Archytas clan: Difference between revisions

Quasisuper: databoxified
m Archy: schism isn't an exo
 
(90 intermediate revisions by 14 users not shown)
Line 1: Line 1:
The '''archytas clan''' tempers out the [[64/63|Archytas comma]], 64/63. This means that four stacked 3/2 fifths equal a 9/7 major third. (Note the similarity in function to [[81/80]] in meantone, where four stacked 3/2 fifths equal a 5/4 major third.) This leads to tunings with 3s and 7s quite sharp, such as those of [[22edo]].  
{{Technical data page}}
The '''archytas clan''' (or '''archy family''') [[tempering out|tempers out]] the [[64/63|Archytas' comma]], 64/63. This means a stack of two [[3/2]] fifths [[octave reduction|octave-reduced]] equals a whole tone of [[8/7]][[~]][[9/8]] tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a [[9/7]] major third. Note the similarity in function to [[81/80]] in meantone, where four stacked fifths octave-reduced equal a [[5/4]] major third. This leads to tunings with 3's and 7's quite sharp, such as those of [[22edo]], [[27edo]], or [[49edo]].  


Adding 50/49 to the list of commas gives pajara, 36/35 gives dominant, 16/15 gives mother, 126/125 gives augene, 28/27 gives blacksmith, 245/243 gives superpyth, 250/243 gives porcupine, 686/675 gives beatles, 360/343 gives schism, 3125/3087 gives passion, 2430/2401 gives quasisuper, and 4375/4374 gives modus.  
This article focuses on rank-2 temperaments. See [[Archytas family]] for the [[rank-3 temperament]] resulting from tempering out 64/63 alone in the full 7-limit.  


Discussed under subgroup temperaments is the 2.3.7 [[Subgroup temperaments #Archy|archy]]. Under their respective 5-limit families are [[Father family #Mother|mother]], [[Meantone family #Dominant|dominant]], [[Augmented family #Augene|augene]], [[Porcupine family|porcupine]], [[Diaschismic family #Pajara|pajara]], [[Tetracot family #Modus|modus]], and [[Immunity family #Immunized|immunized]]. The rest are considered below.
== Archy ==
{{Main| Superpyth }}


= Blacksmith =
[[Subgroup]]: 2.3.7


[[File:blacksmith10.jpg|alt=blacksmith10.jpg|thumb|Lattice of blacksmith]]
[[Comma list]]: 64/63


== 5-limit (blackwood) ==
{{Mapping|legend=2| 1 0 6 | 0 1 -2 }}


Period: 1\5
: sval mapping generators: ~2, ~3


Optimal ([[POTE]]) generator: ~5/4 = 399.594
{{Mapping|legend=3| 1 0 0 6 | 0 1 0 -2 }}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
: [[gencom]]: [2 3; 64/63]


Scales (Scala files):  
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1196.9552{{c}}, ~3/2 = 707.5215{{c}}
: [[error map]]: {{val| -3.045 +2.522 +3.952 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.3901{{c}}
: error map: {{val| 0.000 +7.435 +12.394 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Optimal ET sequence|legend=1| 2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 256/243
[[Badness]] (Sintel): 0.159


Mapping: [{{val| 5 8 0 }}, {{val| 0 0 1 }}]
Scales: [[archy5]], [[archy7]], [[archy12]]


Mapping generators: ~9/8, ~5
=== Overview to extensions ===
==== 7-limit extensions ====
The second comma in the comma list defines which [[7-limit]] family member we are looking at:  
* [[#Schism|Schism]] adds 360/343, for a tuning around [[12edo]];
* Dominant adds [[36/35]], for a tuning between [[12edo]] and [[17edo|17c-edo]];
* [[#Quasisuper|Quasisuper]] adds [[2430/2401]], for a tuning between 17c-edo and [[22edo]];
* [[#Superpyth|Superpyth]] adds [[245/243]], for a tuning between 22edo and [[27edo]];
* [[#Quasiultra|Quasiultra]] adds 33614/32805, for a tuning between 27edo and [[32edo]];
* [[#Ultrapyth|Ultrapyth]] adds 6860/6561, for a tuning sharp of 32edo;
* Mother adds [[16/15]], for an exotemperament well tuned around [[5edo]].


{{Val list|legend=1| 5, 10, 15 }}
These all use the same generators as archy.


Badness: 0.0638
[[686/675]] gives beatles, splitting the fifth in two. [[8748/8575]] gives immunized, splitting the twelfth in two. [[50/49]] gives pajara with a semioctave period. [[392/375]] gives progress, splitting the twelfth in three. [[250/243]] gives porcupine, splitting the fourth in three. [[126/125]] gives augene with a 1/3-octave period. [[4375/4374]] gives modus, splitting the fifth in four. [[3125/3024]] gives brightstone. [[9604/9375]] gives fervor. [[3125/2916]] gives sixix. [[3125/3087]] gives passion. Those split the generator in five in various ways. [[28/27]] gives blacksmith with a 1/5-octave period. Finally, [[15625/15552]] gives catalan, splitting the twelfth in six.  


</div></div>
Temperaments discussed elsewhere are:
* ''[[Mother]]'' (+16/15) → [[Father family #Mother|Father family]]
* [[Dominant (temperament)|Dominant]] (+36/35) → [[Meantone family #Dominant|Meantone family]]
* ''[[Medusa]]'' (+15/14) → [[Very low accuracy temperaments #Medusa|Very low accuracy temperaments]]
* ''[[Immunized]]'' (+8748/8575) → [[Immunity family #Immunized|Immunity family]]
* [[Pajara]] (+50/49) → [[Diaschismic family #Pajara|Diaschismic family]]
* [[Augene]] (+126/125) → [[Augmented family #Augene|Augmented family]]
* [[Porcupine]] (+250/243) → [[Porcupine family #Septimal porcupine|Porcupine family]]
* ''[[Modus]]'' (+4375/4374) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Brightstone]]'' (+3125/3024) → [[Magic family #Brightstone|Magic family]]
* ''[[Passion]]'' (+3125/3087) → [[Passion family #Septimal passion|Passion family]]
* [[Blackwood]] (+28/27) → [[Limmic temperaments #Blackwood|Limmic temperaments]]
* ''[[Catalan]]'' (+15625/15552) → [[Kleismic family #Catalan|Kleismic family]]


== 7-limit ==
Considered below are superpyth, quasisuper, ultrapyth, quasiultra, schism, beatles, progress, fervor, and sixix.


Period: 1\5
==== Subgroup extensions ====
Omitting prime 5, archy can be extended to the 2.3.7.11 subgroup by identifying 11/8 as a diminished fourth (C–Gb). This is called supra, given right below. Discussed elsewhere is [[suhajira]] of the [[neutral clan #Suhajira|neutral clan]].


Optimal ([[POTE]]) generator: ~5/4 = 392.767
=== Supra ===
Subgroup: 2.3.7.11


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Comma list: 64/63, 99/98


Scales (Scala files):  
Sval mapping: {{mapping| 1 0 6 13 | 0 1 -2 -6 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Gencom mapping: {{mapping| 1 0 0 6 13 | 0 1 0 -2 -6 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 49/48
: gencom: [2 3; 64/63 99/98]


Mapping: [{{val| 5 8 0 14 }}, {{val| 0 0 1 0 }}]
Optimal tunings:  
* WE: ~2 = 1197.2650{{c}}, ~3/2 = 705.5803{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 707.4981{{c}}


Mapping generators: ~7/6, ~5
{{Optimal ET sequence|legend=0| 5, 12, 17, 39d, 56d }}


Wedgie: {{wedgie| 0 5 0 8 0 -14 }}
Badness (Sintel): 0.352


{{Val list|legend=1| 5, 10, 15, 40b, 55b }}
Scales: [[supra7]], [[supra12]]


Badness: 0.0256
==== Supraphon ====
Subgroup: 2.3.7.11.13


</div></div>
Comma list: 64/63, 78/77, 99/98


== 11-limit ==
Sval mapping: {{mapping| 1 0 6 13 18 | 0 1 -2 -6 -9 }}


Period: 1\5
Gencom mapping: {{mapping| 1 0 0 6 13 18 | 0 1 0 -2 -6 -9 }}


Optimal ([[POTE]]) generator: ~5/4 = 394.948
: gencom: [2 3; 64/63 78/77 99/98]


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Optimal tunings:  
* WE: ~2 = 1197.1909{{c}}, ~3/2 = 704.4836{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 706.4289{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 12f, 17 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 0.498
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 49/48, 55/54
Scales: [[supra7]], [[supra12]]


Mapping: [{{val| 5 8 0 14 29 }}, {{val| 0 0 1 0 -1 }}]
== Superpyth ==
{{Main| Superpyth }}
: ''For the 5-limit version, see [[Syntonic–diatonic equivalence continuum #Superpyth (5-limit)]].''


{{Val list|legend=1| 5, 10, 15, 40be, 55be, 70bde, 85bcde}}
Superpyth, virtually the canonical extension, adds [[245/243]] and [[1728/1715]] to the comma list and can be described as {{nowrap| 22 & 27 }}. ~5/4 is found at +9 generator steps, as an augmented second (C–D#). 49edo remains an obvious tuning choice.


Badness: 0.0246
[[Subgroup]]: 2.3.5.7


</div></div>
[[Comma list]]: 64/63, 245/243


=== 13-limit ===
{{Mapping|legend=1| 1 0 -12 6 | 0 1 9 -2 }}


Period: 1\5
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1197.0549{{c}}, ~3/2 = 708.5478{{c}}
: [[error map]]: {{val| -2.945 +3.648 -0.548 +2.298 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 710.1193{{c}}
: error map: {{val| 0.000 +8.164 +4.760 +10.935 }}


Optimal ([[POTE]]) generator: ~5/4 = 391.0367
{{Optimal ET sequence|legend=1| 5, 17, 22, 27, 49, 174bbcddd }}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
[[Badness]] (Sintel): 0.818


Scales (Scala files):
=== 11-limit ===
The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double-augmented second (C–Dx) and finds the ~13/8 at +13 generator steps, as a double-augmented fourth (C–Fx).


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Subgroup: 2.3.5.7.11
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 40/39, 49/48, 55/54
Comma list: 64/63, 100/99, 245/243


Mapping: [{{val| 5 8 0 14 29 7 }}, {{val| 0 0 1 0 -1 1 }}]
Mapping: {{mapping| 1 0 -12 6 -22 | 0 1 9 -2 16 }}


{{Val list|legend=1| 5, 10, 15, 25e, 40bef}}
Optimal tunings:
* WE: ~2 = 1197.0673{{c}}, ~3/2 = 708.4391{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.0129{{c}}


Badness: 0.0205
{{Optimal ET sequence|legend=0| 22, 27e, 49 }}


</div></div>
Badness (Sintel): 0.826


== Farrier ==
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Period: 1\5
Comma list: 64/63, 78/77, 91/90, 100/99


Optimal ([[POTE]]) generator: ~5/4 = 398.070
Mapping: {{mapping| 1 0 -12 6 -22 -17 | 0 1 9 -2 16 13 }}


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Optimal tunings:  
* WE: ~2 = 1197.3011{{c}}, ~3/2 = 708.8813{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 710.3219{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 22, 27e, 49, 76bcde }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 1.02
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 49/48, 77/75
==== Thomas ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 5 8 0 14 -6 }}, {{val| 0 0 1 0 2 }}]
Comma list: 64/63, 100/99, 169/168, 245/243


{{Val list|legend=1| 5e, 10e, 15 }}
Mapping: {{mapping| 1 1 -3 4 -6 4 | 0 2 18 -4 32 -1 }}


Badness: 0.0292
Optimal tunings:  
* WE: ~2 = 1197.4942{{c}}, ~16/13 = 354.2950{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 354.9824{{c}}


</div></div>
{{Optimal ET sequence|legend=0| 27e, 44, 71d, 98bde }}


=== 13-limit ===
Badness (Sintel): 2.03


Period: 1\5
=== Suprapyth ===
Suprapyth finds the ~11/8 at the diminished fifth (C–Gb), and finds the ~13/8 at the diminished seventh (C–Bbb).


Optimal ([[POTE]]) generator: ~5/4 = 396.812
Subgroup: 2.3.5.7.11


EDO generators: [[10edo|3\10]], [[15edo|4\15]]
Comma list: 55/54, 64/63, 99/98


Scales (Scala files):  
Mapping: {{mapping| 1 0 -12 6 13 | 0 1 9 -2 -6 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Optimal tunings:
<div style="line-height:1.6;">Technical data</div>
* WE: ~2 = 1198.6960{{c}}, ~3/2 = 708.7235{{c}}
<div class="mw-collapsible-content">
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 709.4699{{c}}


Comma list: 28/27, 40/39, 49/48, 66/65
{{Optimal ET sequence|legend=0| 5, 17, 22 }}


Mapping: [{{val| 5 8 0 14 -6 7 }}, {{val| 0 0 1 0 2 1 }}]
Badness (Sintel): 1.08


{{Val list|legend=1| 5e, 10e, 15 }}
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Badness: 0.0223
Comma list: 55/54, 64/63, 65/63, 99/98


</div></div>
Mapping: {{mapping| 1 0 -12 6 13 18 | 0 1 9 -2 -6 -9 }}


== Ferrum ==
Optimal tunings:
* WE: ~2 = 1199.9871{{c}}, ~3/2 = 708.6952{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.7028{{c}}


Period: 1\5
{{Optimal ET sequence|legend=0| 5f, 17, 22 }}


Optimal ([[POTE]]) generator: ~5/4 = 374.763
Badness (Sintel): 1.50


EDO generators: [[10edo|3\10]]
== Quasisuper ==
Quasisuper can be described as {{nowrap| 17c & 22 }}, with the ~5/4 mapped to -13 generator steps, as a double-diminished fifth (C–Gbb).


Scales (Scala files):  
[[Subgroup]]: 2.3.5.7


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
[[Comma list]]: 64/63, 2430/2401
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 28/27, 35/33, 49/48
{{Mapping|legend=1| 1 0 23 6 | 0 1 -13 -2 }}


Mapping: [{{val| 5 8 0 14 6 }}, {{val| 0 0 1 0 1 }}]
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.9830{{c}}, ~3/2 = 706.4578{{c}}
: [[error map]]: {{val| -3.017 +1.486 -0.435 +6.190 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 708.3716{{c}}
: error map: {{val| 0.000 +6.417 +4.855 +14.431 }}


{{Val list|legend=1| 5e, 10 }}
{{Optimal ET sequence|legend=1| 17c, 22, 61d }}


Badness: 0.0309
[[Badness]] (Sintel): 1.61


</div></div>
=== Quasisupra ===
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament [[supra]], with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).


= Superpyth =
Subgroup: 2.3.5.7.11
{{main| Superpyth }}


Period: 1\1
Comma list: 64/63, 99/98, 121/120


Optimal ([[POTE]]) generator: ~3/2 = 710.291
Mapping: {{mapping| 1 0 23 6 13 | 0 1 -13 -2 -6 }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Optimal tunings:  
* WE: ~2 = 1197.5675{{c}}, ~3/2 = 706.7690{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.3200{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 17c, 22, 39d, 61d }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 1.06
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 245/243
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 1 0 -12 6 }}, {{val| 0 1 9 -2 }}]
Comma list: 64/63, 78/77, 91/90, 121/120


Wedgie: {{wedgie| 1 9 -2 12 -6 -30 }}
Mapping: {{mapping| 1 0 23 6 13 18 | 0 1 -13 -2 -6 -9 }}


{{Val list|legend=1| 5, 17, 22, 27, 49 }}
Optimal tunings:
* WE: ~2 = 1198.2543{{c}}, ~3/2 = 706.9736{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0936{{c}}


Badness: 0.0323
{{Optimal ET sequence|legend=0| 17c, 22, 39d }}


</div></div>
Badness (Sintel): 1.25


== 11-limit ==
=== Quasisoup ===
Subgroup: 2.3.5.7.11


Period: 1\1
Comma list: 55/54, 64/63, 2430/2401


Optimal ([[POTE]]) generator: ~3/2 = 710.175
Mapping: {{mapping| 1 0 23 6 -22 | 0 1 -13 -2 16 }}


EDO generators: [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
Optimal tunings:  
* WE: ~2 = 1198.8446{{c}}, ~3/2 = 708.3388{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 708.0252{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 22 }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 2.76
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 100/99, 245/243
== Ultrapyth ==
{{Main| Ultrapyth }}


Mapping: [{{val| 1 0 -12 6 -22 }}, {{val| 0 1 9 -2 16 }}]
Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 [[the Biosphere #Oceanfront|oceanfront]] temperament, mapping the ~5/4 to +14 fifths as a double-augmented unison (C–Cx).


{{Val list|legend=1| 22, 27e, 49 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.0250
[[Comma list]]: 64/63, 6860/6561


</div></div>
{{Mapping|legend=1| 1 0 -20 6 | 0 1 14 -2 }}


=== 13-limit ===
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1197.2673{{c}}, ~3/2 = 712.0258{{c}}
: [[error map]]: {{val| -2.733 +7.338 -1.557 -3.808 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5430{{c}}
: error map: {{val| 0.000 +11.588 +3.288 +4.088 }}


Period: 1\1
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37 }}


Optimal ([[POTE]]) generator: ~3/2 = 710.479
[[Badness]] (Sintel): 2.74


EDO generators: [[22edo|14\22]], [[27edo|17\27]], [[49edo|20\49]]
=== 11-limit ===
Subgroup: 2.3.5.7.11


Scales (Scala files):  
Comma list: 55/54, 64/63, 2401/2376


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Mapping: {{mapping| 1 0 -20 6 21 | 0 1 14 -2 -11 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 78/77, 91/90, 100/99
Optimal tunings:  
* WE: ~2 = 1198.0290{{c}}, ~3/2 = 712.2235{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.3754{{c}}


Mapping: [{{val| 1 0 -12 6 -22 -17 }}, {{val| 0 1 9 -2 16 13 }}]
{{Optimal ET sequence|legend=0| 5, 32, 37 }}


{{Val list|legend=1| 22, 27e, 49, 76bcde }}
Badness (Sintel): 2.26


Badness: 0.0247
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


</div></div>
Comma list: 55/54, 64/63, 91/90, 1573/1568


== Suprapyth ==
Mapping: {{mapping| 1 0 -20 6 21 -25 | 0 1 14 -2 -11 18 }}


Period: 1\1
Optimal tunings:  
* WE: ~2 = 1198.1911{{c}}, ~3/2 = 712.4243{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.4684{{c}}


Optimal ([[POTE]]) generator: ~3/2 = 709.495
{{Optimal ET sequence|legend=0| 5, 32, 37 }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]]
Badness (Sintel): 2.03


Scales (Scala files):  
=== Ultramarine ===
Subgroup: 2.3.5.7.11


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Comma list: 64/63, 100/99, 3773/3645
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 55/54, 64/63, 99/98
Mapping: {{mapping| 1 0 -20 6 -38 | 0 1 14 -2 26 }}


Mapping: [{{val| 1 0 -12 6 13 }}, {{val| 0 1 9 -2 -6 }}]
Optimal tunings:  
* WE: ~2 = 1197.2230{{c}}, ~3/2 = 712.1393{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.6928{{c}}


{{Val list|legend=1| 17, 22 }}
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bce }}


Badness: 0.0328
Badness (Sintel): 2.58


</div></div>
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


=== 13-limit ===
Comma list: 64/63, 91/90, 100/99, 847/845


Period: 1\1
Mapping: {{mapping| 1 0 -20 6 -38 -25 | 0 1 14 -2 26 18 }}


Optimal ([[POTE]]) generator: ~3/2 = 708.703
Optimal tunings:  
* WE: ~2 = 1197.2739{{c}}, ~3/2 = 712.1893{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 713.7079{{c}}


EDO generators: [[17edo|11\17]], [[22edo|14\22]]
{{Optimal ET sequence|legend=0| 5e, 32e, 37, 79bcef }}


Scales (Scala files):  
Badness (Sintel): 1.89


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
== Quasiultra ==
<div style="line-height:1.6;">Technical data</div>
Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the {{nowrap| 27 & 32 }} temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C–Abbb).
<div class="mw-collapsible-content">


Comma list: 55/54, 64/63, 65/63, 99/98
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 1 0 -12 6 13 18 }}, {{val| 0 1 9 -2 -6 -9 }}]
[[Comma list]]: 64/63, 33614/32805


{{Val list|legend=1| 17, 22, 83cdf }}
{{Mapping|legend=1| 1 0 31 6 | 0 1 -18 -2 }}


Badness: 0.0363
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.9257{{c}}, ~3/2 = 709.6211{{c}}
: [[error map]]: {{val| 0.000 +9.883 +0.608 +7.499 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 711.5429{{c}}
: error map: {{val| 0.000 +9.588 +5.914 +8.088 }}


</div></div>
{{Optimal ET sequence|legend=1| 27, 86bd, 113bcd, 140bbcd }}


= Beatles =
[[Badness]] (Sintel): 3.34
== 5-limit ==
Comma list: 524288/492075


POTE generator: ~512/405 = 355.930
== Schism ==
{{See also| Schismatic family #Schism }}


Mapping: [{{val| 1 1 5 }}, {{val| 0 2 -9 }}]
Schism tempers out the [[schisma]], mapping the ~5/4 to -8 fifths as a diminished fourth (C–Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53dd val) can be used.


{{Val list|legend=1| 10, 17c, 27, 64b, 91bc, 118bc }}
[[Subgroup]]: 2.3.5.7


Badness: 0.3585
[[Comma list]]: 64/63, 360/343


== 7-limit ==
{{Mapping|legend=1| 1 0 15 6 | 0 1 -8 -2 }}
Comma list: 64/63, 686/675


[[POTE generator]]: ~49/40 = 355.904
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1197.3598{{c}}, ~3/2 = 700.0126{{c}}
: [[error map]]: {{val| -2.640 -4.583 -4.896 +20.588 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.7376{{c}}
: error map: {{val| 0.000 -0.217 -0.214 +27.699 }}


Mapping: [{{val| 1 1 5 4 }}, {{val| 0 2 -9 -4 }}]
{{Optimal ET sequence|legend=1| 5c, 7c, 12 }}


Wedgie: {{wedgie| 2 -9 -4 -19 -12 16 }}
[[Badness]] (Sintel): 1.43


{{Val list|legend=1| 10, 17c, 27, 64b, 91bcd, 118bcd }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.0459
Comma list: 45/44, 64/63, 99/98


Music: [http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/beatles-improv.mp3 Beatles Improv] by Herman Miller
Mapping: {{mapping| 1 0 15 6 13 | 0 1 -8 -2 -6 }}


== 11-limit ==
Optimal tunings:
Comma list: 64/63, 100/99, 686/675
* WE: ~2 = 1196.1607{{c}}, ~3/2 = 699.8897{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 702.4385{{c}}


POTE generator: ~49/40 = 356.140
{{Optimal ET sequence|legend=0| 5c, 7ce, 12, 29de }}


Mapping: [{{val| 1 1 5 4 10 }}, {{val| 0 2 -9 -4 -22 }}]
Badness (Sintel): 1.24


{{Val list|legend=1| 27e, 37, 64be, 91bcde }}
== Beatles ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Beatles]].''


Badness: 0.0456
Beatles tempers out 686/675, which may also be characterized by saying it tempers out [[2401/2400]]. It may be described as the {{nowrap| 10 & 17c }} temperament. It splits the fifth into two neutral-third generators of 49/40~60/49; its [[ploidacot]] is dicot. 5/4 may be found at -9 generator steps, as a semidiminished fourth (C–Fd). 27edo is an obvious tuning, though 17c-edo and 37edo are among the possibilities.  


=== 13-limit ===
Beatles extends easily to the no-11 13-limit, as the generator can be interpreted as ~16/13, tempering out 91/90, 169/168, and 196/195.
Comma list: 64/63, 91/90, 100/99, 169/168


POTE generator: ~16/13 = 356.229
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 1 1 5 4 10 4 }}, {{val| 0 2 -9 -4 -22 -1 }}]
[[Comma list]]: 64/63, 686/675


{{Val list|legend=1| 27e, 37, 64be }}
{{Mapping|legend=1| 1 1 5 4 | 0 2 -9 -4 }}


Badness: 0.0302
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1196.6244{{c}}, ~49/40 = 354.9029{{c}}
: [[error map]]: {{val| -3.376 +4.475 +2.682 -1.940 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~49/40 = 356.0819{{c}}
: error map: {{val| 0.000 +10.209 +8.949 +6.847 }}


== Ringo ==
{{Optimal ET sequence|legend=1| 10, 17c, 27, 64b, 91bcd, 118bccd }}
Comma list: 56/55, 64/63, 540/539


POTE generator: ~11/9 = 355.419
[[Badness]] (Sintel): 1.16


Mapping: [{{val| 1 1 5 4 2 }}, {{val| 0 2 -9 -4 5 }}]
; Music
* [https://web.archive.org/web/20201127013829/http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/beatles-improv.mp3 ''Beatles Improv''] by [[Herman Miller]]


{{Val list|legend=1| 10, 17c, 27e }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.0329
Comma list: 64/63, 100/99, 686/675


=== 13-limit ===
Mapping: {{mapping| 1 1 5 4 10 | 0 2 -9 -4 -22 }}
Comma list: 56/55, 64/63, 78/77, 91/90


POTE generator: ~11/9 = 355.456
Optimal tunings:  
* WE: ~2 = 1196.7001{{c}}, ~49/40 = 355.1606{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.2795{{c}}


Mapping: [{{val| 1 1 5 4 2 4 }}, {{val| 0 2 -9 -4 5 -1 }}]
{{Optimal ET sequence|legend=0| 10e, 17cee, 27e, 64be, 91bcdee }}


{{Val list|legend=1| 10, 17c, 27e }}
Badness (Sintel): 1.51


Badness: 0.0226
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


= Schism =
Comma list: 64/63, 91/90, 100/99, 169/168
{{see also|Schismatic family #Schism}}


Comma list: 64/63, 360/343
Mapping: {{mapping| 1 1 5 4 10 4 | 0 2 -9 -4 -22 -1 }}


[[POTE generator]]: ~3/2 = 701.556
Optimal tunings:
* WE: ~2 = 1197.2504{{c}}, ~16/13 = 355.4132{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.3273{{c}}


Mapping: [{{val| 1 0 15 6 }}, {{val| 0 1 -8 -2 }}]
{{Optimal ET sequence|legend=0| 10e, 27e, 37, 64be }}


Wedgie: {{wedgie| 1 -8 -2 -15 -6 18 }}
Badness (Sintel): 1.25


{{Val list|legend=1| 12, 41d, 53d }}
=== Ringo ===
Subgroup: 2.3.5.7.11


Badness: 0.0566
Comma list: 56/55, 64/63, 540/539


== 11-limit ==
Mapping: {{mapping| 1 1 5 4 2 | 0 2 -9 -4 5 }}
Comma list: 45/44, 64/63, 99/98


POTE generator ~3/2 = 702.136
Optimal tunings:
* WE: ~2 = 1195.4102{{c}}, ~11/9 = 354.0597{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5207{{c}}


Mapping: [{{val| 1 0 15 6 13 }}, {{val| 0 1 -8 -2 -6 }}]
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}


{{Val list|legend=1| 12, 29de, 41de }}
Badness (Sintel): 1.09


Badness: 0.0375
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


= Passion =
Comma list: 56/55, 64/63, 78/77, 91/90
== 5-limit ==
Comma list: 262144/253125


POTE generator: ~16/15 = 98.670
Mapping: {{mapping| 1 1 5 4 2 4 | 0 2 -9 -4 5 -1 }}


Mapping: [{{val| 1 2 2 }}, {{val| 0 -5 4 }}]
Optimal tunings:  
* WE: ~2 = 1195.9943{{c}}, ~11/9 = 354.2695{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 355.5398{{c}}


{{Val list|legend=1| 11, 12, 49, 61, 73 }}
{{Optimal ET sequence|legend=0| 10, 17c, 27e }}


Badness: 0.1686
Badness (Sintel): 0.935


== 7-limit ==
=== Beetle ===
Comma list: 64/63, 3125/3087
Subgroup: 2.3.5.7.11


[[POTE generator]]: ~16/15 = 98.153
Comma list: 55/54, 64/63, 686/675


Mapping: [{{val| 1 2 2 2 }}, {{val| 0 -5 4 10 }}]
Mapping: {{mapping| 1 1 5 4 -1 | 0 2 -9 -4 15 }}


Mapping generators: 2, 16/15
Optimal tunings:  
* WE: ~2 = 1197.9660{{c}}, ~49/40 = 356.1056{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~49/40 = 356.7075{{c}}


Wedgie: {{wedgie| 5 -4 -10 -18 -30 -12 }}
{{Optimal ET sequence|legend=0| 10, 27, 37 }}


{{Val list|legend=1| 12, 37, 49, 110bcd }}
Badness (Sintel): 1.92


Badness: 0.0623
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


== 11-limit ==
Comma list: 55/54, 64/63, 91/90, 169/168
Comma list: 64/63, 100/99, 1375/1372


POTE generator: ~16/15 = 98.019
Mapping: {{mapping| 1 1 5 4 -1 4 | 0 2 -9 -4 15 -1 }}


Mapping: [{{val| 1 2 2 2 2 }}, {{val| 0 -5 4 10 18 }}]
Optimal tunings:  
* WE: ~2 = 1198.1741{{c}}, ~16/13 = 356.1582{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~16/13 = 356.7008{{c}}


{{Val list|legend=1| 12, 37, 49 }}
{{Optimal ET sequence|legend=0| 10, 27, 37 }}


Badness: 0.0408
Badness (Sintel): 1.40


== 13-limit ==
== Progress ==
Comma list: 64/63, 100/99, 196/195, 275/273
{{Distinguish| Progression }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Progress]].''


POTE generator: ~16/15 = 97.910
Progress tempers out 392/375 and may be described as {{nowrap| 15 & 17c }}. It splits the perfect twelfth into three generators of ~10/7; its ploidacot is alpha-tricot. 32c-edo gives an obvious tuning.  


Mapping: [{{val| 1 2 2 2 2 2 }}, {{val| 0 -5 4 10 18 21 }}]
[[Subgroup]]: 2.3.5.7


{{Val list|legend=1| 12f, 37, 49f }}
[[Comma list]]: 64/63, 392/375


Badness: 0.0309
{{Mapping|legend=1| 1 0 5 6 | 0 3 -5 -6 }}


= Fervor =
: mapping generators: ~2, ~10/7
== 5-limit ==
Comma list: 67108864/61509375


POTE generator: ~64/45 = 577.705
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1195.1377{{c}}, ~10/7 = 635.2932{{c}}
: [[error map]]: {{val| -4.862 +3.925 +12.908 -9.759 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 638.0791{{c}}
: error map: {{val| 0.000 +12.282 +23.291 +2.700 }}


Mapping: [{{val| 1 4 -2 }}, {{val| 0 -5 9 }}]
{{Optimal ET sequence|legend=1| 2, 13, 15, 32c }}


{{Val list|legend=1| 25, 27 }}
[[Badness]] (Sintel): 1.68


Badness: 0.8526
=== 11-limit ===
Subgroup: 2.3.5.7.11


== 7-limit ==
Comma list: 56/55, 64/63, 77/75
Comma list: 64/63, 9604/9375


POTE generator: ~7/5 = 577.777
Mapping: {{mapping| 1 0 5 6 4 | 0 3 -5 -6 -1 }}


Mapping: [{{val| 1 4 -2 -2 }}, {{val| 0 -5 9 10 }}]
Optimal tunings:  
* WE: ~2 = 1195.4920{{c}}, ~10/7 = 635.5183{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 638.0884{{c}}


Wedgie: {{wedgie| 5 -9 -10 -26 -30 2 }}
{{Optimal ET sequence|legend=0| 2, 13, 15, 32c, 47bc }}


{{Val list|legend=1| 25, 27 }}
Badness (Sintel): 1.03


Badness: 0.1085
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


== 11-limit ==
Comma list: 56/55, 64/63, 66/65, 77/75
Comma list: 56/55, 64/63, 1350/1331


POTE generator: ~7/5 = 577.850
Mapping: {{mapping| 1 0 5 6 4 0 | 0 3 -5 -6 -1 7 }}


Mapping: [{{val| 1 4 -2 -2 3 }}, {{val| 0 -5 9 10 1 }}]
Optimal tunings:  
* WE: ~2 = 1195.0786{{c}}, ~10/7 = 635.0197{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 637.6691{{c}}


{{Val list|legend=1| 25e, 27e }}
{{Optimal ET sequence|legend=0| 15, 17c, 32cf }}


Badness: 0.0521
Badness (Sintel): 1.08


== 13-limit ==
==== Progressive ====
Comma list: 56/55, 64/63, 78/77, 507/500
Subgroup: 2.3.5.7.11.13


POTE generator: ~7/5 = 578.060
Comma list: 26/25, 56/55, 64/63, 77/75


Mapping: [{{val| 1 4 -2 -2 3 -4 }}, {{val| 0 -5 9 10 1 16 }}]
Mapping: {{mapping| 1 0 5 6 4 9 | 0 3 -5 -6 -1 -10 }}


{{Val list|legend=1| 27e }}
Optimal tunings:
* WE: ~2 = 1196.0245{{c}}, ~10/7 = 634.6516{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 636.9528{{c}}


Badness: 0.0397
{{Optimal ET sequence|legend=0| 2f, 15f, 17c }}


= Quasisuper =
Badness (Sintel): 1.35


Period: 1\1
== Fervor ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Fervor]].''


Optimal ([[POTE]]) generator: ~3/2 = 708.328
Fervor tempers out 9704/9375 and may be described as {{nowrap| 25 & 27 }}. It splits the 6th harmonic into five generators of ~10/7; its ploidacot is beta-pentacot. 27edo is about as accurate as it can be tuned.  


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
[[Subgroup]]: 2.3.5.7


Scales (Scala files):  
[[Comma list]]: 64/63, 9604/9375


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
{{Mapping|legend=1| 1 -1 7 8 | 0 5 -9 -10 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 2430/2401
: mapping generators: ~2, ~10/7


Mapping: [{{val| 1 0 23 6 }}, {{val| 0 1 -13 -2 }}]
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1196.2742{{c}}, ~10/7 = 620.2918{{c}}
: [[error map]]: {{val| -3.726 +3.230 +4.980 -1.550 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 622.3179{{c}}
: error map: {{val| 0.000 +9.634 +12.826 +7.996 }}


Wedgie: {{wedgie| 1 -13 -2 -23 -2 -6 32 }}
{{Optimal ET sequence|legend=1| 2, 25, 27 }}


{{Val list|legend=1| 17c, 22, 61d }}
[[Badness]] (Sintel): 2.74


Badness: 0.0638
=== 11-limit ===
Subgroup: 2.3.5.7.11


</div></div>
Comma list: 56/55, 64/63, 1350/1331
 
== Quasisupra ==
Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament [[supra]], with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).
 
Period: 1\1
 
Optimal ([[POTE]]) generator: ~3/2 = 708.205
 
EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
 
Scales (Scala files):
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
 
Comma list: 64/63, 99/98, 121/120


Mapping: [{{val| 1 2 -3 2 1 }}, {{val| 0 -1 13 2 6 }}]
Mapping: {{mapping| 1 -1 7 8 4 | 0 5 -9 -10 -1 }}


{{Val list|legend=1| 17c, 22, 39d, 61d }}
Optimal tunings:
* WE: ~2 = 1195.4148{{c}}, ~10/7 = 619.7729{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.2525{{c}}


Badness: 0.0322
{{Optimal ET sequence|legend=0| 2, 25e, 27e }}


</div></div>
Badness (Sintel): 1.72


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Period: 1\1
Comma list: 56/55, 64/63, 78/77, 507/500


Optimal ([[POTE]]) generator: ~3/2 = 708.004
Mapping: {{mapping| 1 -1 7 8 4 12 | 0 5 -9 -10 -1 -16 }}


EDO generators: [[17edo|11\17]], [[22edo|14\22]], [[39edo|25\39]], [[61edo|39\61]]
Optimal tunings:  
* WE: ~2 = 1195.6284{{c}}, ~10/7 = 619.6738{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 622.0631{{c}}


Scales (Scala files):
{{Optimal ET sequence|legend=0| 2f, 27e }}


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Badness (Sintel): 1.64
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 64/63, 78/77, 91/90, 121/120
== Sixix ==
: ''For the 5-limit version, see [[Syntonic–chromatic equivalence continuum #Sixix (5-limit)]].''
{{See also| Dual-fifth temperaments #Dual-3 Sixix }}


Mapping: [{{val| 1 0 23 6 13 18 }}, {{val| 0 1 -13 -2 -6 -9 }}]
Sixix tempers out 3125/2916 and may be described as {{nowrap| 25 & 32 }}. It is related to the [[kleismic family]] in a way similar to the one between [[meantone]] and [[mavila]]. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction. Its ploidacot is gamma-pentacot.


{{Val list|legend=1| 17c, 22, 39d, 61df, 100bcdf }}
[[Subgroup]]: 2.3.5.7


Badness: 0.0302
[[Comma list]]: 64/63, 3125/2916


</div></div>
{{Mapping|legend=1| 1 3 4 0 | 0 -5 -6 10 }}


== Quasisoup ==
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1198.9028{{c}}, ~6/5 = 337.1334{{c}}
: [[error map]]: {{val| -1.097 +9.086 -13.503 +2.508 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~6/5 = 337.4588{{c}}
: error map: {{val| 0.000 +10.751 -11.066 +5.762 }}


Period: 1\1
{{Optimal ET sequence|legend=1| 7, 18d, 25, 32 }}


Optimal ([[POTE]]) generator: ~3/2 = 709.021
[[Badness]] (Sintel): 4.02


EDO generators: [[22edo|14\22]]
=== 11-limit ===
Subgroup: 2.3.5.7.11


Scales (Scala files):  
Comma list: 55/54, 64/63, 125/121


<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
Mapping: {{mapping| 1 3 4 0 6 | 0 -5 -6 10 -9 }}
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">


Comma list: 55/54, 64/63, 2430/2401
Optimal tunings:  
* WE: ~2 = 1198.5480{{c}}, ~6/5 = 337.1557{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.6000{{c}}


Mapping: [{{val| 1 0 23 6 -22 }}, {{val| 0 1 -13 -2 16 }}]
{{Optimal ET sequence|legend=0| 7, 25e, 32 }}


{{Val list|legend=1| 22 }}
Badness (Sintel): 2.34
 
Badness: 0.0835
 
</div></div>
 
= Progress =
== 5-limit ==
Comma list: 32768/30375
 
POTE generator: ~64/45 = 561.264
 
Mapping: [{{val| 1 0 5 }}, {{val| 0 3 -5 }}]
 
{{Val list|legend=1| 4, 13, 15, 32c, 47bc, 62bc }}
 
Badness: 0.2461
 
== 7-limit ==
Comma list: 64/63, 392/375
 
POTE generator: ~7/5 = 562.122
 
Mapping: [{{val| 1 0 5 6 }}, {{val| 0 3 -5 -6 }}]
 
Wedgie: {{wedgie| 3 -5 -6 -15 -18 0 }}
 
{{Val list|legend=1| 13, 15, 32c, 79bcc, 111bcc }}
 
Badness: 0.0664
 
== 11-limit ==
Comma list: 56/55, 64/63, 77/75
 
POTE generator: ~7/5 = 562.085
 
Mapping: [{{val| 1 0 5 6 4 }}, {{val| 0 3 -5 -6 -1 }}]
 
{{Val list|legend=1| 13, 15, 32c, 47bc, 79bcce }}
 
Badness: 0.0310


=== 13-limit ===
=== 13-limit ===
Comma list: 56/55, 64/63, 66/65, 77/75
Subgroup: 2.3.5.7.11.13
 
POTE generator: ~7/5 = 562.365
 
Mapping: [{{val| 1 0 5 6 4 0 }}, {{val| 0 3 -5 -6 -1 7 }}]
 
{{Val list|legend=1| 15, 17c, 32cf }}
 
Badness: 0.0262
 
=== Progressive ===
Comma list: 26/25, 56/55, 64/63, 77/75
 
POTE generator: ~7/5 = 563.239
 
Mapping: [{{val| 1 0 5 6 4 9 }}, {{val| 0 3 -5 -6 -1 -10 }}]


{{Val list|legend=1| 15f, 17c, 32c, 49c }}
Comma list: 40/39, 55/54, 64/63, 125/121


Badness: 0.0327
Mapping: {{mapping| 1 3 4 0 6 4 | 0 -5 -6 10 -9 -1 }}


= Sixix =
Optimal tunings:
== 5-limit ==
* WE: ~2 = 1197.7111{{c}}, ~6/5 = 336.8391{{c}}
Comma list: 3125/2916
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5336{{c}}


POTE generator: ~6/5 = 338.365
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}


Mapping: [{{val| 1 3 4 }}, {{val| 0 -5 -6 }}]
Badness (Sintel): 1.91


{{Val list|legend=1| 7, 25, 32 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


Badness: 0.1531
Comma list: 40/39, 55/54, 64/63, 85/84, 125/121


== 7-limit ==
Mapping: {{mapping| 1 3 4 0 6 4 1 | 0 -5 -6 10 -9 -1 11 }}
Comma list: 3125/2916, 64/63


POTE generator: ~6/5 = 337.4419
Optimal tunings:  
* WE: ~2 = 1197.7807{{c}}, ~6/5 = 336.8884{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~6/5 = 337.5279{{c}}


Mapping: [{{val| 1 3 4 0 }}, {{val| 0 -5 -6 10 }}]
{{Optimal ET sequence|legend=0| 7, 25e, 32f }}


{{Val list|legend=1| 7, 25, 32 }}
Badness (Sintel): 2.00


[[Category:Theory]]
[[Category:Archytas clan| ]] <!-- main article -->
[[Category:Temperament clan]]
[[Category:Temperament clans]]
[[Category:Archytas]]
[[Category:Pages with mostly numerical content]]
[[Category:Rank 2]]
[[Category:Rank 2]]