Mabila family: Difference between revisions

added link to the no-threes version
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''mabila family''' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] {{monzo| 28 -3 -10 }} = 268435456/263671875 in the 5-limit. This gives a temperament structure superficially similar to [[mavila]], with extremely sharp fourths/flat fifths, three of which make a major third. However, unlike mavila, 10 of these bad fifths reach a more in tune one, which is useful for creating resolutions when using a large enough gamut, such as the [[9L 7s]] [[mos]] which has 3 good major & minor chords.  
The '''mabila family''' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] {{monzo| 28 -3 -10 }} = 268435456/263671875 in the 5-limit. This gives a temperament structure superficially similar to [[mavila]], with extremely sharp fourths/flat fifths, three of which make a major third. However, unlike mavila, 10 of these bad fifths reach a more in tune one, which is useful for creating resolutions when using a large enough gamut, such as the [[9L 7s]] [[mos]] which has 3 good major & minor chords.  


Line 15: Line 16:


== Semabila ==
== Semabila ==
{{See also| Semaphoresmic clan #Semabila }}
{{See also| No-threes subgroup temperaments #Mabilic }}
{{See also| No-threes subgroup temperaments #Mabilic }}
Semabila is so named because it is a semaphore temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 23: Line 25:


{{Mapping|legend=1| 1 6 1 5 | 0 -10 3 -5 }}
{{Mapping|legend=1| 1 6 1 5 | 0 -10 3 -5 }}
{{Multival|legend=1| 10 -3 5 -28 -20 20 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~75/56 = 529.667
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~75/56 = 529.667
Line 90: Line 90:


{{Mapping|legend=1| 1 6 1 9 | 0 -10 3 -14 }}
{{Mapping|legend=1| 1 6 1 9 | 0 -10 3 -14 }}
{{Multival|legend=1| 10 -3 14 -28 -6 41 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~48/35 = 529.979
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~48/35 = 529.979
Line 157: Line 155:


{{Mapping|legend=1| 1 6 1 24 | 0 -10 3 -48 }}
{{Mapping|legend=1| 1 6 1 24 | 0 -10 3 -48 }}
{{Multival|legend=1| 10 -3 48 -28 48 120 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~512/375 = 529.772
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~512/375 = 529.772
Line 224: Line 220:


{{Mapping|legend=1| 1 6 1 -10 | 0 -10 3 29 }}
{{Mapping|legend=1| 1 6 1 -10 | 0 -10 3 29 }}
{{Multival|legend=1| 10 -3 -29 -28 -74 -59 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~512/375 = 529.907
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~512/375 = 529.907
Line 291: Line 285:


{{Mapping|legend=1| 1 6 1 7 | 0 -20 6 -19 }}
{{Mapping|legend=1| 1 6 1 7 | 0 -20 6 -19 }}
{{Multival|legend=1| 20 -6 19 -56 -26 61 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/6 = 264.825
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/6 = 264.825
Line 358: Line 350:


{{Mapping|legend=1| 1 -4 4 7 | 0 20 -6 -15 }}
{{Mapping|legend=1| 1 -4 4 7 | 0 20 -6 -15 }}
{{Multival|legend=1| 20 -6 -15 -56 -80 -18 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 335.182
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 335.182
Line 425: Line 415:


{{Mapping|legend=1| 3 8 6 12 | 0 -10 3 -11 }}
{{Mapping|legend=1| 3 8 6 12 | 0 -10 3 -11 }}
{{Multival|legend=1| 30 -9 33 -84 -32 102 }}


[[Optimal tuning]] ([[POTE]]): ~1125/896 = 1\3, ~7/6 = 270.269
[[Optimal tuning]] ([[POTE]]): ~1125/896 = 1\3, ~7/6 = 270.269
Line 487: Line 475:


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Mabila family| ]] <!-- main article -->
[[Category:Mabila family| ]] <!-- main article -->
[[Category:Mabila| ]] <!-- key article -->
[[Category:Mabila| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]