41edt: Difference between revisions
Created page with "'''Division of the third harmonic into 41 equal parts''' (41edt) is related to 26 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 6..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(15 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
41edt is related to the | 41edt is related to [[26edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 6.12 cents stretched and the step size is about 46.3891 cents. Unlike 26edo, it is only consistent up to the 10-[[integer-limit]], with discrepancy for the 11th harmonic. | ||
41edt is related to the regular temperament which tempers out 823543/820125 and 2199023255552/2197176384375 in the 7-limit, which is supported by {{EDOs| 181, 207, 388, 569, and 595 }} EDOs. | |||
== Intervals == | |||
{{Interval table}} | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 41 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 41 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} | |||
= Related regular temperaments = | |||
== 181 & 207 temperament == | |||
=== 5-limit === | |||
Comma: {{monzo| 287 -121 -41 }} | |||
===7-limit=== | POTE generator: ~{{monzo| 140 -59 -20 }} = 46.3927 | ||
Mapping: [{{map| 1 0 7 }}, {{map| 0 41 -121 }}] | |||
EDOs: {{EDOs|181, 207, 388, 569, 595, 957, 1345}} | |||
Badness: 17.5651 | |||
=== 7-limit === | |||
Commas: 823543/820125, 2199023255552/2197176384375 | Commas: 823543/820125, 2199023255552/2197176384375 | ||
POTE generator: ~131072/127575 = 46.3932 | POTE generator: ~131072/127575 = 46.3932 | ||
Mapping: [{{map| 1 0 7 3 }}, {{map| 0 41 -121 -5}}] | |||
EDOs: {{EDOs|181, 207, 388, 569, 595}} | |||
Badness: 0.6461 | |||
=== 11-limit === | |||
Commas: 42592/42525, 43923/43904, 184877/184320 | |||
POTE generator: ~352/343 = 46.3934 | |||
Mapping: [{{map| 1 0 7 3 4 }}, {{map| 0 41 -121 -5 -14}}] | |||
EDOs: {{EDOs|181, 207, 388, 569, 595}} | |||
Badness: 0.1362 | |||
=== 13-limit === | |||
Commas: 847/845, 4096/4095, 4459/4455, 17303/17280 | |||
POTE generator: ~352/343 = 46.3921 | |||
Mapping: [{{map| 1 0 7 3 4 2 }}, {{map| 0 41 -121 -5 -14 44 }}] | |||
EDOs: {{EDOs|181, 207, 388, 569, 595}} | |||
Badness: 0.0707 | |||
=== 17-limit === | |||
Commas: 833/832, 847/845, 1089/1088, 2058/2057, 2431/2430 | |||
POTE generator: ~187/182 = 46.3918 | |||
Mapping: [{{map| 1 0 7 3 4 2 2 }}, {{map| 0 41 -121 -5 -14 44 54 }}] | |||
EDOs: {{EDOs|181, 207, 388, 569, 595}} | |||
Badness: 0.0411 | |||
== 26 & 388 temperament == | |||
=== 5-limit === | |||
Comma: {{monzo| -41 146 -82 }} | |||
POTE generator: ~{{monzo| -16 57 -32 }} = 46.3883 | |||
Mapping: [{{map| 2 0 -1 }}, {{map| 0 41 73 }}] | |||
EDOs: {{EDOs|26, 388, 414, 802, 1190, 1578, 1966, 2354}} | |||
Badness: 3.9285 | |||
=== 7-limit === | |||
Commas: 4375/4374, {{monzo| -62 -1 2 21 }} | |||
POTE generator: ~17294403/16777216 = 46.3835 | |||
Mapping: [{{map| 2 0 -1 6 }}, {{map| 0 41 73 -5 }}] | |||
EDOs: {{EDOs|26, 362, 388, 414, 802}} | |||
Badness: 0.4543 | |||
=== 11-limit === | |||
Commas: 3025/3024, 4375/4374, 5931980229/5905580032 | |||
POTE generator: ~352/343 = 46.3827 | |||
Mapping: [{{map| 2 0 -1 6 8 }}, {{map| 0 41 73 -5 -14 }}] | |||
EDOs: {{EDOs|26, 362, 388, 414, 802}} | |||
Badness: 0.1020 | |||
=== 13-limit === | |||
Commas: 2200/2197, 3025/3024, 4375/4374, 50421/50336 | |||
POTE generator: ~352/343 = 46.3825 | |||
Mapping: [{{map| 2 0 -1 6 8 4 }}, {{map| 0 41 73 -5 -14 44 }}] | |||
EDOs: {{EDOs|26, 362, 388, 414, 802}} | |||
Badness: 0.0595 | |||
=== 17-limit === | |||
Commas: 833/832, 1089/1088, 1225/1224, 1701/1700, 2200/2197 | |||
POTE generator: ~187/182 = 46.3824 | |||
Mapping: [{{map| 2 0 -1 6 8 4 4 }}, {{map| 0 41 73 -5 -14 44 54 }}] | |||
EDOs: {{EDOs|26, 362, 388, 414, 802}} | |||
Badness: 0.0326 | |||
{{todo|expand}} | |||