|
|
(16 intermediate revisions by 7 users not shown) |
Line 1: |
Line 1: |
| '''16ED5/2''' is the equal division of the [[5/2]] interval into 16 parts of 99.1446 [[cent]]s each. This is the scale which occurs as the dominant reformed Mixolydian mode tuned as an equal division of a just interval. | | {{Infobox ET}} |
| | | '''16ED5/2''' is the equal division of the [[5/2]] interval into 16 parts of 99.1446 [[cent]]s each. 16 equal divisions of the just major tenth is not a "real" xenharmonic tuning; it is a slightly compressed version of the normal [[12edo|12-tone scale]]. |
| == Intervals == | | == Intervals == |
| {| class="wikitable" | | {| class="wikitable" |
| |+ | | |+ |
| !Degrees | | ! Degrees |
| ! colspan="3" |Enneatonic | | ! colspan="3" | Enneatonic |
| !ed38\29 | | ! Cents |
| !Golden
| |
| !ed5/2
| |
| !ed(7φ+6)\5(φ+1)
| |
| !ed4\3=''r¢''
| |
| |- | | |- |
| |1 | | | 1 |
| |1#/2b | | | 1#/2b |
| | colspan="2" |F#/Gb | | | colspan="2" | F#/Gb |
| |98.276
| | | 99.145 |
| |98.3795
| |
| |99.145 | |
| |99.2705
| |
| |''100''
| |
| |- | | |- |
| |2 | | | 2 |
| |2 | | | 2 |
| | colspan="2" |G | | | colspan="2" | G |
| |196.552
| | | 198.289 |
| |196.759
| |
| |198.289 | |
| |198.541
| |
| |''200''
| |
| |- | | |- |
| |3 | | | 3 |
| |2#/3b | | | 2#/3b |
| |G#/Jb | | | G#/Jb |
| |''G#/Ab'' | | | ''G#/Ab'' |
| |294.828
| | | 297.433 |
| |295.138
| |
| |297.433 | |
| |297.8115
| |
| |''300''
| |
| |- | | |- |
| |4 | | | 4 |
| |3 | | | 3 |
| |J | | | J |
| |''A'' | | | ''A'' |
| |393.103
| | | 396.578 |
| |393.518
| |
| |396.578 | |
| |397.082
| |
| |''400''
| |
| |- | | |- |
| |5 | | | 5 |
| |3#/4b | | | 3#/4b |
| |J#/Ab | | | J#/Ab |
| |''A#/Bb'' | | | ''A#/Bb'' |
| |491.379
| | | 495.723 |
| |491.897
| |
| |495.723 | |
| |496.3525
| |
| |''500''
| |
| |- | | |- |
| |6 | | | 6 |
| |4 | | | 4 |
| |A | | | A |
| |''B'' | | | ''B'' |
| |589.655
| | | 594.868 |
| |590.277
| |
| |594.868 | |
| |595.623
| |
| |''600''
| |
| |- | | |- |
| |7 | | | 7 |
| |5 | | | 5 |
| |B | | | B |
| |''H'' | | | ''H'' |
| |687.931
| | | 694.012 |
| |688.656
| |
| |694.012 | |
| |694.894
| |
| |''700''
| |
| |- | | |- |
| |8 | | | 8 |
| |5#/6b | | | 5#/6b |
| |B#/Hb | | | B#/Hb |
| |''H#/Cb'' | | | ''H#/Cb'' |
| |786.207
| | | 793.157 |
| |787.036
| |
| |793.157 | |
| |794.164
| |
| |''800''
| |
| |- | | |- |
| |9 | | | 9 |
| |6 | | | 6 |
| |H | | | H |
| |''C'' | | | ''C'' |
| |884.483
| | | 892.3015 |
| |885.415
| |
| |892.3015 | |
| |893.435
| |
| |''900''
| |
| |- | | |- |
| |10 | | | 10 |
| |6#/7b | | | 6#/7b |
| |H#/Cb | | | H#/Cb |
| |''C#/Db'' | | | ''C#/Db'' |
| |982.759
| | | 991.446 |
| |983.795
| |
| |991.446 | |
| |992.705
| |
| |''1000''
| |
| |- | | |- |
| |11 | | | 11 |
| |7 | | | 7 |
| |C | | | C |
| |''D'' | | | ''D'' |
| |1081.0345
| | | 1090.591 |
| |1082.174
| |
| |1090.591 | |
| |1091.976
| |
| |''1100''
| |
| |- | | |- |
| |12 | | | 12 |
| |7#/8b | | | 7#/8b |
| |C#/Db | | | C#/Db |
| |''D#/Sb'' | | | ''D#/Sb'' |
| |1179.31
| | | 1189.735 |
| |1180.554
| |
| |1189.735 | |
| |1191.246
| |
| |''1200''
| |
| |- | | |- |
| |13 | | | 13 |
| |8 | | | 8 |
| |D | | | D |
| |''S'' | | | ''S'' |
| |1277.586
| | | 1288.88 |
| |1278.933
| |
| |1288.88 | |
| |1290.517
| |
| |''1300''
| |
| |- | | |- |
| |14 | | | 14 |
| |8#/9b | | | 8#/9b |
| |D#/Eb | | | D#/Eb |
| |''S#/Eb'' | | | ''S#/Eb'' |
| |1375.862
| | | 1388.0245 |
| |1377.313
| |
| |1388.0245 | |
| |1389.787
| |
| |''1400''
| |
| |- | | |- |
| |15 | | | 15 |
| |9 | | | 9 |
| | colspan="2" |E | | | colspan="2" | E |
| |1474.138
| | | 1487.169 |
| |1475.692
| |
| |1487.169 | |
| |1489.058
| |
| |''1500''
| |
| |- | | |- |
| |16 | | | 16 |
| |1 | | | 1 |
| | colspan="2" |F | | | colspan="2" | F |
| |1572.414
| | | 1586.314 |
| |1574.0715
| |
| |1586.314 | |
| |1588.328
| |
| |''1600''
| |
| |} | | |} |
| Coincidentally, 133 steps of the pyrite EDX of this size exceed 11 octaves by only 2.978¢.
| |
|
| |
|
| == 16ed5/2 as a generator == | | == Harmonics == |
| 16ED5/2 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[Subgroup temperaments|subgroup temperament]] which tempers out 256/255, 361/360, and 4624/4617, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintaleap'' temperament). This temperament is supported by {{Val list|12, 109, 121, 133, 145}}, and [[157edo|157]] EDOs.
| | {{Harmonics in equal |
| | | steps = 16 |
| | | num = 5 |
| | | denom = 2 |
| | }} |
| | {{Harmonics in equal |
| | | steps = 16 |
| | | num = 5 |
| | | denom = 2 |
| | | start = 12 |
| | | collapsed = 1 |
| | }} |
| | |
| | == Regular temperaments == |
| | {{Main| Quintaleap family }} |
| | |
| | 16ed5/2 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperament]] which tempers out 256/255, 361/360, and 4624/4617, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintaleap'' temperament). This temperament is supported by {{Optimal ET sequence| 12-, 109-, 121-, 133-, 145- }}, and [[157edo]]. |
|
| |
|
| Tempering out 400/399 (equating 20/19 and 21/20) leads ''[[Octagar temperaments #Quintupole|quintupole]]'' (12&121), and tempering out 476/475 (equating 19/17 with 28/25) leads ''[[Hemifamity temperaments #Quinticosiennic|quinticosiennic]]'' (12&145). | | Tempering out 400/399 (equating 20/19 and 21/20) leads to ''[[quintupole]]'' (12&121), and tempering out 476/475 (equating 19/17 with 28/25) leads to ''[[quinticosiennic]]'' (12&145). |
|
| |
|
| | Another temperament related to 16ed5/2 is ''[[quintapole]]'' (12&85). It is practically identical to the [[18/17s equal temperament #Related temperament|Galilei tuning]], which is generated by the ratios 2/1 and 18/17. |
|
| |
|
| ; <font style="font-size: 1.15em">Quintaleap (12&121)</font>
| | == Scale tree == |
| '''5-limit'''<br>
| | Ed5/2 scales can be approximated in [[EDO]]s by subdividing their approximations of 5/2. |
| Comma: {{monzo|37 -16 -5}} = 137438953472/134521003125<br>
| |
| Mapping: [{{val|1 2 1}}, {{val|0 -5 16}}]<br>
| |
| POTE generator: ~135/128 = 99.267<br>
| |
| Vals: 12, 85, 97, 109, 121, 133, 278c, 411bc, 544bc<br>
| |
| Badness: 0.444506<br><br>
| |
| '''2.3.5.17.19 subgroup'''<br>
| |
| Comma list: 256/255, 361/360, 4624/4617<br>
| |
| Gencom: [2 18/17; 256/255 361/360 4624/4617]<br>
| |
| Gencom mapping: [{{val|1 2 1 5 4}}, {{val|0 -5 16 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.276<br>
| |
| Vals: 12, 109, 121, 133<br>
| |
| RMS error: 0.3427 cents<br><br>
| |
|
| |
|
| ; <font style="font-size: 1.15em">[[Octagar temperaments #Quintupole|Quintupole]] (12&121)</font>
| | {| class="wikitable" |
| {{See also|34ed7 #34ed7 as a generator}}
| | |+ |
| '''7-limit'''<br>
| | ! colspan="4" |Major tenth |
| Comma list: 4000/3969, 458752/455625<br>
| | ! Period |
| Mapping: [{{val|1 2 1 0}}, {{val|0 -5 16 34}}]<br>
| | !Notes |
| POTE generator: ~135/128 = 99.175<br>
| | |- |
| Vals: 12, 97, 109, 121<br>
| | |9\7 |
| Badness: 0.111620<br><br>
| | | |
| '''11-limit'''<br>
| | | |
| Comma list: 896/891, 1375/1372, 4375/4356<br>
| | | |
| Mapping: [{{val|1 2 1 0 -1}}, {{val|0 -5 16 34 54}}]<br>
| | |96.429 |
| POTE generator: ~132/125 = 99.156<br>
| | |Superpental Dorian mode ends, Mohajira Dorian-Mixolydian mode begins |
| Vals: 12, 109, 121, 351bde, 472bdee<br>
| | |- |
| Badness: 0.056501<br><br>
| | | |
| '''13-limit'''<br>
| | |31\24 |
| Comma list: 352/351, 364/363, 625/624, 2704/2695<br>
| | | |
| Mapping: [{{val|1 2 1 0 -1 -2}}, {{val|0 -5 16 34 54 69}}]<br>
| | | |
| POTE generator: ~55/52 = 99.165<br>
| | |96.875 |
| Vals: 12f, 109, 121<br>
| | | |
| Badness: 0.038431<br><br>
| | |- |
| '''17-limit'''<br>
| | |22\17 |
| Comma list: 256/255, 352/351, 364/363, 375/374, 442/441<br>
| | | |
| Mapping: [{{val|1 2 1 0 -1 -2 5}}, {{val|0 -5 16 34 54 69 -11}}]<br>
| | | |
| POTE generator: ~18/17 = 99.172<br>
| | | |
| Vals: 12f, 109, 121<br>
| | |97.059 |
| Badness: 0.028721<br><br>
| | |Mohajira Dorian-Mixolydian mode ends, Beatles Dorian-Mixolydian mode begins |
| '''19-limit'''<br>
| | |- |
| Comma list: 190/189, 256/255, 352/351, 361/360, 364/363, 375/374<br>
| | | |
| Mapping: [{{val|1 2 1 0 -1 -2 5 4}}, {{val|0 -5 16 34 54 69 -11 3}}]<br>
| | |35\27 |
| POTE generator: ~18/17 = 99.164<br>
| | | |
| Vals: 12f, 109, 121<br>
| | | |
| Badness: 0.023818<br><br>
| | |97.{{Overline|2}} |
| ; <font style="font-size: 1.15em">[[Hemifamity temperaments #Quinticosiennic|Quinticosiennic]] (12&145)</font>
| | | |
| '''7-limit'''<br>
| | |- |
| Comma list: 5120/5103, 395136/390625<br>
| | | 13\10 |
| Mapping: [{{val|1 2 1 -1}}, {{val|0 -5 16 46}}]<br>
| | | |
| POTE generator: ~135/128 = 99.345<br>
| | | |
| Vals: 12, 133, 145, 157, 302c, 459bcc<br>
| | | |
| Badness: 0.158041<br><br>
| | |97.5 |
| '''11-limit'''<br>
| | |Beatles Dorian-Mixolydian mode ends, Subpental Mixolydian mode begins |
| Comma list: 441/440, 896/891, 78408/78125<br>
| | |- |
| Mapping: [{{val|1 2 1 -1 -2}}, {{val|0 -5 16 46 66}}]<br>
| | |17\13 |
| POTE generator: ~35/33 = 99.318<br>
| | | |
| Vals: 12, 133, 145<br>
| | | |
| Badness: 0.080674<br><br>
| | | |
| '''13-limit'''<br>
| | |98.077 |
| Comma list: 196/195, 352/351, 364/363, 78408/78125<br>
| | | |
| Mapping: [{{val|1 2 1 -1 -2 -3}}, {{val|0 -5 16 46 66 81}}]<br>
| | |- |
| POTE generator: ~35/33 = 99.307<br>
| | |21\16 |
| Vals: 12f, 133, 145<br>
| | | |
| Badness: 0.052464<br><br>
| | | |
| '''17-limit'''<br>
| | | |
| Comma list: 196/195, 256/255, 352/351, 364/363, 3757/3750<br>
| | |98.4375 |
| Mapping: [{{val|1 2 1 -1 -2 -3 5}}, {{val|0 -5 16 46 66 81 -11}}]<br>
| | |Subpental Mixolydian mode ends, Pental Mixolydian mode begins |
| POTE generator: ~18/17 = 99.308<br>
| | |- |
| Vals: 12f, 133, 145<br>
| | | |
| Badness: 0.037108<br><br>
| | |25\19 |
| '''19-limit'''<br>
| | | |
| Comma list: 196/195, 256/255, 352/351, 361/360, 364/363, 476/475<br>
| | | |
| Mapping: [{{val|1 2 1 -1 -2 -3 5 4}}, {{val|0 -5 16 46 66 81 -11 3}}]<br>
| | |98.684 |
| POTE generator: ~18/17 = 99.303<br>
| | | |
| Vals: 12f, 133, 145<br>
| | |- |
| Badness: 0.028440<br><br>
| | | |
| ; <font style="font-size: 1.15em">[[Marvel temperaments #Quintapole|Quintapole]] (12&85)</font>
| | | |
| {{See also|42ed11 #42ed11 as a generator}}
| | |29\22 |
| '''7-limit'''<br>
| | | |
| Comma list: 225/224, 7812500/7411887<br>
| | |98.8{{Overline|63}} |
| Mapping: [{{val|1 2 1 1}}, {{val|0 -5 16 22}}]<br>
| | | |
| POTE generator: ~21/20 = 98.994<br>
| | |- |
| Vals: 12, 73c, 85, 97d<br>
| | | |
| Badness: 0.192498<br><br>
| | | |
| '''11-limit'''<br>
| | | |
| Comma list: 100/99, 225/224, 85184/84035<br>
| | |33\25 |
| Mapping: [{{val|1 2 1 1 0}}, {{val|0 -5 16 22 42}}]<br>
| | |99 |
| POTE generator: ~21/20 = 98.954<br>
| | | |
| Vals: 12, 73ce, 85, 97d<br>
| | |- |
| Badness: 0.104353<br><br>
| | |4\3 |
| | | |
| | | |
| | | |
| | |100 |
| | |Pental Mixolydian mode ends, Soft Superpental Mixolydian mode begins |
| | |- |
| | | |
| | | 19\14 |
| | | |
| | | |
| | |101.786 |
| | | |
| | |- |
| | |15\11 |
| | | |
| | | |
| | | |
| | |102.{{Overline|27}} |
| | |Soft Superpental Mixolydian mode ends, Intense Superpental Mixolydian mode begins |
| | |- |
| | | |
| | |26\19 |
| | | |
| | | |
| | |102.632 |
| | | |
| | |- |
| | |11\8 |
| | | |
| | | |
| | | |
| | |103.125 |
| | |Intense Superpental Mixolydian mode ends, Mixolydian-Ionian mode begins |
| | |- |
| | | |
| | |18\13 |
| | | |
| | | |
| | |103.846 |
| | | |
| | |- |
| | | |
| | | |
| | |25\18 |
| | | |
| | |104.1{{Overline|6}} |
| | | |
| | |} |
|
| |
|
| == See also == | | == See also == |
| * [[16edX|16EDX]]
| |
| * [[12edo|12EDO]] - relative EDO | | * [[12edo|12EDO]] - relative EDO |
| * [[28ed5|28ED5]] - relative ED5 | | * [[28ed5|28ED5]] - relative ED5 |
Line 276: |
Line 259: |
| * [[40ed10|40ED10]] - relative ED10 | | * [[40ed10|40ED10]] - relative ED10 |
| * [[42ed11|42ED11]] - relative ED11 | | * [[42ed11|42ED11]] - relative ED11 |
| * [[18/17s equal temperament|AS18/17]] - relative [[AS|ambitonal sequence]] | | * [[18/17 equal-step tuning|AS18/17]] - relative [[AS|ambitonal sequence]] |
|
| |
|
| [[Category:EdX]]
| |
| [[Category:Nonoctave]] | | [[Category:Nonoctave]] |