612edo: Difference between revisions

m You broke the categories again
m Theory: Fix missing word
 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''612 equal divisions of the octave''' ('''612edo'''), or the '''612(-tone) equal temperament''' ('''612tet''', '''612et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 612 parts of about 1.96 [[cent]]s each, a size close to [[32805/32768]], the schisma.
{{ED intro}}


== Theory ==
== Theory ==
612edo is a very strong [[5-limit]] system, a fact noted by [[Bosanquet]] and [[Barbour]]. It tempers out the {{monzo| 485 -306 }} (sasktel comma) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} (kwazy comma), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]].
612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. As an equal temperament, it [[tempering out|tempers out]] the {{monzo| 485 -306 }} ([[sasktel comma]]) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} ([[kwazy comma]]), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]].


The 612edo has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]].
The 612edo step has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]].


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|612|columns=11}}
{{Harmonics in equal|612}}


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 23: Line 24:
| 2.3.5
| 2.3.5
| {{monzo| 1 -27 18 }}, {{monzo| -53 10 16 }}
| {{monzo| 1 -27 18 }}, {{monzo| -53 10 16 }}
| [{{val| 612 970 1421 }}]
| {{Mapping| 612 970 1421 }}
| +0.0044
| +0.0044
| 0.0089
| 0.0089
Line 30: Line 31:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 4375/4374, {{monzo| -53 10 16 }}
| 2401/2400, 4375/4374, {{monzo| -53 10 16 }}
| [{{val| 612 970 1421 1718 }}]
| {{Mapping| 612 970 1421 1718 }}
| +0.0210
| +0.0210
| 0.0297
| 0.0297
Line 37: Line 38:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3025/3024, 4375/4374, {{monzo| 21 -6 -7 -2 3 }}
| 2401/2400, 3025/3024, 4375/4374, {{monzo| 21 -6 -7 -2 3 }}
| [{{val| 612 970 1421 1718 2117 }}]
| {{Mapping| 612 970 1421 1718 2117 }}
| +0.0363
| +0.0363
| 0.0406
| 0.0406
Line 44: Line 45:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 2200/2197, 2401/2400, 3025/3024, 4096/4095, 4375/4374
| 2200/2197, 2401/2400, 3025/3024, 4096/4095, 4375/4374
| [{{val| 612 970 1421 1718 2117 2265 }}]
| {{Mapping| 612 970 1421 1718 2117 2265 }}
| +0.0010
| +0.0010
| 0.0871
| 0.0871
Line 51: Line 52:
| 2.3.5.7.11.13.19
| 2.3.5.7.11.13.19
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095
| [{{val| 612 970 1421 1718 2117 2265 2600 }}]
| {{Mapping| 612 970 1421 1718 2117 2265 2600 }}
| -0.0168
| −0.0168
| 0.0917
| 0.0917
| 4.68
| 4.68
|}
|}
* 612et has a lower relative error than any previous equal temperaments in the 5-limit. Not until [[1171edo|1171]] do we find a better equal temperament in terms of either absolute error or relative error.  
* 612et has a lower relative error than any previous equal temperaments in the 5-limit. Not until [[1171edo|1171]] do we find a better equal temperament in terms of either absolute error or relative error.  
* Besides, it has a lower absolute error in the 7- and 11-limit than any previous equal temperaments, and is only bettered by [[935edo|935]] and [[836edo|836]], respectively.  
* It also has a lower absolute error in the 7- and 11-limit than any previous equal temperaments, and is only bettered by [[935edo|935]] and [[836edo|836]], respectively.  


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 84: Line 86:
| 162.75
| 162.75
| 1125/1024
| 1125/1024
| [[Kwazy]]
| [[Crazy]]
|-
|-
| 4
| 4
Line 122: Line 124:
| [[Hemiennealimmal]] (11-limit)
| [[Hemiennealimmal]] (11-limit)
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct


== Music ==
== Music ==
* [https://www.youtube.com/watch?v=_DrkrgkiaAY Theme and Variations in Hemiennealimmal] by [[Eliora]]
; [[Eliora]]
* [https://www.youtube.com/watch?v=_DrkrgkiaAY ''Theme and Variations in Hemiennealimmal''] (2023)
 
== Notes ==
<references />


[[Category:Ennealimmal]]
[[Category:Ennealimmal]]
[[Category:Hemiennealimmal]]
[[Category:Hemiennealimmal]]
[[Category:Listen]]