,10,16
| +2+?+3
| 0.00019
|-
| 0,5,11,13
| +2+?+1
| 0.00087
|-
| 0,5,11,15
| +1+?+1
| 0.00018
|-
| 0,5,12,14
| +2+?+1
| 0.00011
|-
| 0,5,12,23
| +1+?+3
| 0.00067
|-
| 0,5,13,15
| +2+?+1
| 0.00067
|-
| 0,5,16,23
| +1+?+2
| 0.00008
|-
| 0,5,17,27
| +1+?+3
| 0.00055
|-
| 0,5,19,24
| +2+?+3
| 0.00051
|-
| 0,5,22,31
| +1+?+3
| 0.00057
|-
| 0,5,24,30
| +1+?+2
| 0.00036
|-
| 0,5,25,26
| +3+?+1
| 0.00071
|-
| 0,5,25,27
| +3+?+2
| 0.00082
|-
| 0,5,25,28
| +1+?+1
| 0.00045
|-
| 0,5,26,27
| +3+?+1
| 0.00018
|-
| 0,5,26,28
| +3+?+2
| 0.00016
|-
| 0,5,26,29
| +1+?+1
| 0.00090
|-
| 0,5,27,28
| +3+?+1
| 0.00035
|-
| 0,5,28,29
| +3+?+1
| 0.00090
|-
| 0,6,7,17
| +1+?+2
| 0.00087
|-
| 0,6,8,22
| +1+?+3
| 0.00045
|-
| 0,6,9,14
| +1+?+1
| 0.00031
|-
| 0,6,11,18
| +2+?+3
| 0.00093
|-
| 0,6,12,21
| +1+?+2
| 0.00036
|-
| 0,6,12,25
| +1+?+3
| 0.00032
|-
| 0,6,15,18
| +3+?+2
| 0.00026
|-
| 0,6,16,19
| +3+?+2
| 0.00095
|-
| 0,6,16,28
| +1+?+3
| 0.00053
|-
| 0,6,18,26
| +1+?+2
| 0.00064
|-
| 0,6,19,25
| +2+?+3
| 0.00062
|-
| 0,6,20,24
| +1+?+1
| 0.00052
|-
| 0,6,21,23
| +2+?+1
| 0.00031
|-
| 0,6,21,32
| +1+?+3
| 0.00033
|-
| 0,6,22,24
| +2+?+1
| 0.00063
|-
| 0,6,25,32
| +1+?+2
| 0.00034
|-
| 0,7,8,14
| +1+?+1
| 0.00029
|-
| 0,7,8,24
| +1+?+3
| 0.00080
|-
| 0,7,9,11
| +3+?+1
| 0.00066
|-
| 0,7,9,12
| +2+?+1
| 0.00041
|-
| 0,7,9,13
| +3+?+2
| 0.00019
|-
| 0,7,10,12
| +3+?+1
| 0.00009
|-
| 0,7,10,13
| +2+?+1
| 0.00070
|-
| 0,7,11,13
| +3+?+1
| 0.00087
|-
| 0,7,12,27
| +1+?+3
| 0.00041
|-
| 0,7,16,30
| +1+?+3
| 0.00098
|-
| 0,7,17,22
| +1+?+1
| 0.00008
|-
| 0,7,19,26
| +2+?+3
| 0.00073
|-
| 0,7,20,29
| +1+?+2
| 0.00002
|-
| 0,7,23,26
| +3+?+2
| 0.00010
|-
| 0,7,28,32
| +1+?+1
| 0.00033
|-
| 0,7,29,31
| +2+?+1
| 0.00020
|-
| 0,7,30,32
| +2+?+1
| 0.00091
|-
| 0,8,12,29
| +1+?+3
| 0.00097
|-
| 0,8,13,22
| +2+?+3
| 0.00051
|-
| 0,8,15,21
| +1+?+1
| 0.00062
|-
| 0,8,15,31
| +1+?+3
| 0.00047
|-
| 0,8,16,18
| +3+?+1
| 0.00066
|-
| 0,8,16,19
| +2+?+1
| 0.00031
|-
| 0,8,16,20
| +3+?+2
| 0.00043
|-
| 0,8,16,27
| +1+?+2
| 0.00090
|-
| 0,8,17,19
| +3+?+1
| 0.00022
|-
| 0,8,17,20
| +2+?+1
| 0.00098
|-
| 0,8,19,27
| +2+?+3
| 0.00085
|-
| 0,8,24,29
| +1+?+1
| 0.00020
|-
| 0,9,11,16
| +3+?+2
| 0.00051
|-
| 0,9,13,20
| +1+?+1
| 0.00002
|-
| 0,9,14,24
| +2+?+3
| 0.00073
|-
| 0,9,18,30
| +1+?+2
| 0.00090
|-
| 0,9,19,28
| +2+?+3
| 0.00096
|-
| 0,9,21,27
| +1+?+1
| 0.00040
|-
| 0,9,22,24
| +3+?+1
| 0.00087
|-
| 0,9,22,25
| +2+?+1
| 0.00053
|-
| 0,9,22,26
| +3+?+2
| 0.00026
|-
| 0,9,23,25
| +3+?+1
| 0.00013
|-
| 0,9,23,26
| +2+?+1
| 0.00093
|-
| 0,10,11,26
| +1+?+2
| 0.00035
|-
| 0,10,11,32
| +1+?+3
| 0.00081
|-
| 0,10,12,20
| +1+?+1
| 0.00098
|-
| 0,10,14,18
| +2+?+1
| 0.00050
|-
| 0,10,14,25
| +2+?+3
| 0.00088
|-
| 0,10,15,29
| +1+?+2
| 0.00041
|-
| 0,10,16,21
| +3+?+2
| 0.00055
|-
| 0,10,19,32
| +1+?+2
| 0.00021
|-
| 0,10,27,31
| +3+?+2
| 0.00082
|-
| 0,10,28,30
| +3+?+1
| 0.00045
|-
| 0,10,28,31
| +2+?+1
| 0.00016
|-
| 0,10,29,31
| +3+?+1
| 0.00068
|-
| 0,11,12,18
| +3+?+2
| 0.00030
|-
| 0,11,13,16
| +3+?+1
| 0.00081
|-
| 0,11,14,17
| +3+?+1
| 0.00044
|-
| 0,11,16,31
| +1+?+2
| 0.00064
|-
| 0,11,17,25
| +1+?+1
| 0.00091
|-
| 0,11,19,23
| +2+?+1
| 0.00045
|-
| 0,11,21,26
| +3+?+2
| 0.00074
|-
| 0,12,15,24
| +1+?+1
| 0.00087
|-
| 0,12,15,28
| +2+?+3
| 0.00013
|-
| 0,12,17,23
| +3+?+2
| 0.00054
|-
| 0,12,18,21
| +3+?+1
| 0.00043
|-
| 0,12,19,22
| +3+?+1
| 0.00095
|-
| 0,12,23,27
| +2+?+1
| 0.00083
|-
| 0,12,26,31
| +3+?+2
| 0.00005
|-
| 0,13,14,24
| +1+?+1
| 0.00019
|-
| 0,13,17,22
| +2+?+1
| 0.00085
|-
| 0,13,21,27
| +3+?+2
| 0.00035
|-
| 0,13,22,25
| +3+?+1
| 0.00097
|-
| 0,13,23,26
| +3+?+1
| 0.00054
|-
| 0,13,28,32
| +2+?+1
| 0.00055
|-
| 0,14,17,24
| +3+?+2
| 0.00099
|-
| 0,14,18,28
| +1+?+1
| 0.00043
|-
| 0,14,21,26
| +2+?+1
| 0.00080
|-
| 0,14,25,31
| +3+?+2
| 0.00054
|-
| 0,14,27,30
| +3+?+1
| 0.00050
|-
| 0,15,16,20
| +3+?+1
| 0.00055
|-
| 0,15,17,28
| +1+?+1
| 0.00064
|-
| 0,15,21,28
| +3+?+2
| 0.00045
|-
| 0,15,22,32
| +1+?+1
| 0.00039
|-
| 0,16,18,26
| +3+?+2
| 0.00049
|-
| 0,16,19,25
| +2+?+1
| 0.00031
|-
| 0,16,20,24
| +3+?+1
| 0.00018
|-
| 0,16,25,32
| +3+?+2
| 0.00095
|-
| 0,17,22,28
| +2+?+1
| 0.00091
|-
| 0,17,23,27
| +3+?+1
| 0.00066
|-
| 0,18,27,31
| +3+?+1
| 0.00095
|-
| 0,19,21,28
| +2+?+1
| 0.00065
|-
| 0,20,24,31
| +2+?+1
| 0.00078
|-
| 0,21,22,32
| +3+?+2
| 0.00091
|-
| 0,22,27,32
| +3+?+1
| 0.00038
|}
 
== Instruments ==
[[Lumatone mapping for 33edo]]


== Music ==
== Music ==
=== Modern renderings ===
; {{W|Johann Sebastian Bach}}
* [https://www.youtube.com/watch?v=IhR9oFt5zx4 "Contrapunctus 4" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024)
* [https://www.youtube.com/watch?v=ynPQPm_ekos "Contrapunctus 11" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024)
=== 21st century ===
; [[Bryan Deister]]
* [https://www.youtube.com/watch?v=swyP6tB78k0 ''groove 33edo''] (2023)
* [https://www.youtube.com/watch?v=GypR6x_Ih1I ''33edo jam''] (2025)
* [https://www.youtube.com/shorts/mkaaAJEyGFU ''33edo riff''] (2025)
; [[Peter Kosmorsky]]
* [https://www.youtube.com/watch?v=SXgUFxyuLZo ''Deluge'']
; [[Budjarn Lambeth]]
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) – Feb 2024''] (2024)
; [[Claudi Meneghin]]
* [https://www.youtube.com/watch?v=REkrbdesbLo ''Rising Canon on a Ground'', for Baroque Oboe, Bassoon, Violone] (2024) – ([https://www.youtube.com/watch?v=4fhcNPjFv14 for Organ])
* [https://www.youtube.com/watch?v=pkYN8SX6luY ''Lytel Twyelyghte Musicke (Little Twilight Music)'', for Brass and Timpani] (2024)
; [[Relyt R]]
* from ''Xuixo'' (2023)
** "Nongenerate" [https://relytr.bandcamp.com/track/nondegenerate-33-edo Bandcamp] | [https://open.spotify.com/track/3e2WbgFlAYC4BccPGOWHMo Spotify]
** "Kolmekymmentäkolme" [https://relytr.bandcamp.com/track/kolme-kymment-kolme-33-edo Bandcamp] | [https://open.spotify.com/track/4fx1yQ1RQtEu8EYhNUtN79 Spotify]


[http://www.youtube.com/watch?v=SXgUFxyuLZo Deluge] Peter Kosmorsky
; [[Chris Vaisvil]]
* [http://chrisvaisvil.com/5-5-1-mode-of-33-equal-with-video/ 5 5 1 mode of 33 equal (with video)] [http://micro.soonlabel.com/33edo/20130827_551of33.mp3 play]


[http://chrisvaisvil.com/5-5-1-mode-of-33-equal-with-video/ 5 5 1 mode of 33 equal (with video)] [http://micro.soonlabel.com/33edo/20130827_551of33.mp3 play] by [[Chris Vaisvil]]
; [[Xeno*n*]]
* [https://www.youtube.com/watch?v=EPB1Rzjwguk ''Mysteries of Thirty-Three''] (2024)


[http://soonlabel.com/xenharmonic/wp-content/uploads/2014/02/Bach_Contrapunctus_4-Jeux14-E33.mp3 Bach Contrapunctus 4] Claudi Meneghin version
[[Category:Listen]]
[[Category:Equal divisions of the octave]]
[[Category:Meantone]]
[[Category:listen]]
[[Category:Subgroup temperaments]]
[[Category:subgroup]]